
The Set Classification Problem and Solution Methods

Xia Ning
xning@cs.umn.edu

Computer Science & Engineering
University of Minnesota, Twin Cities

George Karypis
karypis@cs.umn.edu

Computer Science & Engineering
University of Minnesota, Twin Cities

Abstract
This paper focuses on developing classification algorithms
for problems in which there is a need to predict the class
based on multiple observations (examples) of the same phe-
nomenon (class). These problems give rise to a new classifi-
cation problem, referred to as set classification, that requires
the prediction of a set of instances given the prior knowledge
that all the instances of the set belong to the same unknown
class. This problem falls under the general class of problems
whose instances have class label dependencies. Four meth-
ods for solving the set classification problem are developed
and studied. The first is based on a straightforward extension
of the traditional classification paradigm whereas the other
three are designed to explicitly take into account the known
dependencies among the instances of the unlabeled set dur-
ing learning or classification. A comprehensive experimen-
tal evaluation of the various methods and their underlying
parameters shows that some of them lead to significant gains
in performance.

1 Introduction
Since the early days of machine learning research, classi-
fication (or the more general topic of supervised learning)
has been a fundamental problem for which various formu-
lations and solution approaches have been developed. The
majority of these methods learn from a training set a model
that is used to predict the class of unlabeled instances and
assume that each labeled and unlabeled instance is indepen-
dent of each other. However, in some cases there are de-
pendencies between the class labels of the instances that,
when exploited, can significantly improve the classification
accuracy. Examples of such dependencies include the spatial
auto-correlation present in many spatial datasets, correlation
between the structural and functional properties of adjacent
positions in DNA and protein sequences, and correlation be-
tween the topics of web-pages connected via hyperlinks.

In this paper we focus on another type of dependency
that exists among the class labels of a set of unlabeled
instances. Specifically, we focus on the problem in which we
need to predict the class of a set of unlabeled instances with
the prior knowledge that all the instances in the set belong to

the same (unknown) class. Thus, the problem becomes that
of classifying the entire set and we will refer to it as the set
classification (SC) problem. To the best of our knowledge,
this is the first time that the set classification problem has
been explicitly proposed and formulated.

The set classification problem arises in many applica-
tions in which there is a need to predict the class based on
multiple observations of the same phenomenon (class). One
such application is face recognition based on pictures ob-
tained from different cameras (e.g., different perspectives
and lighting conditions) or multiple stills obtained from
video (e.g., face recognition in video streams) [2, 26]. In
this setting, the multiple pictures of the same person corre-
spond to the set that needs to be classified whereas the dif-
ferent individuals correspond to the classes. Another appli-
cation is from the analysis of high-content screening phe-
notypic assays in drug discovery for identifying the protein
target of small organic compounds [34, 23]. High-content
phenotypic assays is an experimental methodology in which
a large number of compounds (potential drug candidates) are
tested to determine whether or not they induce a desired in
vitro phenotype. The set of compounds that induce the phe-
notype are then analyzed to identify the protein (or class of
proteins) that they bind to1. The underlying assumption is
that all compounds that induce the same desired phenotype
do so by targeting the same protein or class of proteins, and
therefore they should be assigned the same class label. Set
classification can also be applied in ontology mapping [10]
problems. Ontologies are formal conceptualization which
describe a certain domain. For example, in semantic web,
ontologies are used to provide semantics of web pages, and
in bioinformatics, gene ontologies are used to describe pro-
tein function annotations. A same domain may have multiple
overlapping ontologies so that there is a need to map ontolo-
gies in order for different parties using different ontologies
upon the domain to understand each other. A concept from
one ontology can be mapped to a concept from another on-
tology by classifying the set of instances described by the

1The problem of protein target identification is often referred to as target
fishing (TF) [16].

first concept using models learned from the instances of the
second concept, giving rise to the set classification problem.

A straightforward way to solve the set classification
problem is to learn a classification model from the single
instances, use it to predict each one of the instances of the
unlabeled set, and then derive a prediction for the set by tak-
ing into account the consensus predictions of the individual
instances, e.g., assign the set to the most frequently predicted
class. This approach can be applied when the instances are
suitably independent. However, when there are high depen-
dencies across instances, or most of the instances are multi-
labeled, such an approach would have two limitations. First,
during learning, it does not take into account the known de-
pendencies among the instances of the unlabeled set, and
second, during prediction, the set’s instances are predicted
independently without considering the predictions of other
instances from the same set.

