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Abstract

Many scienti�c and commercial domains have seen an enormous growth of data in recent years. Such

data sets have inherent sequential nature. The clustering of such data is useful for various purposes.

Over the years, many methods have been developed for clustering objects according to their similarity.

However, in contexts of sequential data these methods tend to have a computational complexity that is

at least quadratic on the number of sequences, as they require an all-against-all initial analysis. In this

paper we present an entirely di�erent approach to sequence clustering that does not require an all-against-

all analysis and uses a near-linear complexity K-means based clustering algorithm. Our experimental

evaluation in di�erent domains show that this approach is not only scalable, but also leads to reasonably

good clusters.

1 Introduction

In recent years, we have seen an enormous growth in the amount of available commercial and scienti�c data.
Data from domains such as protein sequences, retail transactions, intrusion detection, and web-logs have
an inherent sequential nature. Clustering of such data sets is useful for various purposes. For example,
clustering of sequences from commercial data sets may help marketer identify di�erent customer groups
based upon their purchasing patterns. Grouping protein sequences that share similar structure helps in
identifying sequences with similar functionality.

Over the years, many methods have been developed for clustering objects according to their similarity.
These algorithms can be broadly classi�ed into two categories: partitional and hierarchical. Partitional
clustering algorithms, as typi�ed by the K-medoid algorithm [KR90, DH73], obtain clusters of objects by
selecting cluster representatives and assigning each object to the cluster with its representative closest to
the object. On the other hand, hierarchical clustering algorithms, such as UPGMA or sinlge-link [DH73],
produce a nested sequence of clusters, with single all-inclusive cluster at the top and single point clusters
at the bottom. These clustering algorithms can be easily adapted to cluster sequential data sets, provided
that the pairwise similarity between the sequences can be easily computed. However these methods tend
to have a computational complexity that is at least quadratic on the number of sequences, as they need to
compute the pairwise similarity between all the sequences. Thus, they are only applicable to small data sets.
Moreover, computationallly e�cient schemes such as K-means cannot be directly applied as it is hard to
compute sequence centroids.

In this paper we present an entirely di�erent approach to sequence clustering that does not require an
all-against-all analysis and uses a near-linear complexity K-means based clustering algorithm. The key idea
of our approach is to �nd a set of features that capture the sequential nature of the various data-sequences,
project each data-sequence into a new space whose dimensions are these features, and then use a traditional
vector-space K-means based clustering algorithm to �nd the clusters of data-sequences. Our approach was
inspired by research in document clustering that showed that high quality clusters can be obtained when each
document is represented using a \bag of words". Clustering the documents based solely on their similarity
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DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performance Computing Research Center contract
number DAAH04-95-C-0008. Access to computing facilities was provided by the Minnesota Supercomputing Institute.
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Figure 1: Example of string alignment

(a b) (b d) () (c f) ()
(b f) (b d g) (h) (f k) (l m)

Figure 2: Example of sequence alignment

with respect to these words, generates clustering solutions which are equally good to methods that try to
take into account phrase, paragraph, and document structure. In light of this example, our algorithm can be
thought of as �rst discovering the \words" (i.e., features) of the sequences, and then clustering the sequences
based on the words that they have. Our experiments using data sets derived from sequences of purchasing
transactions and protein sequences show that this approach is scalable and leads to reasonably good clusters.

The rest of this paper is organized as follows. Section 2 provides brief overview of existing methods to
cluster sequential data. Section 3 described the proposed approach, which is experimentally evaluated in
Section 4. Finally, Section 5 provides some concluding remarks.

2 Background

Clustering is the task of grouping together the objects into meaningful subclasses. We focus on clustering
sequential data in which each object is represented as a sequence of set of items, called itemsets. Such
sequence is called data-sequence. For sequential data sets, the problem of clustering becomes one of �nding
the groups of data-sequences similar to each other.

2.1 Measuring Similarity between Sequences

One of the key steps in all clustering algorithms is the method used to compute the similarity between the
objects being clustered. Over the years, a number of di�erent approaches have been developed for computing
similarity between two sequences [Gus97]. In particular, in the context of comparing biological sequences,
e.g. DNA or protein sequences, some of the most widely used methods �rst compute an optimal alignment
between two sequences (either global or local), and then use either PAM [DSO78, SD79] or BLOSUM
[HH92] substitution matrices to compute the similarity score of the aligned positions. The idea behind these
approaches is to align two sequences against each other so that they maximize the similarity between the
portions of the two sequences that fall at the same location of the alignment. Figure 1 shows an example of
such an alignment between two particular protein sequences. These optimal alignment-based approaches for
comparing the similarity between strings can be extended to compute the similarity between two sequences
of itemsets as follows. Let S1 and S2 be two sequences containing m and n itemsets, respectively. Let S1(i)
be the ith itemset of S1 and S2(j) be the j

th itemset of S2. Furthermore, let S
0

1 and S
0

2 be two sequences of
length l obtained after aligning S1 against S2, by inserting empty itemsets at either inside, at the beginning,
or at the ends of the two sequences, so that every itemset (including empty) in either sequence is opposite
a unique itemset in the other sequences. An example of this type of alignment is shown in Figure 2. The
score of such alignment A can be de�ned as

score(A) =
lX

i=1

sim(S
0

1(i); S
0

2(i)):

