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Abstract

In recent years, we have seen an enormous growth in the amount
of available commercial and scientific data. Data from domains
such as protein sequences, retail transactions, intrusion detec-
tion, and web-logs have an inherent sequential nature. Cluster-
ing of such data sets is useful for various purposes. For example,
clustering of sequences from commercial data sets may help mar-
keter identify different customer groups based upon their pur-
chasing patterns. Grouping protein sequences that share sim-
ilar structure helps in identifying sequences with similar func-

tionality. Over the years, many methods have been developed .

for clustering objects according to their similarity. However
these methods tend to have a computational complexity that is
at least quadratic on the number of sequences. In this paper
we present an entirely different approach to sequence clustering
that does not require an all-against-all analysis and uses a near-
linear complexity K -means based clustering algorithm. Our ex-
periments using data sets derived from sequences of purchasing
transactions and protein sequences show that this approach is
scalable and leads to reasonably good clusters.

1 Introduction

In recent years, we have seen an enormous growth in the
amount of available commercial and scientific data. Data
from domains such as protein sequences, retail transac-
tions, intrusion detection, and web-logs have an inherent
sequential nature. Clustering of such data sets is useful for
various purposes. For example, clustering of sequences
from commercial data sets may help marketer identify dif-
ferent customer groups based upon their purchasing pat-
terns. Grouping protein sequences that share similar struc-
ture helps in identifying sequences with similar function-
ality.

Over the years, many methods have been developed
for clustering objects according to their similarity. These
algorithms can be broadly classified into two categories:
partitional and hierarchical. Partitional clustering algo-
rithms, as typified by the K-medoid algorithm [9, 4], ob-
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tain clusters of objects by selecting cluster representatives
and assigning each object to the cluster with its represen-
tative closest to the object. On the other hand, hierarchi-
cal clustering algorithms, such as UPGMA or single-link
[4], produce a nested sequence of clusters, with a single
all-inclusive cluster at the top and single point clusters
at the bottom. These clustering algorithms can be easily
adapted to cluster sequential data sets, provided that the
pairwise similarity between the sequences can be easily
computed. However these methods tend to have a compu-
tational complexity that is at least quadratic on the num-
ber of sequences, as they need to compute the pairwise
similarity between all the sequences. Thus, they are only
applicable to small data sets. Moreover, computationally
efficient schemes such as K-means cannot be directly ap-
plied as it is hard to compute sequence centroids.

In this paper we present an entirely different approach
to sequence clustering that does not require an all-against-
all analysis and uses a near-linear complexity K-means
based clustering algorithm. The key idea of our approach
is to find a set of features that capture the sequential
nature of the various data-sequences, project each data-
sequence into a new space whose dimensions are these
features, and then use a traditional K-means based clus-
tering algorithm to find the clusters of the data-sequences.
Our approach was inspired by research in document clus-
tering that showed that high quality clusters can be ob-
tained when each document is represented using a “‘bag of
words”. Clustering the documents based solely on their
similarity with respect to these words generates clustering
solutions which are equally good to methods that try to
take into account phrase, paragraph, and document struc-
ture. In light of this example, our algorithm can be thought
of as first discovering the “words” (i.e., features) of the se-
quences, and then clustering the sequences based on the
words that they have. Our experiments using data sets de-
rived from sequences of purchasing transactions and pro-
tein sequences show that this approach is scalable and
leads to reasonably good clusters.

2 Background

Clustering is the task of grouping together the objects into
meaningful subclasses. We focus on clustering sequential
data in which each object is represented as a sequence of
set of items, called itemsets. Such sequence is called data-



Figure 1: Example of string alignment
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Figure 2: Example of sequence alignment

sequence. For sequential data sets, the problem of cluster-
ing becomes one of finding the groups of data-sequences
similar to each other.