In this work we present three classes of methods for
solving the set classification problem that are designed to
overcome these problems. The first method, referred to
as subset learning, learns models based on training exam-
ples corresponding to subsets of instances. The second
method, referred to as model-based, builds a classification
model for the instances of the unlabeled set and assigns it
to the class with the most similar model. Finally, the third
method, referred to as co-learning, determines the class of
the unlabeled set by assessing the performance improve-
ments achieved by incorporating the unlabeled instances as
additional positive examples for each class. The subset learn-
ing method is designed to incorporate into learning informa-
tion about the set of instances, whereas the model-based and
co-learning methods are designed to take into account the
entire set of unlabeled instances during classification.

We present a comprehensive experimental evaluation of
the various parameters underlying these methods on seven
different datasets and compare their performance against
the set classification method that is based on consensus
predictions. Our experiments show that the subset learning
and model-based methods performance considerably better
than consensus prediction. They achieve improvements
ranging from 5.7% to 38.8% on six out of the seven datasets
and an overall improvement of around 10% averaged over all
seven datasets.

The rest of the paper is organized as follows. Section 2
formally defines the set classification problem. Section 3
reviews some related learning problems. Section 4 describes
the various methods that we developed for solving the set
classification problem. Section 5 describes the datasets
and our experimental methodology. Section 6 presents the
experimental evaluation of the various methods. Finally,
Section 7 provides some concluding remarks and directions
for future research.

2 Set Classification Problem
In the set classification problem we are given a set of l
unlabeled instances Uj = {uj1 , . . . , ujl

} and we want
to assign this set (i.e., all of its instances) to one of k
possible classes from a pre-identified set C = {c1, . . . , ck}
of classes. We have no control over the size of the set l,
it can contain an arbitrary number of instances, and it can
vary from problem to problem. The information provided
for training the classification model is a set of n instances
I = {x1, . . . , xn} and for each instance xi we are given
a non-empty set of classes {ci1 , . . . , cim} from C that xi

belongs to(i.e., instances can be multi-labeled), and we have
no control over the number of labels that each instance is
assigned to. This information is identical to that provided
for traditionally training single- and multi-label classification
instances.

The motivation behind focusing on the set classification
problem is to develop new classification methods, which by
taking into account the a priori information that all the unla-
beled instances in Uj belong to the same class, they can im-
prove the overall classification. However, the extent to which
knowledge of this a priori information can improve upon
existing single-instance methods that, for example, classify
each instance individually and then derive a consensus pre-
diction for the set Uj , will depend on the characteristics of
the dataset. For example, if the instances are single-labeled
and the different classes are highly separable, then there is
probably little benefit to be obtained by utilizing the set clas-
sification problem’s a priori information. On the other hand,
if the instances are multi-labeled and/or the classes are not
well-separated, then better methods can potentially be devel-
oped to exploit during learning and/or classification the fact
that a set of same-labeled instances need to be predicted.

3 Related Learning Problems
Set classification is different from traditional classification
(also referred to as single instance learning (SIL)) as it
imposes constraints on the types of predictions allowed (i.e.,
it is to classify a set of instances as a whole, and all its
instances need to be assigned to the same class label). These
constraints require a learner or the prediction methodology to
properly exploit the additional information so as to achieve
better prediction accuracy. Set classification is also distinct
from multiple instance learning and collective classification,
which are the two other learning problems involving sets
of instances that we are aware of. We briefly review these
two problems, aiming to illustrate that the SC problem
we propose in the paper is different from these existing
problems.

Multiple-Instance Learning (MIL) was initially moti-
vated for the prediction of the activity of a chemical com-
pound based on its multiple geometric conformations [8] and
since then it has been applied in other domains such as doc-

ument and video classification [1]. The goal of MIL is to
learn a concept from sets of instances so as to classify unla-
beled sets. A set is defined as positive if at least one of its
instances is positive and as negative if all of its instances are
negative. Unlike the SIL problem in which each training in-
stance has an unambiguous label and learning is performed
on instances, in MIL each positive set can contain both posi-
tive and negative instances and the learning is performed on
sets. Over the years many MIL algorithms have been pro-
posed [8, 12, 22, 31, 36] and among them, the best perform-
ing approaches are based on SVM [12, 36]. Also, the orig-
inal MIL problem has been recently extended for the prob-
lem of multiple-instance multi-label learning (MIML) [35],
in which each set can have multiple labels.