The similarity between two itemsets S
0

1(i) and S
0

2(i) can be measured in various ways. One possible way
of measuring similarity is to count the number of items that are common between the two itemsets and scale
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the count so that the similarity is always a number between 0 and 1, resulting in the following measure:

sim(S
0

1(i); S
0

2(i)) =
jS

0

1(i)
T
S

0

2(i)j
jS

0

1
(i)j+jS

0

2
(i)j

2

:

Another way of measuring similarity is to represent itemsets using the vector-space model. In this model,
each itemset is considered to be a vector in the item space. In its simplest form, each itemset is represented
by the vector I = (i1; i2; : : : ; in), where ij is an indicator whether the jth item is in the itemset. Given this
representation, the cosine similarity measure is a natural way of computing the similarity, and is de�ned as

sim(S
0

1(i); S
0

2(i)) =
S

0

1(i) � S
0

2(i)

kS
0

1(i)kkS
0

2(i)k
:

Given any scoring scheme (including the ones introduced above), the optimal alignment A� of two
sequences S1 and S2 is de�ned as an alignment that maximizes the total alignment score score(A�). The
score of the optimal alignment can be used as the similarity measure of two sequences. Depending on the
application domain, one might want to scale this value so that the similarity between sequences of di�erent
lengths are comparable. The following formulas achieve the desired result:

sim(S1; S2) =
score(A�)
jS1j+jS2j

2

or sim(S1; S2) =
score(A�)

l
:

The similarity of two sequences S1 and S2, and the associated optimal alignment, can be computed via
dynamic programming [Gus97] using the following recurrence relation:

Let score(i; j) be the score of the optimal alignment of pre�xes S1[1 : : : i] and S2[1 : : : j]. Then the base
conditions are:

score(0; j) =
P

1�k�j sim(;; S2(k)) and score(i; 0) =
P

1�k�j sim(S1(k); ;)

and the general recurrence is

score(i; j) = maxf score(i� 1; j � 1) + sim(S1(i); S2(j));
score(i� 1; j) + sim(S1(i); ;);
score(i; j � 1) + sim(;; S(j))g:

2.2 Clustering Algorithms

Agglomerative hierarchical clustering andK-means are two techniques that are commonly used for clustering.
Hierarchical techniques produce a nested sequence of partitions, with a single all-inclusive cluster at the top
and singleton clusters of individual points at the bottom. Each intermediate level can be viewed as combining
two clusters from the next lower level (or splitting a cluster from the next higher level). Agglomerative
hierarchical algorithms start with all the data points as a separate cluster. Each step of the algorithm
involves merging two clusters that are most similar. After each merge, the total number of clusters decreases
by one. These steps can be repeated until the desired number of clusters is obtained or the distance between
two closest clusters is above a certain threshold distance.

In contrast to hierarchical techniques, partitional clustering techniques create a one-level (un-nested)
partitioning of the data points. Partitional clustering attempts to break a data set into K clusters such
that the partition optimizes a given criterion. Centroid-based approaches, as typi�ed by K-means try to
assign objects to clusters such that the mean square distance of objects to the centroid of the assigned
cluster is minimized. Centroid-based techniques are suitable only for data in metric spaces (e.g. Euclidean
space) in which it is possible to compute centroid for a given set of points. Because it is computationally
hard to compute centroids in the space of data-sequences, medoid-based approaches are better suited for
clustering sequential data sets. Medoid-based methods work with similarity data, i.e. data in arbitrary
similarity space. These techniques try to �nd representative points (medoids) so as to minimize the sum of
the distances of points from their closest medoid. It has been shown, that if the measure used to compute
similarity of itemsets of the data-sequences satis�es the triangle inequality, then in each cluster of n data-
sequences there exists a medoid Sm, such that M =

Pn
i=1 score(Sm; Si) is never less than 2� 2=n times the

Mc =
Pn

i=1 score(Sc; Si), where Sc is the centroid of the cluster [Gus97]
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2.3 Limitation of existing approaches

One limitation of using both hierarchical and medoid-based partitional clustering approaches is that when the
dynamic programming algorithms are used to compute the similarity, their complexity is O(n2m2+n2 logn)
and O(n2m2 + ntk), respectively; where n is the number of data-sequences, m is the average length of each
data-sequence, k is number of clusters and t number of iterations in the medoid-based approach. These high
computational requirements make such approaches impractical for most applications that require clustering
of moderate and large data sets.

3 Feature-based Clustering

The high computational requirements of both the hierarchical clustering algorithms and K-medoid ap-
proaches are due to both the fact that (a) they need to compute the pairwise similarity between all the
data-sequences and (b) the similarity computations have a complexity that is quadratic to the length of
the data-sequences involved. To address these high computational requirements, we explore an alternate
approach for clustering sequences that (i) does not use dynamic programming to compute the similarity, and
(ii) it uses a K-means algorithm whose complexity is near-linear to the number of sequences.