2.1 Measuring Similarity between Se-
quences

One of the key steps in all clustering algorithms is the
method used to compute the similarity between the ob-
jects being clustered. Over the years, a number of different
approaches have been developed for computing similarity
between two sequences of symbols (i.e., strings) based on
sequence alignment [5]. The idea behind these approaches
is to align two strings against each other so that to maxi-
mize the similarity between the portions of the strings that
fall at the same location of the alignment. Figure 1 shows
an example of such an alignment between two particular
protein sequences. These string-based optimal alignment
approaches can be extended to compute the similarity be-
tween two sequences of itemsets as follows. Let Sy and
S> be two sequences containing m and n itemsets, respec-
tively. Let 8 (i) be the i*" itemset of ) and S2(j) be the
j’h itemset of S>. Furthermore, let 51 and S; be two se-
quences of length [ obtained after aligning S| against Sy,
by inserting empty itemsets at either inside, at the begin-
ning, or at the ends of the two sequences, so that every
itemset (including empty) in either sequence is opposite a
unique itemset in the other sequences. An example of this
type of alignment is shown in Figure 2. The score of such
alignment A can be defined as

!
score(A) =Y sim(S) (i), $5(0)).

i=l

The similarity between two itemsets S; (i) and Slz(i )
can be measured in various ways. One way is to count the
number of items that are common between the two item-
sets and scale the count so that the similarity is always a
number between 0 and 1, resulting in the following mea-
sure: . .

sim(S) ), Sy = SLOOSHOL
IS OIS, ()]
2

Another way of measuring similarity is to represent
itemsets using the vector-space model. In this model, each
itemset is considered to be a vector in the item space. In
its simplest form, each itemset is represented by the vector

I = (i1, i2,...,in), where ij is an indicator whether the
j ™ jtem is in the itemset. Given this representation, the
cosine similarity measure is a natural way of computing

the similarity, and is defined as
S13) o Sy(i)
15 @IS,

Given any scoring scheme (including the ones intro-
duced above), the optimal alignment A* of two sequences
Sy and 5, is defined as an alignment that maximizes the
total alignment score score(A*). The score of the optimal
alignment can be used as the similarity measure of two se-
quences. Depending on the application domain, one might
want to scale this value so that the similarity between se-
quences of different lengths are comparable. The follow-
ing formulas achieve the desired result:

sim(S| (i), Sy()) =

score(A*)

sim($y, $2) = TS
Z

or sim(Sy, $p) = S£relA)
The similarity of two sequences S) and §3, and the as-

sociated optimal alignment, can be computed via dynamic

programming [5] with a complexity O(|Si] % |S2|).

2.2 Clustering Algorithms

Agglomerative hierarchical clustering and K-means are
two techniques that are commonly used for clustering. Hi-
erarchical techniques produce a nested sequence of par-
titions, with a single all-inclusive cluster at the top and
singleton clusters of individual points at the bottom. Each
intermediate level can be viewed as combining two clus-
ters from the next lower level (or splitting a cluster from
the next higher level). Agglomerative hierarchical algo-

rithms start with all the data points as a separate cluster.

180

Each step of the algorithm involves merging two clusters
that are most similar. After each merge, the total number
of clusters decreases by one. These steps can be repeated
until the desired number of clusters is obtained or the dis-
tance between two the closest clusters is above a certain
threshold distance.

In contrast to hierarchical techniques, partitional clus-
tering techniques create a one-level (un-nested) partition-
ing of the data points. Partitional clustering attempts to
break a data set into K clusters such that the partition op-
timizes a given criterion. Centroid-based approaches, as
typified by K -means try to assign objects to clusters such
that the mean square distance of objects to the centroid of
the assigned cluster is minimized. Centroid-based tech-
niques are suitable only for data in metric spaces (e.g.
Euclidean space) in which it is possible to compute cen-
troid for a given set of points. Because it is computa-
tionally hard to compute centroids in the space of data-
sequences, medoid-based approaches are better suited for
clustering sequential data sets. Medoid-based methods
work with similarity data, ie., data in arbitrary similar-
ity space. These techniques try to find representative
points (medoids) so as to minimize the sum of the dis-
tances of points from their closest medoid. It has been



shown, that if the measure used to compute similarity sat-
isfies the triangle inequality, then in each cluster of n
data-sequences there exists a medoid Sy, such that M =
iy score(Sm, Si) is never less than 2 — 2/n times the
M. =31 score(S., Si), where S¢ is the centroid of the
cluster [5]. '