Collective Classification (CC), also known as Relational
Classification (RC), is designed to classify a set of rela-
tional instances collectively and is motivated by the obser-
vation that related instances are more likely to share com-
mon class labels [17]. Based on this, CC classifies indi-
vidual instances with properties from related instances taken
into account simultaneously so as to boost classification per-
formance. In CC, a well-defined relation is required across
instances. For example, in the context of hyperlinked web
pages, “hyperlinked” can be considered as a relation between
the web pages. A number of CC algorithms have been de-
veloped [5, 21, 28], particularly for web page mining. These
algorithms usually infer relational features from predicted
class labels of related data and then iteratively update the
class labels until some criteria are satisfied. Many popular
inference techniques like Gibbs sampling and belief propa-
gation can be adapted.

4 Approaches for Set Classification
We developed various approaches for solving the set classi-
fication problem, which are described in the rest of this sec-
tion. These approaches were developed within the context
of binary Support Vector Machines (SVM) [29]. SVM rep-
resents one of the current state-of-the-art supervised learn-
ing methods that outperforms other approaches on a wide-
range of applications, including those used to evaluate the
set classification methods developed in this paper [18, 15, 7].
Moreover, SVM is able to easily handle high-dimensional
datasets, which is a characteristic of many of the datasets
under consideration, and therefore we can implicitly avoid
issues related to feature selection and dimensionality reduc-
tion. However, the ideas underlying the approaches that we
developed are not directly tied with SVMs and can be easily
used with other supervised machine learning methods (e.g.,
decision tree [24]), as well.

4.1 Consensus Prediction A straightforward way to pre-
dict the class of an unlabeled set Uj = {uj1 , . . . , ujl

} is to
predict its instances and then based on them, compute a pre-

diction for the set. Specifically, for each class ci, a binary
SVM model Mi is built using a one-vs-rest training frame-
work that is commonly employed for multi-class and multi-
label classification problems. Each instance of an unlabeled
set Uj is predicted by each one of these k binary models. If
Mi(ujq) is the SVM prediction on instance ujq with respect
to class ci, then the prediction for the set Uj with respect to
class ci is given by

(4.1) Mi(Uj) =
1
l

l∑
q=1

Mi(ujq
),

which is nothing more than the average SVM prediction
for the set of instances in Uj . Note that this approach has
converted the instance-level predictions of the k one-vs-
rest binary models into set-level predictions. These latter
predictions can then be used to obtain the final classification
by assigning the set to the class that has the maximum
Mi(Uj) value, which is the most commonly used approach
for deriving multi-class predictions from a set of binary one-
vs-rest predictors. We refer to this approach as consensus
prediction and will provide its performance as the baseline
that the other methods developed in this paper will try to
improve upon.

Note that our consensus prediction method takes into ac-
count the actual outputs of the SVM models (i.e., real val-
ues). Alternate methods to compute the consensus can be
by first removing predictions that are deemed to be outliers
(e.g., eliminating some of the lowest and/or highest predic-
tions) and only utilizing the rest instance-level predictions, or
can be based on binary class assignments (i.e., it is a member
of class ci or not) so as to accommodate machine learning
methods that predict a binary class (i.e., boolean values). In
our work we did not explore such alternatives but it may be
an interesting area for future research.

4.2 Learning from Subsets The consensus prediction ap-
proach solves the set classification problem by taking into ac-
count its special structure only during the classification phase
but it does not utilize the fact that we need a consistent pre-
diction for a set of instances during the model learning phase.
To incorporate such information during learning, we devel-
oped an approach in which subsets of the original instances
are combined together to create the actual training set. In
these methods, the training set consists of a set of examples,
each containing a subset of the original instances. The ratio-
nal behind this is that a carefully constructed subset from
original instances of the same class is expected to coher-
ently represent and highlight the class-related features more
strongly than single instances. We will refer to these exam-
ples as instance-subsets and the resulting learning methods
as subset learning.

The overall learning and prediction framework of these

methods is similar to that employed by the consensus predic-
tion approach described earlier. As before, k binary one-vs-
rest SVM models are trained on the instance-subsets. For a
particular class ci, a set of positive instance-subsets is gen-
erated from the positive instances of ci and a set of nega-
tive instance-subsets is generated from its negative instances.
These instance-subsets are then used to train a model with
respect to class ci. During classification, a set of instance-
subsets is constructed from the instances of the unlabeled set
Uj . All these instance-subsets are predicted by each one of
the k binary models and the prediction for set Uj is obtained
by comparing the average of the instance-subset predictions
using Equation 4.1 with ujq

replaced by instance-subsets.
The next two sections describe two key parameters of

the subset learning methods: (i) the approaches that we
developed for generating the instance-subsets and (ii) the
kernel functions for that we developed for computing the
similarity between instance-subsets in the context of SVM
learning.