The key idea of our approach is to �nd a set of features that capture the sequential nature of the
various data-sequences, project each data-sequence into a new space whose dimensions are these features,
and then use a traditional vector-space K-means-based clustering algorithm [SKK00] to �nd the clusters of
the data-sequences in this transformed space.

In the remaining of this section we describe the various algorithms and issues associated with each one
of these three steps.

3.1 Finding the Feature Space

An essential part of the proposed approach is �nding the set of features that will form the basis of the
transformed space. In particular, these features must satisfy the following properties:

1. The features should capture the sequential relations between the di�erent itemsets that are present in
the data-sequences. This is particularly important, since the proposed clustering algorithm will cluster
the data-sequences based solely on their similarity with respect to these features.

2. The features should be present in a nontrivial number of data-sequences. This is because, in general,
rare features do not improve the overall clustering, as they are useful only in de�ning a�nity between
a small set of data-sequences.

3. The feature space should be complete, in the sense that all such interesting features should be contained
in the transformed space.

Our algorithm achieves these goals by using as features all the sequential patterns whose length is between
lmin and lmax and satisfy a given minimum support constraint. A sequential pattern is a list of sets of items
with the support above a user-speci�ed threshold, where the support of the pattern is the percentage of data-
sequences that contain it. Given a sequential pattern < s1; s2; : : : ; sn >, where si is an itemset, the length of
the pattern is the number of items in all itemsets si of the pattern. The gap between itemsets i1 and i2 of the
data-sequence supporting a particular pattern is de�ned occurrence(i1)�occurrence(i2), where de�nition of
the occurrence is domain speci�c. Thus in the web-log data sets occurrence of the page in the sequences of
web accesses is the time the access has been made. In the protein sequences, the occurrence of amino-acid is
its position in the sequence. Depending on the application domain, one might impose minimum/maximum
gap constraints on sequential patterns. These frequent sequential patterns, can be computed e�cient using
a variety of sequential pattern discovery algorithms [AS96, SA96, Zak98, JKK99, HPMA+00].

3.2 Projecting in to the Feature Space

The critical step in our approach is that of representing each data-sequence in the newly discovered space of
sequential features. If N is the dimensionality of the feature space, a straightforward way of achieving this
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Pattern Support
ALG 4
AQV 6
DAL 4
HKK 4
IKD 4
KKS 5
QIK 4
QVH 6

AQVH 6
DALG 4
HKKS 4
QIKD 4

Seq.ID. KKS AQVH DALG QIKD
S1 x x

S2 x x

S3 x x

S4 x x x

S5 x x x

S6 x x

S7 x x

S8 x x x

Globally Selected Features

Locally Selected Features

Seq. ID. Sequence
S1 AQVHGHKKSVDAM

S2 AQVHKKSGSDGLP

S3 AQVHAHVAQIKDP

S4 AQVHDALGPHKKS

S5 DALGPAQVHMHKKS

S6 AQIKDDALGPAQP

S7 KKSPQIKDQVG

S8 QIKDALGMAQVHP

Seq.ID. ALG KKS AQVH DALG HKKS QIKD
S1 x x

S2 x x

S3 x x

S4 x x x

S5 x x x

S6 x x

S7 x x

S8 x x x

Figure 3: Feature Selection Example

is to represent each data-sequence as an N -dimensional vector of zeros and ones, with ones corresponding
to all the features that are supported by that particular data-sequence.

Unfortunately, this representation can potentially lead to poor clustering results. This is because, the dif-
ferent features that are supported by a particular sequence may be highly dependent which can substantially
distort the similarity measure that is used in the transformed space. For instance, if a particular sequential
pattern w of length l, with l > lmin is supported by a particular sequence, then all of its sub-patterns of
length greater than lmin will also be supported as well. As a result, when we compare two sequences that
both have w, their similarity will be distorted by the di�erent sub-patterns of w that they also share. Similar
problem occurs when two sequential patterns partially overlap as well. For example, consider the following
scenario in context of protein clustering. Let's assume that we have database of amino-acid sequences, which
is shown in Figure 3 together with all sequential patterns of consecutive amino-acids of lengths 3 and 4,
having support of 50%. Let's concentrate on the �rst two sequences S1 and S2 and the two discovered
patterns AQVH and HKKS. Saying that both proteins subscribe to both patterns will mean that there are
two similarity of regions of length 4 between them, while if we computed the alignment of those proteins
we would �nd that there is only one region of length 4 where both proteins align (either AQVH or HKKS).
Therefore, it is important to represent each sequence in a way such that the dimensions that they are using
are as independent of each other as possible. We implemented two di�erent approaches to address this
problem, that are described in the rest of this section.

3.2.1 Global Approach

One way of addressing the above problem is to prune the feature space by selecting only a set of independent
features, prior to projection. In particular, we say that two sequential patterns are dependent if and only if

1. Either one is the pre�x of the other or one is a sub-pattern of the other, and
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2. The intersection of their respective supporting sets is non-trivial.

These conditions essentially call two patterns that draw support from the same region of the sequence to
be dependent. Coming back to the example from Figure 3, let's assume that the intersection of two patterns
supporting set is non-trivial if its cardinality is at least two thirds of smallest support of the pattern. Under
this condition one possible set of independent patterns is KKS, AQVH, DALG, QIKD, as shown in Figure 3.