2.3 Limitation:of existing approaches

One limitation of using both hierarchical and medoid-
based partitional clustering approaches is that when the
dynamic programming algorithms are used to compute
the similarity, their complexity is O(n?m? + n?logn)
and O (n®m? + ntk), respectively; where n is the number
of data-sequences, m is the average length of each data-
sequence, k is number of clusters and ¢ number of itera-
tions in the medoid-based approach. These high computa-
tional requirements make such approaches impractical for
most applications that require clustering of moderate and
large data sets.

3 Feature-based Clustering

The high computational requirements of both the hierar-
chical clustering algorithms and K -medoid approaches are
due to the fact that (a) they need to compute the pairwise
similarity between all the data-sequences and (b) the sim-
ilarity computations have a complexity that is quadratic
to the length of the data-sequences involved. To address
these high computational requirements, we explore an al-
ternate approach for clustering sequences that (i) does not
use dynamic programming to compute the similarity, and
(ii) it uses a K -means algorithm whose complexity is near-
linear in the number of sequences.

The key idea of our approach is to find a set of fea-
tures that capture the sequential nature of the various data-
sequences, project each data-sequence into a new space
whose dimensions are these features, and then use a tradi-
tional vector-space K-means clustering algorithm [14] to
find the clusters of the data-sequences in this transformed
space.

In the remaining of this section we describe the various
algorithms and issues associated with each one of these
three steps.

3.1

An essential part of the proposed approach is finding the
set of features that will form the basis of the transformed
space. In particular, these features must satisfy the follow-
ing properties:

Finding the Feature Space

1. The features should capture the sequential relations
between the different itemsets that are present in the
data-sequences. This is particularly important, since
the proposed clustering algorithm will cluster the
data-sequences based solely on their similarity with
respect to these features.

2. The features should be present in a nontrivial number
of data-sequences. This is because rare features do
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not improve the overall clustering, as they are useful
only in defining affinity between a small set of data-
sequences.

3. The feature space should be complete, in the sense
that all such interesting features should be contained
in the transformed space.

Our algorithm achieves these goals by using as features
all the sequential patterns whose length is between Iy,
and /4, and satisfy a given minimum support constraint.
A sequential pattern is a list itemsets with the support
above a user-specified threshold, where the support of the
pattern is the percentage of data-sequences that contain it.
Given a sequential pattern < si, 52, ..., 5, >, where s; is
an itemset, the length of the pattern is the number of items
in all itemsets s; of the pattern. The gap between itemsets
i1 and i of the data-sequence supporting a particular pat-
tern is defined occurrence(iy) — occurrence(iz), where
definition of the occurrence is domain specific. Depend-
ing on the application domain, one might impose min-
imum/maximum gap constraints on sequential patterns.
These frequent sequential patterns, can be computed ef-
ficient using a variety of sequential pattern discovery al-
gorithms [1, 13, 15, 8, 6].