4.2.1 Generation of Instance-Subsets Given a set of p
instances X = {x1, . . . , xp}, our initial idea for generating
instance-subsets was to use all possible subsets of X up to a
certain size s (s = 2−5). This approach has the advantage of
uniformly capturing higher-order relationships between the
training set instances, and also it is not tied to the size of X
itself (as long as it is greater than s), which is important since
during prediction we need to be able to generate instance-
subsets for arbitrary size sets. However, we quickly realized
that even for small values of s (e.g., s ≤ 3), this would have
led to a dramatic increase in model training time, as the size
of the training set increases exponentially on s. In addition,
high-order sets themselves are computationally expensive to
determine in our settings. For these reasons, we developed
approaches to generate instance-subsets by selecting only
certain subsets of the instances.

For each instance xi ∈ X , we identify m instance
subsets of size s−1 from X . From each of the m subsets, an
instance-subset is created by including xi along with its s−1
instances. Thus, each instance leads to m instance-subsets
of size s. We developed three different schemes to identify
these subsets. The first, referred to as random, constructs
each one of the m subsets by randomly selecting a set of s−1
instances from X − {xi} without replacement. The second,
referred to as nearest-neighbor, constructs each of the m
subsets by selecting a set of s − 1 most similar instances to
xi that has not yet been selected. Finally the third, referred
to as furthest-neighbor, constructs each of the m subsets by
selecting a set of s − 1 least similar instances to xi that has
not yet been selected. These three methods are designed to
generate instance-subsets with distinct characteristics. The
random scheme is designed to provide a computationally
efficient approximation of our original idea of uniformly

sampling the different subsets, the nearest-neighbor scheme
is designed to generate instance-subsets that capture local
clusters of instances, whereas the furthest-neighbor scheme
is designed to capture the diversity among the instances that
belong to the same class.

Note that the nearest- and furthest-neighbor schemes
select the instances based only on their similarity to xi.
An alternate way of selecting these subsets is to also try to
maximize or minimize their pairwise similarity as well. We
decided not to pursue such an approach due to the increased
computational complexity associated with it when the value
of s becomes large.

4.2.2 Kernels for Instance-Subsets We developed three
different approaches for using the instance-subsets in SVM-
based learning. The first two approaches represent each
instance-subset by a feature vector derived from the fea-
tures of its constituent instances and then employ standard
kernel functions that operate on instances represented via
feature vectors. We used two approaches for obtaining the
feature-vector of an instance-subset. The first represents
each instance-subset by a feature vector derived from the
features that are present in all of its constituent instances,
whereas the second represents each instance-subset by a fea-
ture vector derived from the union of all the features of its
constituent instances. We will denote the kernels derived
from these two approaches as KAND,K and KOR,K, respec-
tively. KAND,K attentively performs a simple feature selec-
tion process assuming the conserved features are responsible
for the class assignment. KOR,K relaxes this assumption and
takes into consideration the diversity of class instances.

The third scheme uses instance-subsets in SVM-based
learning by defining a kernel function on the instance-
subsets, denoted by Kavg,K, that is based on the average
instance-level kernel values between all pairs of instances.
Specifically, given two instance-subsets Ui and Uj , Kavg,K is
given by

(4.2) Kavg,K(Ui, Uj) =
1

|Ui||Uj |
∑

uip ∈ Ui

ujq ∈ Uj

K(uip , ujq).

The function K in the above equation and in the notations
for KAND,K and KOR,K represents any valid kernel function
defined on the feature-vector representation of a pair of
instances. Note that the nearest neighbors or the furthest
neighbors of a certain instance are also generated based on
K as a similarity measure. Compared to KAND,K and KOR,K,
Kavg,K attempts to average the conservation and diversity of
the instances simultaneously. In our experiments, depending
on the dataset, we used two different kernels functions forK.
The first is the standard radial-basis kernel function and the
second is the kernel function corresponding to the extended
Jacquard similarity that it is commonly referred to as the

Tanimoto coefficient in the Cheminformatics literature [32].
We will denote these two kernels by rbf and tc, respectively.

4.3 Model Comparison We also developed an entirely
different set of methods for predicting the class of an un-
labeled set Uj = {uj1 , . . . , ujl

} that explicitly leverage the
fact that all the instances of Uj are part of the same class.
These approaches treat the instances of Uj as the positive
examples of an unknown class ci′ , build a SVM-model Mi′

for that class and then compare Mi′ against the k models
{M1, . . . ,Mk} that were built for each one of the classes
in C. The class of Uj is determined as the class ci whose
model Mi is most similar to model Mi′ . The motivation be-
hind these approaches is that the characteristics of the differ-
ent classes are encapsulated into their binary classification
models and by comparing the models directly we take into
account the entire set of instances that belong to each class.