Using the de�nition of independence, we can then use a greedy algorithm to select a maximal set of
independent features, and restrict the space to only this set as features. Even though this approach ensures
that the set of features that we select to represent each data-sequence by, are independent, it has a number
of potentially serious drawbacks. First, computation of the pairwise intersection of the supporting sets for
each sequential pattern is computationally expensive. Second, the resulting space will either be over-pruned
or under-pruned. Thus in our example, patterns AQVH and HKKS are found dependent (the number of
proteins that support both of them is 4). As a result all the sequences supporting both of these patterns
subscribe to only AQVH. However, almost all of the sequences that support both patterns have two regions
of similarity of length 4. Hence, we are presented with over-pruned space. Ideally we would like for S1 to
subscribe to both patterns, and for S2 to subscribe to only one of them. On the other hand, patterns DALG
and QIKD are found independent (the number of proteins that support both of them is 2). As a result the
sequences S6 and S8 have two regions of similarity of length 4 QIKD and DALG which is not correct. As we
can see, over-running of the space contradicts the required property of completeness. Under-pruning doesn't
solve the problem of having redundant features.

3.2.2 Local Approach

In order to correct the problem of the global approach, we developed a method for selecting a set of inde-
pendent features that is done locally, on a per data-sequence basis. In this approach, for each data-sequence
we �rst �nd the set of features that it supports, and from this set we select a maximal set of independent
features. In this context, two features are considered to be independent, if they are supported by non-
overlapping segments of the underlying data-sequence. The advantage of this approach is that it allows
us to subscribe each data-sequence to as many independent features as possible (regardless of the features
selected by other data-sequences), and at the same time, the process of feature selection is very fast. One
potential problem with this approach is that sequences that share a large number of sequential patterns, may
actually end up having low similarity, because the independent sets they selected, had little overlap. One
way of addressing this problem is to select the locally independent features using the same greedy strategy,
so that we will increase the likelihood that if two data-sequences share a number of sequential patterns, then
a considerable number of them will be selected by both of them|ensuring that if two data-sequences are
similar in the original space, will also be similar in the transformed space. This can be done in a number of
ways. One way to select a feature out of set of dependent patterns is to select a more frequent pattern, or
pattern that has more items. An example of locally selected features is presented in Figure 3, in which the
selection strategy gave preference to the longer pattern.

3.3 Clustering in the Feature Space

Once the data-sequences have been projected into the feature space, we use an e�cient vector-space clustering
algorithm based onK-means [SKK00] to �nd k clusters. The basicK-means clustering technique is presented
below.

1. Select k points as the initial centroids.

2. Assign all points to the closest centroid.

3. Recompute the centroid of each cluster.

4. Repeat steps 2 and 3 until the centroids don't change.

In this algorithm, each data-sequence is represented by a vector in the feature-space, and the similarity
between two data-sequences is computed using the cosine similarity function, commonly used in the context
of information retrieval [Sal89]. Moreover, in some domains it is important to account for frequently occurring
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low complexity sequential patterns. To do this, we scale each of the features following the inverse-document-
frequency methodology, again inspired by research in information retrieval. In this approach, if a particular
feature appears in m out of n data-sequences, its weight is multiplied by log(n=m). The e�ect of this scaling
is that infrequently occurring features are given higher weight that features that occur in almost every
data-sequence.

4 Experimental Evaluation

In order to evaluate our approach, we ran experiments in two domains: retail and bioinformatics. All
experiments were run on a linux machine with 4 GB of memory utilizing 550 MHz Pentium III CPU.

4.1 Evaluation of Cluster Quality

For clustering, two measures of cluster \goodness" or quality are used. One type of measure allows us to
compare di�erent sets of clusters without reference to external knowledge and is called an internal quality
measure. One internal measure is weighted average similarity, which is based on the pairwise similarity of
sequences in each cluster. The weighted average similarity is calculated as follows. Let CS be a clustering
solution. For each cluster Cj , we �rst compute its average similarity

ASj =

P
S2Cj ;S02Cj

sim(S; S0)

nj(nj � 1)
;

where nj is number of sequences in cluster Cj . The weighted average similarity for a set of clusters is
calculated as the sum of the average similarities for each cluster weighed by the size of each cluster:

WAScs =
mX

j=1

nj �ASj ;

where nj is the size of cluster Cj , and m is the number of clusters.
The other type of measures lets us evaluate how well the clustering is working by comparing the groups

produced by the clustering techniques to known classes. This type of measure is called an external quality
measure. One external measure is entropy [Sha48], which provides a measure of \goodness" for un-nested
clusters or for the cluster at one level of a hierarchical clustering. The entropy is calculated as follows. Let
CS be a clustering solution. For each cluster Cj , we �rst compute the distribution of the data-sequences
that it contains for each class i, i.e., pij is equal to the probability a randomly drawn data-sequence from
cluster Cj to be of class i. Then using this class distribution, the entropy of each cluster Cj is calculated
using the formula

Ej = �
X

i

pij log(pij):