3.2 Projecting in to the Feature Space

The critical step in our approach is that of representing
each data-sequence in the newly discovered space of se-
quential features. If N is the dimensionality of the feature
space, a straightforward way of achieving this is to rep-
resent each data-sequence as an N-dimensional vector of
zeros and ones, with ones corresponding to all the features
that are supported by that particular data-sequence.
Unfortunately, this representation can potentially lead
to poor clustering results. This is because, the different
features that are supported by a particular sequence may
be highly dependent which can substantially distort the
similarity measure that is used in the transformed space.
For instance, if a particular sequential pattern w of length
I, with [ > [p;, is supported by a particular sequence,
then all of its sub-patterns of length greater than /;, will
also be supported as well. As a result, when we compare
two sequences that both have w, their similarity will be
distorted by the different sub-patterns of w that they also
share. Similar problem occurs when two sequential pat-
terns partially overlap as well. For example, consider the
following scenario in context of protein clustering. Let’s
assume that we have the database of amino-acid sequences
shown in Figure 3 together with all sequential patterns
of consecutive amino-acids of lengths 3 and 4 that have
support of 50%. Let’s concentrate on the first two se-
quences S| and S, and the two discovered patterns AQVH
and HKKS. Saying that both proteins subscribe to both
patterns will mean that there are two similarity regions of
length 4 between them, while if we computed the align-
ment of those proteins we would find that there is only one
region of length 4 where both proteins align (either AQVH
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Figure 3: Feature Selection Example

or HKKS). Therefore, it is important to represent each se-
quence in a way such that the dimensions that they are
using are as independent of each other as possible. We im-
plemented two different approaches to address this prob-
lem, that are described in the rest of this section.

3.2.1 Global Approach

One way of addressing the above problem is to prune the
feature space by selecting only a set of independent fea-
tures prior to projection. In particular, we say that two se-
quential patterns are dependent if and only if (i) either one
is the prefix of the other or one is a sub-pattern of the other,
and (ii) the intersection of their respective supporting sets
is non-trivial.

These conditions essentially call two patterns that draw
support from the same region of the sequence to be depen-
dent. Coming back to the example from Figure 3, let’s
assume that the intersection of two patterns supporting set
is non-trivial if its cardinality is at least two thirds of small-
est support of the pattern. Under this condition one pos-
sible set of independent patterns is KKS, AQVH, DALG,
QIKD, as shown in Figure 3.

Using the definition of independence, we can then use
a greedy algorithm to select a maximal set of independent
features and restrict the space to only this set of features.
Even though this approach ensures that the set of features
that we select are independent, it has a number of poten-
tially serious drawbacks. First, computation of the pair-
wise intersection of the supporting sets for each sequential
pattern is computationally expensive. Second, the result-
ing space will either be over-pruned or under-pruned. Thus
in our example, patterns AQVH and HKKS are found de-
pendent (the number of proteins that support both of them
is 4). As aresult all the sequences supporting both of these
patterns subscribe to only AQVH. However, almost all of
the sequences that support both patterns have two regions
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of similarity of length 4. Hence, we are presented with an
over-pruned space. Ideally we would like for S| to sub-
scribe to both patterns, and for §; to subscribe to only one
of them. On the other hand, patterns DALG and QIKD
are found independent (the number of proteins that sup-
port both of them is 2). As a result the sequences S¢ and
Sg have two regions of similarity of length 4 QIKD and
DALG which is not correct. As we can see, over-pruning
of the space contradicts the required property of complete-
ness. Under-pruning doesn’t solve the problem of having
redundant features.

3.2.2 Local Approach

In order to correct the problem of the global approach, we
developed a method for selecting a set of independent fea-
tures that is done locally, on a per data-sequence basis.
In this approach, for each data-sequence we first find the
set of features that it supports, and from this set we se-
lect a maximal set of independent features. In this context,
two features are considered to be independent, if they are
supported by non-overlapping segments of the underlying
data-sequence. The advantage of this approach is that it
allows us to subscribe each data-sequence to as many in-
dependent features as possible (regardless of the features
selected by other data-sequences), and at the same time,
the process of feature selection is very fast.

One potential problem with this approach is that se-
quences that share a large number of sequential patterns,
may actually end up having low similarity, because the in-
dependent sets they selected, had little overlap. Two ad-
dress problem we select the locally independent features
using the same greedy strategy, so-that we increase the
likelihood that if two data-sequences share a number of se-
quential patterns, then a considerable number of them will
be selected by both of them—ensuring that if two data-
sequences are similar in the original space, will also be



similar in the transformed space. This can be done in a
number of ways. One way to select a feature out of set
of dependent patterns is to select a more frequent pattern,
or pattern that has more items. An example of locally se-
lected features is presented in Figure 3, in which the se-
lection strategy gave preference to the longer pattern.