There are two issues that need to be addressed in the
above framework, one of which is to create the negative
instances for training the Mi′ model, and the other is to
determine the similarity between two models. These issues
are discussed in the rest of this section.

4.3.1 Negative Training Instances Even though the set
Uj will provide the positive instances of class ci′ , a set
of negative instances also need to be identified in order to
learn the binary SVM model Mi′ . One way of constructing
the negative class is to randomly sample instances from the
training set. However, this method can potentially create
problems when the true class of Uj is ci but some instances
of ci may be sampled as negative instances to build Mi′ .

To address this problem, our methods, instead of build-
ing a single Mi′ model, build k models Mi′,1, . . . ,Mi′,k and
compare model Mi against model Mi′,i. The difference be-
tween these k models Mi′,i is how they select the instances
for the negative class. The negative class for model Mi′,i

is constructed so that it does not contain any instances from
class ci. We achieve this by splitting the training set into two
different subsets. One to be used for training the Mi models
and the second for selecting negative instances to train the
Mi′,i models for the unlabeled set.

4.3.2 Determining Model Similarity We investigated
two different techniques for comparing a pair of SVM mod-
els. The first approach, referred to as direct model similarity
and denoted by dsim, is based on directly comparing the de-
cision hyperplanes of the learned models. SVM’s decision
function is given by

f(x) = sgn

(∑
xi∈SV

αiyiK(x, xi) + β

)
,

where xi is a training instance that is part of the support
vectors SV , yi is its class (+1/-1), and αi and β are weights

learned during training such that αi ≥ 0 and
∑

αiyi =
0. Thus, the model learned is entirely determined by the
support vectors and the various weights. Since for most
kernel functions, it is hard to have a closed form solution of
the decision hyperplane, one way of comparing the models
learned by two different SVM models is to use one to classify
the other’s support vectors and measure the classification
performance. Specifically, given two models Mi and Mj ,
we measure their similarity using the following formula:
(4.3)

dsim(Mi,Mj) =
∑

xip ∈ SVi

xjq ∈ SVj

αip
αjq

yip
yjqK(xip

, xjq
),

where SVi and SVj are the support vectors for models Mi

and Mj , respectively. Note that the various terms associ-
ated with the β variables are eliminated because

∑
αipyip =

0. It is easy to see that the direct similarity between a
pair of models will be high if each support vector of Mi

is predicted correctly by Mj’s model. Using this similar-
ity measure, the class of an unlabeled set Uj is given by
argmaxi(dsim(Mi′,i,Mi)).

The second approach, referred to as cross-classification
similarity and denoted by xsim, compares two SVM models
Mi′,i and Mi by using Mi′,i to classify the data that were
used to train model Mi and then determines their similarity
based on the classification performance (e.g., accuracy). The
idea behind this approach is that if two models are similar,
then they are expected to be able to correctly classify each
other’s training data. Note that due to the way that the
various Mi and Mi′,i models are being trained, each pair
of corresponding models does not share any instances thus
ensuring that the above procedure measures the performance
of a model on an entirely independent dataset.

4.4 Co-Learning Finally, we developed a method for
solving the set classification problem that borrows ideas
from semi-supervised learning [3, 6]. In this approach, re-
ferred to as co-learning, the instances of an unlabeled set Uj

of unknown class ci′ are used as additional positive instances
to train a new model for class ci denoted by Mi+i′ . The per-
formance of Mi+i′ is then evaluated on a separate validation
set and is compared against the performance obtained on the
same validation set from the model Mi trained only on the
original positive instances for ci. If the instances of Uj be-
long to class ci, then the performance achieved by Mi+i′

should be better (or at least not worse) than that achieved
by Mi as it is now trained using a larger training set. On
the other hand, if Uj does not belong in ci, Mi+i′ should
achieve a lower performance as it was trained using incor-
rectly labeled positive instances (i.e., the instances from Uj).
Thus, by measuring the difference in performance between
Mi+i′ and Mi we can potentially determine if Ui belongs in
ci or not. Based on this, the co-learning method for solving

the set classification problem assigns an unlabeled set Uj to
the class

(4.4) argmaxi(f(Mi+i′)− f(Mi)),

where f is a function that measures the classification perfor-
mance of a model (e.g., classification accuracy, AUC, etc.).

5 Experimental Design
5.1 Datasets We used seven different datasets to evaluate
the performance of the various set classification methods
developed in this paper. Various characteristics of these
datasets are shown in Table 1.