The total entropy for a set of clusters is calculated as the sum of the entropies for each cluster weighted by
the size of each cluster:

Ecs =

mX

j=1

nj �Ej

n
;

where nj is the size of cluster j, m is the number of clusters, and n is the total number of data-sequences
in that data set. Note, that the entropy value 0 indicates a perfect clustering solution. The higher entropy
value

4.2 Retail Data Set

The retail data set contained history of store-branded credit-card purchases of 7451 customers of a major
department store, such that each customer made 3 or more purchases. The total number of distinct products
purchased was 222348. For this data set we found 2435 frequent sequential patterns of length 2 or more with
minimum support equal to 0.1%. The maximum length of the pattern that was discovered was 9.
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Figure 4: Comparison of Feature Based Clustering vs. Similarity Based Clustering

To subscribe data-sequences to discovered patterns we used both global and local methods with di�erent
feature selection approaches, namely selecting a longer pattern or a more frequent pattern, resulting in four
test sets FB-GL (global selection of longer patterns), FB-GF (global selection of more frequent patterns),
FB-LL (local selection of longer patterns) and FB-LF (local selection of more frequent patterns). After
the independent patterns were selected, the FB-GL approach kept 255 patterns and subscribed 2061 data-
sequences, the FB-GF approach selected 241 patterns and subscribed 2552 sequences, the FB-LL approach
kept 707 frequent patterns and subscribed 3164 data-sequences, and the FB-LF kept 546 patterns and
subscribed 3230 data-sequences. Note that schemes that give preference to the more frequent patterns
resulted in spaces with fewer dimensions as frequent patterns are inherently more dependent. The sequences
that didn't support any of the frequent patterns were not used for clustering.

The resulting clustering solutions were compared against solutions produced by similarity-based ap-
proaches { hierarchical algorithm (SB-H) and K-medoid (SB-KM). To ensure that the comparison were
performed in an unbias way, only the data-sequences that could be projected on the feature space were
clustered. This resulted in four di�erent sets of experiments, one for each of the feature selection strategies.
In the absence of class information, we used the weighted average similarity of the clusters in the sequence
space, as a measure of quality of the clustering solution.

Figure 4 shows the weighted average similarity of 10, 20 and 30-way clustering solutions generated by
the di�erent algorithms. Note that high values of weighted average similarity represent better clustering
solutions. From this �gure it can be seen that both global and local approaches, which selected longer
patterns, performed poorly. In analyzing the reason for this behavior, we discovered that the data-sequences
in this data set are short and therefore supported only a small number of sequential patterns. As a result,
by preferring longer sequential patterns the majority of data-sequences only subscribed to a small number of
dimensions (usually one or two). Thus, if one sequence contained a long pattern and another contained its
sub-pattern, those sequences mostly likely ended up in di�erent clusters due to the fact that they contained
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Data Set Feature-Based K-medoid
K-means

DS1 1.43 2.12
DS2 1.51 2.19

Table 1: Comparison of Entropy Measure

di�erent features. This resulted in un-similar data-sequences getting clustered in the same group. After
examining frequent dimensions of the resulting clusters, we found for example that customers who bought
home collection items were put in the same cluster as customers who bought hair-care products.

To overcome this problem, we ran the experiments FB-LF and FB-GF in which more frequent patterns
were selected. In both cases the feature based approach outperformed hierarchical algorithm, and showed
comparable performance to K-medoid. Comparing the global selection methods against those that select
features that are locally independent in each data-sequence, we can see that the later approach performs
considerably better. Note, that as it was described in Section 3.2 the resulting global schemes became
over-pruned. This is evident by cardinality of the transformed space in the global selection scheme which is
about 3 times smaller. As a result global schemes were not able to cluster as many data-sequences as local
ones.

Even though the feature-based approach didn't show signi�cant improvement over similarity based al-
gorithms, the proposed approach has number of advantages. First, by projecting only the data-sequences
that support frequent patterns onto the feature space, our approach eliminates data-sequences which are
outliers. This is because the sequences that do not contain frequent patterns are not similar to a lot of
other sequences in the data set and thus are not relevant for clustering. Second, examining the dimensions
which occur frequently in each cluster helps us to gain insight about its characteristics and thus interpret
the clustering solution. The medoids of the K-medoid approach can serve as representatives of the clusters.
However, since it is unknown what regions of the medoid sequence occur frequently in the cluster and what
regions are unique to this particular medoid, it will be hard to use this sequence to describe the cluster.
Examples of clusters found by our approach are group of customers who buy home collection products and
group of people who buy clothes for teenagers.

4.3 Data Sets of Proteins

To evaluate the performance of the proposed clustering algorithm we generated three di�erent data sets,
DS1, DS2, and DS3, containing protein sequences from the SWISS-PROT [BB91] public protein sequence
database. Each one of the data sets contains proteins from 20 di�erent protein families. DS1 contains 4,775
sequences, DS2 contains 5,288, and DS3 contains 43,569 sequences. For each of the data sets, we found
frequent patterns of consecutive amino-acids, of length 3 through length 6. The minimum support used for
each data set was equal to 25% of the size of the smallest class. In all of our experiments, we used the local
scheme for selecting independent dimensions during projection, and these dimensions were selected by giving
preference to the longest patterns.