3.3 Clustering in the Feature Space

Once the data-sequences have been projected into the fea-
ture space, we use an efficient vector-space clustering al-
gorithm based on K-means [14] to find k clusters. In this
algorithm, each data-sequence is represented by a vector
in the feature-space, and the similarity between two data-
sequences is computed using the cosine similarity func-
tion, commonly used in the context of information re-
trieval [10]. Moreover, in some domains it is important
to account for frequently occurring low complexity se-
quential patterns. To do this, we scale each of the fea-
tures following the inverse-document-frequency method-
ology, again inspired by research in information retrieval.
In this approach, if a particular feature appears in m out
of n data-sequences, its weight is multiplied by log(n/m).
The effect of this scaling is that infrequently occurring fea-

tures are given higher weight that features that occur in-

almost every data-sequence.

4 Experimental Evaluation

We experimentally evaluated our approach using datasets
arising in two domains: retail and bioinformatics. All ex-
periments were run on a Linux machine with 4GB of mem-

ory utilizing 550 MHz Pentium III CPU.

4.1 Evaluation of Cluster Quality

For clustering, two measures of cluster “goodness” or
quality are used. One type of measure allows us to com-
pare different sets of clusters without reference to external
knowledge and is called an internal quality measure. One
internal measure is weighted average similarity, which is
based on the pairwise similarity of sequences in each clus-
ter. The weighted average similarity is calculated as fol-
lows. Let CS be a clustering solution. For each cluster
Cj, we first compute its average similarity

2sec;.srec; Sim(S, §)

nj(n; — 1)

AS; =

s

where n; is number of sequences in cluster Cj. The
weighted average similarity for a set of clusters is calcu-
lated as the sum of the average similarities for each cluster
weighed by the size of each cluster:

n
WAS;s =Y nj*AS;j,
j=1

where n; is the size of cluster C;, and m is the number of
clusters.
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The other type of measures lets us evaluate how well
the clustering is working by comparing the groups pro-
duced by the clustering techniques to known classes. This
type of measure is called an external quality measure. One
external measure is the entropy [12], that is calculated as
follows. Let CS be a clustering solution. For each cluster
Cj, we first compute the distribution of the data-sequences
that it contains for each class i, ie., p;; is equal to the
probability a randomly drawn data-sequence from cluster
C; to be of class i. Then using this class distribution, the
entropy of each cluster C; is calculated using the formula

Ej=-— Z pijlog(pij).

The total entropy for a set of clusters is calculated as the
sum of the entropies for each cluster weighted by the size
of each cluster:

m
nixE;
J J
E; = E .
£ n
=1

where n; is the size of cluster j, m is the number of clus-
ters, and n is the total number of data-sequences in that
data set. Note, that the entropy value O indicates a per-
fect clustering solution. The higher the entropy value the
worse the clustering solution is.

4.2 Retail Data Set

The retail data set contained a history of store-branded
credit-card purchases of 7451 customers of a major depart-
ment store, such that each customer made 3 or more pur-
chases. The total number of distinct products purchased
was 222348. For this data set we found 2435 frequent se-
quential patterns of length 2 or more with minimum sup-
port equal to 0.1%. The maximum length of the pattern
that was discovered was 9.

To subscribe data-sequences to discovered patterns we
used both global and local methods with different fea-
ture selection approaches, namely selecting a longer pat-
tern or a more frequent pattern, resulting in four test
sets FB-GL (global selection of longer patterns), FB-GF
(global selection of more frequent patterns), FB-LL (lo-
cal selection of longer patterns) and FB-LF (local se-
lection of more frequent patterns). After the indepen-
dent patterns were selected, the FB-GL approach kept 255
patterns and subscribed 2061 data-sequences, the FB-GF
approach selected 241 patterns and subscribed 2552 se-
quences, the FB-LL approach kept 707 frequent patterns
and subscribed 3164 data-sequences, and the FB-LF kept
546 patterns and subscribed 3230 data-sequences. Note
that schemes that give preference to the more frequent pat-
terns resulted in spaces with fewer dimensions as frequent
patterns are inherently more dependent. The sequences
that didn’t support any of the frequent patterns were not
used for clustering.