The first dataset, referred to as face, contains 1,012 face
images of 20 people under different lighting conditions and
different facial expressions. This dataset was developed by
the Vision Information & Processing group at the Univer-
sity of Manchester [13]. The actual images are 220 × 220
pixels in 256 shades of gray. We represented each image
by a feature vector corresponding to the concatenation of
all pixel values and each vector was normalized to be of
unit length. Note that even though more sophisticated fea-
ture extraction methods can be utilized to capture structural
characteristics of the faces, due to time constraints we de-
cided not to utilize them. The second dataset, referred to
as tf, contains a set of compounds that are experimentally
tested to be active against specific protein targets. This set
is constructed from PubChem 2, DrugBank[33], PDSP Ki

database[25], BindingDB[20] and KEGG BRITE 3. There
are totally 9,843 compounds against 55 protein targets in this
dataset. We used the AFGEN [30] software to generate fea-
tures for each compound. These features are the counts of
the different connected subgraphs up to seven edges that oc-
cur in the compounds’ chemical graph. The third dataset,
referred to as scene, contains a set of images that was de-
veloped for evaluating the performance of multi-label scene
classification methods [4]. It contains 2,407 images belong-
ing to six different classes. For each image, the dataset pro-
vides a 294-dimensional feature vector generated from LUV
space describing various aspects of spatial and color infor-
mation [4]. In our study we used these features and did not
generate any additional ones. The fourth dataset, referred to
as tmc, is a document classification dataset used in SIAM
Text Mining Competition 20074. It has 28,596 documents
belonging to 22 classes with 30,438 terms in total. Each doc-
ument was represented by its binary term vector normalized
to be of length one. The fifth dataset, referred to as media,
is a subset of the dataset used in the MediaMill Challenge
Problem [27] and is related to the identification of certain se-
mantic concepts present in the video stream. The binary clas-

2http://pubchem.ncbi.nlm.nih.gov/
3http://www.genome.ad.jp/kegg/brite.html
4http://www.cs.utk.edu/tmw07/.

sification problems were combined into a multi-label classi-
fication problem5, and we used the video features generated
in [27] without modification. The media dataset consists of
11,726 instances, 60 distinct classes, and each instance is
represented by a 120-dimensional feature vector. The sixth
dataset, referred to as rcv1, is a subset from Reuters Corpus
Volume I collection for text categorization [19]. It contains
6,000 news articles, 54 classes, and a total of 47,236 pre-
generated features (i.e., articles are provided in vector-space
form). Finally, the seventh dataset, referred to as yeast, is
taken from [9]. It contains 14 classes, 2,417 yeast genes,
each of which is represented via 103 gene-expression and
phylogenetic features.

5.2 Performance Evaluation The performance of the dif-
ferent methods was evaluated using a 3-fold cross validation
framework in which the entire set of instances was randomly
split into three sets. For each one of the three splits, the set of
test instances that belonged to the same class was considered
as an unlabeled set to be predicted by the various methods
developed in this paper. Thus, if the dataset had k classes,
each split required the prediction of k unlabeled sets. Note
that since in some of the datasets, each instance belonged
to multiple classes (i.e., it is a multi-labeled dataset), the k
unlabeled sets to be predicted will overlap.

Since each one of the four methods described in Sec-
tion 4 computes a prediction score between an unlabeled
set Uj and each class in C 6, the performance of a method
was evaluated by looking at the rank of the true class in the
ranked list of the k classes sorted in decreasing prediction
score. We used the average uninterpolated precision [14],
denoted by UPrec, over the three cross-validation sets. Since
we measure the performance of just a single instance, the
uninterpolated precision is nothing more than 1/rank of the
true class. If a method always ranks the true class at the top,
its UPrec value will be 1.0.

Note that depending on the method, these prediction
scores are computed differently. For the consensus predic-
tion and subset learning these scores correspond to the scores
of the k binary SVM classifiers, for the direct model sim-
ilarity the scores are given by Equation 4.3, for the cross-
classification method the score is given by evaluating the
performance of a model, and for the co-learning method the
score is given by the looking at the difference in the classifi-
cation performance between a pair of models (Equation 4.4).
In our experiments, the performance of a model was mea-
sured using the area under the ROC curve (AUC) that plots
the true positive rate vs the false positive rate for different
classification thresholds [11]. We also experimented with
other methods for measuring the performance (e.g., accu-

5http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multilabel.html.
6The methods assign Uj to the class that achieves the highest score.

Table 1: Dataset characteristics.