We evaluated the quality of the resulting clustering solution using external metric entropy, which com-
putes the class distribution of the proteins assigned to each cluster.

Figure 5, 6, and 7 show the 20-way clustering solution produced by our algorithm on the DS1, DS2, and
DS3 data sets, respectively. For DS1, a total of 13,331 frequent patterns of length 3{6 were discovered, out
of which 11,780 were kept after independent patterns were selected locally. In the case of DS2, the initial
and �nal number of patterns were 19,129 and 14,139, respectively, and in the case of DS3 they were 22,672
and 21,223. Also, each sequence subscribed to an average of 71, 76, and 81 features for DS1, DS2, and DS3,
respectively. The �rst three columns of each table show the number of proteins assigned to each cluster,
the average pairwise protein similarity between the proteins in each cluster, and the entropy of each cluster,
respectively. For each of the clusters, the remaining 20 columns of each row, show the class distribution of
the proteins that were assigned to that particular cluster. We also experimented with the global selection
scheme, but the quality of the resulting solutions was quite poor. For this reason we do not report these
experiments in this paper.
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No. of Clust. Clust. Functional Classes

Seqs Sim. Entropy F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

232 0.69 0.00 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

229 0.66 0.04 0 228 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

207 0.45 0.00 0 0 207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

220 0.62 0.00 0 0 0 220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

211 0.5 0.00 0 0 0 0 211 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

196 0.43 0.00 0 0 0 0 0 196 0 0 0 0 0 0 0 0 0 0 0 0 0 0

191 0.48 0.00 0 0 0 0 0 0 191 0 0 0 0 0 0 0 0 0 0 0 0 0

185 0.34 0.00 0 0 0 0 0 0 0 185 0 0 0 0 0 0 0 0 0 0 0 0

200 0.25 0.62 2 0 0 0 0 17 0 2 178 1 0 0 0 0 0 0 0 0 0 0

171 0.38 0.27 0 0 0 0 0 0 0 0 0 163 8 0 0 0 0 0 0 0 0 0

154 0.51 0.06 0 0 0 0 0 0 0 0 0 0 153 0 0 0 0 1 0 0 0 0

180 0.31 0.94 0 3 0 0 1 0 1 0 0 0 37 138 0 0 0 0 0 0 0 0

183 0.5 1.45 0 0 0 0 0 1 0 0 0 43 0 104 0 0 35 0 0 0 0 0

122 0.41 0.50 0 0 0 0 9 0 0 0 0 0 0 0 111 0 0 2 0 0 0 0

181 0.27 1.27 0 1 0 0 0 0 0 0 0 0 0 0 96 0 0 77 0 0 2 5

83 0.48 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 83 0 0 0 0 0 0

56 0.8 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0

128 0.38 1.12 0 0 0 0 2 0 1 0 0 0 0 0 0 0 77 48 0 0 0 0

770 0.14 3.44 0 3 2 1 15 5 27 14 13 12 26 0 14 68 56 56 96 96 142 124

876 0.13 3.60 0 1 23 16 12 16 17 33 47 18 22 1 12 84 25 51 146 143 106 103

Feature-based clustering solution

No. of Clust. Clust. Functional Classes

Seqs Sim. Entropy F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

83 0.248 2.213 53 3 0 2 2 1 5 3 4 1 2 0 0 1 0 2 0 0 3 1

521 0.212 2.619 101 230 15 0 2 6 0 21 14 68 0 0 3 1 3 12 5 20 3 17

143 0.254 1.417 0 0 110 0 0 10 0 2 2 0 0 1 0 3 0 5 1 0 7 2

124 0.218 1.646 10 0 90 0 1 0 1 1 5 0 0 0 0 3 0 5 3 0 1 4

262 0.301 0.874 1 1 0 232 3 1 1 10 1 3 1 1 0 1 0 2 0 4 0 0

294 0.24 1.52 0 0 10 0 223 6 0 3 10 19 6 0 0 0 1 4 0 1 1 10

515 0.191 2.844 42 0 2 0 2 80 222 6 18 25 5 1 27 6 3 38 8 22 1 7

188 0.192 1.862 0 0 0 0 0 0 1 116 4 0 1 0 0 1 1 5 25 16 18 0

52 0.241 0.468 0 0 0 0 0 2 0 48 0 0 0 0 0 0 0 0 2 0 0 0

175 0.212 0.717 0 0 0 0 0 21 0 0 150 0 0 0 0 1 0 0 0 1 2 0

151 0.21 1.819 0 0 0 0 0 0 0 0 0 96 0 0 1 2 4 7 3 8 5 25

416 0.2 2.581 0 0 0 0 8 9 2 5 6 6 215 7 3 8 0 35 19 51 23 19