The resulting clustering solutions were compared
against solutions produced by similarity-based approaches
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Figure 4: Comparison of Feature Based Clustering vs. Similarity Based Clustering

— hierarchical algorithm which optimizes group average
similarity [4] (SB-H) and K-medoid (SB-KM). To ensure
that the comparison were performed in an unbias way, only
the data-sequences that could be projected on the feature
space were clustered. This resulted in four different sets of
experiments, one for each of the feature selection strate-
gies. In the absence of class information, we used the
weighted average similarity of the clusters in the sequence
space, as a measure of quality of the clustering solution.

Figure 4 shows the weighted average similarity of 10,
20 and 30-way clustering solutions generated by the differ-
ent algorithms. Note that high values of weighted average
similarity represent better clustering solutions. From this
figure it can be seen that both global and local approaches,
which selected longer patterns, performed poorly. In an-
alyzing the reason for this behavior, we discovered that
the data-sequences in this data set are short and therefore
supported only a small number of sequential patterns. As
a result, by preferring longer sequential patterns the ma-
jority of data-sequences only subscribed to a small num-
ber of dimensions (usually one or two). Thus, if one se-
quence contained a long pattern and another contained its
sub-pattern, those sequences mostly likely ended up in dif-
ferent clusters due to the fact that they contained different
features. This resulted in un-similar data-sequences get-
ting clustered in the same group. After examining frequent
dimensions of the resulting clusters, we found for exam-
ple that customers who bought home collection items were
put in the same cluster as customers who bought hair-care
products.

To overcome this problem, we ran the experiments FB-
LF and FB-GF in which more frequent patterns were se-
lected. In both cases the feature based approach outper-
formed the hierarchical algorithm, and showed compara-
ble performance to K-medoid. Comparing the global se-

lection methods against those that select features that are
locally independent in each data-sequence, we can see that
the latter approach performs considerably better. Note,
that as it was described in Section 3.2 the resulting global
schemes became over-pruned. This is evident by cardinal-
ity of the transformed space in the global selection scheme
which is about 3 times smaller. As a result global schemes
were not able to cluster as many data-sequences as local
ones. .

Even though the feature-based approach didn’t show
significant improvement over similarity based algorithms,

" the proposed approach has number of advantages. First, by
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projecting only the data-sequences that support frequent
patterns onto the feature space, our approach eliminates
data-sequences that are outliers. This is because the se-
quences that do not contain frequent patterns are not sim-
ilar to a lot of other sequences in the data set and thus
are not relevant for clustering. Second, examining the di-
mensions which occur frequently in each cluster helps us
to gain insight about its characteristics and thus interpret
the clustering solution. The medoids of the K -medoid ap-
proach can serve as representatives of the clusters. How-
ever, since it is unknown what regions of the medoid se-
quence occur frequently in the cluster and what regions
are unique to this particular medoid, it will be hard to use
this sequence to describe the cluster. Examples of clusters
found by our approach are group of customers who buy
home collection products and group of people who buy
clothes for teenagers.

4.3 Data Sets of Proteins

As another way to evaluate the performance of the pro-
posed clustering algorithm we generated three different
data sets, DS1, DS2, and DS3, containing protein se-
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Figure 6: Clustering solution for DS2

quences from the SWISS-PROT [2] public protein se-
quence database. Each one of the data sets contains pro-
teins from 20 different protein families. DS1 contains
4,775 sequences, DS2 contains 5,288, and DS3 contains
43,569 sequences. For each of the data sets, we found
frequent patterns of consecutive amino-acids, of length 3
through length 6. The minimum support used for each data
set was equal to 25% of the size of the smallest class. In all
of our experiments, we used the local scheme for selecting
independent dimensions during projection, and these di-
mensions were selected by giving preference to the longest
patterns. We also experimented with the global selection
scheme, but the quality of the resulting solutions was quite
poor. For this reason we do not report these experiments
in this paper.