Dataset # classes # instances avg class size avg classes/instance # features avg self-class sim avg cross-class sim

face 20 1,012 50.6 1 48,400 0.66553 0.56486
tf 55 9,843 213.4 1.19 158,520 0.27679 0.12377
scene 6 2,407 430.8 1.07 294 0.00274 0.00014
tmc 22 28,596 2,804.9 2.16 30,438 0.13899 0.12508
media 60 11,726 290.4 1.59 120 0.52686 0.43674
rcv1 54 6,000 341.2 3.07 47,236 0.03616 0.01100
yeast 14 2,417 731.5 4.24 103 0.02102 0.00871

class, # instances and # features represent the number of classes, number of instances, and number of features, respectively.
avg class size represents the average number of instances belonging to a class. avg classes/instance represents the average
class labels each instance has. avg self class sim refers to average similarity of a class to itself, and avg class sim refers to the
average similarity between classes. The average self- and cross-class similarity is calculated as the average pairwise similarity
of the corresponding instances accordingly.

racy) and found that AUC performs better.

5.3 Model Training The various SVM models were built
using the publicly available support vector machine tool
SVMlight [18] which implements an efficient soft margin
optimization algorithm. In all of our experiments, we used
the default parameters for solving the quadratic program-
ming problem, the default regularization parameter C which
controls the margin width and the misclassification cost, and
in the case of the rbf kernel, we used the default γ value.

For the tf dataset we used the kernel function derived
from the Tanimoto coefficient, whereas for all the remain-
ing datasets we used the rbf kernel function. This was done
as prior research in building models for chemical compound
classification has shown that the Tanimoto coefficient per-
forms better than the rbf kernel [30].

Since we build one-vs-rest binary SVM models, the size
of the negative class in our models is significantly greater
than that of the positive class, which can affect SVM’s per-
formance in building a model for the positive class. Two
ways are commonly used to to address this problem, which
are either to increase the misclassification cost associated
with the positive instances or to only use a random subset
of the negative instances. In all of our experiments we used
the latter approach and created a negative class whose size
is approximately equal to that of the positive class. Also,
the advantage of this scheme is that it has lower computa-
tional requirements due to the smaller negative training class,
which is important for the subset learning methods. In the
case of the subset learning method, the sampled instance-
subsets were generated as follows. First, a subset A of the
negative instances was randomly selected whose size was
equal to the size of the positive class. These negative in-
stances were selected in such a way so that each class rep-
resenting the “other” class in the binary setting contributed
an equal number of instances. Then the subset A was used
to generate the instance-subsets using the various methods

described in Section 4.2.1.
In the case of the cross-classification method, the model

for the unlabeled set of class ci was built by using its
instances as the positive examples and the instances of the
remaining test set (i.e., the held out fold minus the instances
of ci) as the negative examples. Note this protocol satisfies
the requirements outlined in Section 4.3.1 that models Mi′,i

and Mi do not share any positive or negative instances.
Finally, in the case of the co-learning method, the two folds
that form the training set was split into two parts. The first
part, containing 2/3 of the training set, was used to build
the Mi+i′ model and the remaining 1/3 was used as the
validation set to assess its performance.

6 Results
In this section we present and discuss the performance
achieved by the various set classification methods described
in Section 4. All the results reported correspond to the UPrec
values averaged over the 3-fold cross validation steps.

6.1 Consensus Prediction Table 2 shows the results ob-
tained by the consensus prediction method (Section 4.1).
These results provide some indications as to the inherent dif-
ficulty of each dataset, which roughly correlates to the num-
ber of training instances per class. The results obtained by
this method will provide the baseline performance against
which the results obtained by the other methods will be com-
pared.

6.2 Subset Learning Methods Tables 3 and 4 shows the
results obtained by the methods that learn models based
on instance-subsets (Section 4.2). The results reported
are for different instance-subset generation schemes, kernel
functions, number of selected instance-subsets, and instance-
subsets of size 2 and 3 (i.e., pairs and triplets). The first of
these tables (Table 3) shows the average performance of the
subset methods over consensus prediction across the seven

Table 2: Consensus prediction performance.

face tf scene tmc media rcv1 yeast

UPrec 0.55 0.31 0.93 0.87 0.56 0.79 0.49

The results for the tf dataset were obtained using the kernel de-
rived from the Tanimoto coefficient. The results for the remaining
datasets were obtained using the rbf kernel.