302 0.223 1.364 9 0 0 0 0 31 0 0 0 0 0 230 1 5 0 11 2 10 3 0

314 0.191 2.353 18 2 4 3 9 13 3 5 6 15 14 3 198 5 4 5 0 2 2 3

326 0.192 2.225 0 0 0 0 0 0 0 1 1 1 0 0 0 172 10 22 18 32 36 33

41 0.302 0.608 0 0 1 0 0 2 0 1 0 0 0 0 0 0 37 0 0 0 0 0

254 0.191 2.823 0 0 0 0 0 33 1 1 4 3 1 0 0 7 96 22 15 22 25 24

263 0.188 2.624 0 0 0 0 0 1 0 5 4 0 0 0 0 4 86 15 23 28 59 38

203 0.183 2.469 0 0 0 0 0 19 1 1 9 0 1 0 0 10 0 26 97 11 21 7

148 0.182 2.578 0 0 0 0 0 0 0 6 0 0 0 0 0 5 4 19 21 11 40 42

K-medoid clustering solution

Figure 5: Clustering solution for DS1
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No. of Clust. Clust. Functional Classes

Seqs Sim. Entropy F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

266 0.45 0.00 266 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

243 0.69 0.00 0 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

236 0.47 0.00 0 0 236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

229 0.6 0.00 0 0 0 229 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

225 0.82 0.00 0 0 0 0 225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

227 0.41 0.00 0 0 0 0 0 227 0 0 0 0 0 0 0 0 0 0 0 0 0 0

207 0.48 0.00 0 0 0 0 0 0 207 0 0 0 0 0 0 0 0 0 0 0 0 0

246 0.57 0.72 0 0 0 0 0 0 0 197 0 0 0 0 0 0 49 0 0 0 0 0

93 0.49 1.39 0 0 0 0 0 0 0 59 7 2 0 1 0 0 0 0 24 0 0 0

190 0.49 0.00 0 0 0 0 0 0 0 0 190 0 0 0 0 0 0 0 0 0 0 0

184 0.56 0.00 0 0 0 0 0 0 0 0 0 184 0 0 0 0 0 0 0 0 0 0

175 0.3 0.05 0 0 0 0 0 0 0 0 0 0 174 0 0 0 0 0 0 1 0 0

193 0.64 0.00 0 0 0 0 0 0 0 0 0 0 0 193 0 0 0 0 0 0 0 0

156 0.58 0.00 0 0 0 0 0 0 0 0 0 0 0 0 156 0 0 0 0 0 0 0

169 0.24 1.77 0 0 0 6 0 2 1 0 0 9 0 4 2 111 27 5 2 0 0 0

85 0.65 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0

115 0.32 1.16 0 26 0 0 0 0 0 0 0 0 0 0 0 0 82 2 4 0 1 0

132 0.31 2.13 0 0 0 0 24 15 0 0 1 0 0 0 2 0 18 62 10 0 0 0

646 0.14 3.51 0 0 3 24 1 3 15 0 15 16 33 22 33 19 41 94 55 139 74 59

1271 0.11 3.70 2 3 31 7 3 26 40 0 50 59 50 52 77 56 54 91 162 119 177 212

Feature-based clustering solution

No. of Clust. Clust. Functional Classes

Seqs Sim. Entropy F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

205 0.29 0.392 194 0 0 0 0 0 0 0 0 0 2 0 0 0 2 6 0 1 0 0

267 0.29 1.147 0 206 0 0 0 0 8 0 0 0 3 0 0 0 4 7 0 39 0 0

267 0.255 0.791 2 2 237 0 0 0 0 0 1 1 0 0 14 2 2 4 2 0 0 0

261 0.233 2.347 0 0 0 142 0 2 7 1 0 4 40 0 1 4 5 12 16 19 2 6

400 0.194 2.956 1 5 13 102 2 0 1 1 76 19 11 3 0 6 10 3 19 12 109 7

269 0.352 0.928 0 0 0 0 232 0 0 0 0 2 2 0 0 6 0 7 12 5 0 3

175 0.22 1.541 4 0 0 0 0 118 0 0 39 1 2 0 1 2 1 1 2 1 2 1

177 0.214 1.409 11 6 0 0 0 128 0 0 25 0 0 3 0 0 0 2 0 1 0 1

487 0.19 2.762 9 38 1 0 0 1 206 9 82 6 28 2 1 3 3 10 5 5 22 56

201 0.215 2.686 6 5 3 21 9 14 5 107 4 3 1 4 0 3 2 4 4 6 0 0

216 0.211 2.801 30 3 15 0 8 6 4 104 9 9 1 2 2 1 10 4 4 1 3 0

546 0.192 2.892 0 0 0 0 0 0 10 0 5 196 45 5 2 54 18 34 32 10 41 94

458 0.217 2.354 0 0 0 0 1 2 4 3 2 5 11 219 0 115 6 13 41 10 16 10

405 0.199 2.237 1 4 1 1 0 1 1 26 15 1 31 3 244 2 9 17 1 0 14 33

320 0.181 3.208 4 0 0 0 0 1 4 0 0 22 25 5 5 41 13 30 89 17 25 39

147 0.194 2.084 0 0 0 0 0 0 0 4 0 0 8 0 0 20 68 38 0 6 0 3

147 0.21 2.754 6 3 0 0 1 0 4 0 5 0 11 0 0 10 62 2 19 0 18 6

111 0.204 1.907 0 0 0 0 0 0 0 0 0 1 8 1 0 0 49 40 1 9 0 2

81 0.189 2.672 0 0 0 0 0 0 6 1 0 0 18 25 0 2 1 14 6 7 0 1

148 0.194 1.456 0 0 0 0 0 0 3 0 0 0 10 0 0 0 6 6 4 110 0 9

K-medoid clustering solution

Figure 6: Clustering solution for DS2
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No. of Clust. Clust. Functional Classes