We evaluated the quality of the resulting clustering so-
lution using the entropy measure.

Figure 5, 6, and 7 show the 20-way clustering solution
produced by our algorithm on the DS1, DS2, and DS3 data
sets, respectively. For DS1, a total of 13,331 frequent pat-
terns of length 3—6 were discovered, out of which 11,780
were kept after independent patterns were selected locally.
In the case of DS2, the initial and final number of patterns
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Figure 7: Feature-based clustering solution for DS3

were 19,129 and 14,139, respectively, and in the case of
DS3 they were 22,672 and 21,223. Also, each sequence
subscribed to an average of 71, 76, and 81 features for
DS1, DS2, and DS3, respectively. The first two columns
of each table show the number of proteins assigned to each
cluster, and the average pairwise protein similarity be-
tween the proteins in each cluster, respectively. For each of
the clusters, the remaining 20 columns of each row show
the class distribution of the proteins that were assigned to
that particular cluster.



Data Set | Feature-Based | K-medoid
K-means
DS! 143 2.12
DS2 1.51 - 2.19

Table 1: Comparison of Entropy Measure

Looking at the various clustering solutions we can see
that the proposed algorithm was able to produce clusters
that primarily contained proteins from either one or two
protein families. Furthermore, 14 functional classes are
clearly distinguishable in both DS1 and DS2, and 13 are
distinguishable in DS3. The members of the remaining
functional classes were also mostly kept together, how-
ever they were clustered together with members of other
functional classes. The overail quality of the clustering
solution produced by our algorithm, as measured by en-
tropy, was 1.43, 1.51, and 1.67, for DS1, DS2, and DS3,
respectively.

A common characteristic of the clustering solutions for
all three data sets was the fact that one or two of the clus-
ters tend to be somewhat larger than the rest, and were
both loose (as measured by the average pairwise similar-
ity) and contained proteins from different families. In ana-
lyzing the reason for this behavior, we discovered that the
proteins that were in these clusters contained patterns that
were of length either 3 or 4, indicating that the proteins in
them did not share some of the longer conserved patterns
that the rest of the proteins did. One way of ‘addressing
this limitation of our approach is to use amino-acid substi-
tution matrices or amino-acid similarity matrices to define
equivalent classes of patterns [3, 11, 7].

The entropy measure of the clustering solution gener-
ated by our approach was compared against the entropy
measure of clustering solution generated by K -medoid al-
gorithm. Only two data sets DS1 and DS2 were used in
this comparison, due to the need to compute all-against-all
similarity matrix for each of the data sets. The computa-
tion of the matrix for each DS1 and DS2 took over three
days. Because data set DS3 contained roughly ten times
more data-sequences than either DS1 and DS2, the com-
putation of the similarity matrix for this data set would
have taken a prohibitively large amount of time.

Table 1 shows the comparison of entropy results for
both data sets. From this table it can be observed that
our algorithm outperformed the K-medoid. Figure 5 and
6 compares the 20-way clustering solutions produced by
our approach and K-medoid algorithm on DS1 and DS2
respectively . A common characteristic of those clus-
tering solutions is that the groups of proteins that could
not be correctly clustered by our approach also did not
cluster well by K-medoid. In addition, the functional
classes which were clearly distinguishable in the feature
based clustering solution were not clustered as well by K-
medoid approach.
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5 Conclusion

In this paper we presented a new approach to sequence
clustering that uses a near-linear complexity K-means
based clustering algorithm. Our approach is based on
projecting the data-sequences onto space of frequent se-
quential patterns and using K-means based clustering al-
gorithm to find clusters in that space. Our experimental
evaluation in two domains shows that this approach ap-
pears promising and leads to reasonably good clusters. In
addition, the feature based approach achieves comparable
or better accuracy than similarity-based approaches.
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