Seqs Sim. Entropy F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

2466 0.33 0.01 2463 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2169 0.15 1.39 11 1578 0 0 15 5 193 2 0 1 3 1 267 0 4 2 0 1 80 6

3581 0.67 0 0 0 3581 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

582 0.67 0.02 0 0 581 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1291 0.52 0 0 0 0 1291 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1522 0.53 0 0 0 0 0 1522 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1573 0.37 0.75 0 0 1 0 0 1240 0 0 0 0 0 0 332 0 0 0 0 0 0 0

1159 0.35 0.02 0 0 1 0 0 0 1157 0 0 0 0 0 0 0 0 0 0 0 0 1

1773 0.43 0 0 0 0 0 0 0 0 1773 0 0 0 0 0 0 0 0 0 0 0 0

1712 0.39 0.02 0 0 0 0 4 0 0 0 1708 0 0 0 0 0 0 0 0 0 0 0

1219 0.2 0.5 0 0 0 0 0 0 1 72 0 1123 1 1 0 0 0 1 10 1 8 1

718 0.49 0.06 0 0 0 0 0 0 0 0 0 0 714 0 0 1 1 0 1 0 1 0

1005 0.25 0.67 0 0 0 0 0 0 0 3 0 91 882 0 0 0 2 26 0 0 0 1

1708 0.22 1.07 0 0 0 0 0 19 4 1 0 2 0 1182 479 1 0 0 0 0 20 0

802 0.54 0.04 0 0 0 0 0 0 1 0 0 0 0 0 799 0 0 2 0 0 0 0

1050 0.29 1.7 0 0 0 0 320 0 2 0 40 0 0 2 506 0 0 0 0 178 0 2

1129 0.22 1.54 177 0 0 0 0 0 20 0 243 1 0 2 1 676 0 1 0 0 1 7

2916 0.13 2.26 8 4 0 0 11 1 46 184 56 7 229 21 30 2 1595 283 8 400 25 6

534 0.68 0.02 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 533 0 0 0 0

14660 0.12 3.65 84 721 21 125 702 66 68 66 159 3161 650 1055 211 958 665 676 1905 956 1080 1331

Figure 7: Feature-based clustering solution for DS3

Looking at the various clustering solutions we can see that the proposed algorithm was able to produce,
in general, clusters that primarily contained proteins from either one or two protein families. Furthermore,
14 functional classes are clearly distinguishable in both DS1 and DS2, and 13 are distinguishable in DS3.
The members of the remaining functional classes were also mostly kept together, however they were clustered
together with members of other functional classes. The overall quality of the clustering solution produced
by our algorithm, as measured by entropy, was 1.43, 1.51, and 1.67, for DS1, DS2, and DS3, respectively.

A common characteristic of the clustering solutions for all three data sets was the fact that one or two
of the clusters tend to be somewhat larger than the rest, and were both loose (as measured by the average
pairwise similarity) and contained proteins from di�erent families. In analyzing the reason for this behavior,
we discovered that the proteins that were in these clusters contained patterns that were of length either 3
or 4, indicating that the proteins in them did not share some of the longer conserved patterns that did the
rest of the proteins. One way of addressing this limitation of our approach is to use amino-acid substitution
matrices or amino-acid similarity matrices to de�ne equivalent classes of patterns.

The entropy measure of clustering solution generated by our approach was compared against the entropy
measure of clustering solution generated by K-medoid algorithm. Only two data sets DS1 and DS2 were
used in this comparison, due to the need to compute all-against-all similarity matrix for each of the data
sets. The computation of such matrix for each DS1 and DS2 took over three days. Because data set DS3
contained roughly ten times more data-sequences than either DS1 and DS2, the computation of the similarity
matrix for this data set would have taken a prohibitively large amount of time.

Table 1 shows the comparison of entropy results for both data sets. From this table it can be observed
that our algorithm outperformed the K-medoid. Figure 5 and 6 compares the 20-way clustering solutions
produced by our approach and K-medoid algorithm on DS1 and DS2 respectively . A common characteristic
of those clustering solutions is that the groups of proteins that could not be correctly clustered by our
approach also did not cluster well by K-medoid. In addition, the functional classes which were clearly
distinguishable in the feature based clustering solution were not clustered as well by K-medoid approach.

5 Conclusion

In this paper we presented a new approach to sequence clustering that uses a near-linear complexity K-
means based clustering algorithm. Our approach is based on projecting the data-sequences onto space of
frequent sequential patterns and using K-means based clustering algorithm to �nd clusters in that space.
Our experimental evaluation in two domains shows that this approach appears promising and leads to
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reasonably good clusters. In addition, the feature based approach achives comparable or better accuracy
than similarity-based approaches.
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