Table 3: Average performance of subset learning methods
relative to consensus prediction over the seven datasets.

kernel method s m = 5 m = 10 m = 15 m = 20

KAND,K

random
2 0.90 0.91 0.96 0.96
3 0.83 0.83 0.87 0.88

nn
2 1.01 1.00 0.98 0.99
3 0.90 0.90 0.94 0.94

fn
2 0.78 0.87 0.91 0.92
3 0.69 0.79 0.85 0.88

KOR,K

random
2 1.00 1.00 1.00 1.00
3 0.98 1.00 0.98 0.98

nn
2 1.03 1.03 1.00 1.01
3 0.98 0.97 0.97 0.97

fn
2 0.94 1.00 1.01 1.01
3 0.96 1.00 0.99 0.99

Kavg,K

random
2 1.06 1.07 1.05 1.05
3 1.04 1.04 1.02 1.02

nn
2 1.03 1.05 1.04 1.04
3 1.01 1.02 1.01 1.02

fn
2 1.03 1.05 1.08 1.09
3 0.99 1.02 1.05 1.04

These numbers are calculated as 2r , where r is the average log2-ratio
of the uninterpolated precision of subset learning over consensus pre-
diction across the different datasets. Numbers that are greater than
one (boldfaced) indicate that the subset learning outperforms consen-
sus prediction.

datasets, whereas the second table (Table 4) shows the actual
results for the different datasets. We also performed a series
of experiment on instance-subsets of size 5 that showed
similar trends. Due to space constraints we did not include
these results. In the rest of this section we discuss how
the different parameters of this method impacts its overall
performance.

Size and Number of Instance-Subsets Comparing the per-
formance achieved by the subset learning methods across the
different datasets, kernel functions, and instance-subset gen-
eration methods we see that as the size of the instance-subset
increases from two to three, its performance in all but a few
cases, decreases. Even though in most cases the drop in per-
formance is relatively small, it is quite consistent indicating
that the use of larger instance-subsets does not aid the set
classification performance. However, an interesting trend re-
garding the relative performance of the instance-subsets of

size three over that of size two is that it improves (i.e., it de-
grades less) as the number of instance-subsets per training
and testing instance (m) increases. Based on these trends, a
potential explanation for the lower performance of size three
instance-subsets is that they require substantially larger train-
ing sets in order to build models that can generalize to unseen
examples.

Comparing the performance achieved by the various
schemes when the number (m) of instance-subsets that are
generated for each instance and used to train the various
binary models and classify the unlabeled set increases, we
see that the performance is getting better. We believe that
this is a direct consequence of the fact that the size of
the training set increases making it possible to improve
the accuracy of the models. Also note that for instance-
subsets of size two, the relative gains achieved with greater
values of m diminishes, indicating that beyond a certain
point, the used of additional subsets leads to relatively
small incremental improvements. From a computational
requirements standpoint, this is positive as it indicates that
subset learning can lead to improvements with relatively
modest increases in computational requirements. However,
the rate of diminishing returns is considerably lower for
instance-subsets of size three, and m = 10 achieves the best
results in this case (as discussed earlier).

Kernel Functions Comparing the performance of the three
instance-subset based kernel functions (Section 4.2.2) we
see that Kavg,K achieves the best results followed, relatively
close, by KOR,K, whereas KAND,K tends to perform consid-
erably worse. The sometimes comparable performance of
the Kavg,K and KOR,K is not surprising as these two ker-
nels take into account all the information between a pair of
instance-subsets, even though they do so somewhat differ-
ently. On the other hand, the KAND,K kernel is distinctly
different from the other two as it only takes into account in-
formation that is shared by all the instances of each instance-
subset. Even though the principle behind this kernel is rea-
sonable, we believe that its lower performance is due to the
fact that it only considers features than are conserved 100%
in the constituent instances of an instance-subset. As a re-
sult, it eliminates features that may be conserved within the
instance-subset but not at the 100% level.

Instance-Subset Generation Method Comparing the per-
formance of the three methods for generating instance-
subsets (Section 4.2) we see that their relative performance
depends on the kernel function that is being used. When the
best two kernel functions are used (Kavg,K and KOR,K), the
furthest-neighbor scheme usually performs the best, whereas
the nearest-neighbor scheme tends to perform the worst.
However, the performance of these methods does depend on
the number of instance subsets (m) that are used. In gen-
eral, the performance of the furthest-neighbor scheme im-

Table 4: Performance of subset learning methods.

face dataset tf dataset scene dataset
kernel methods s m = 5 m = 10 m = 15 m = 20 m = 5 m = 10 m = 15 m = 20 m = 5 m = 10 m = 15 m = 20

KAND,K

random 2 0.50 0.50 0.56 0.56 0.20 0.20 0.27 0.27 1.00 1.00 1.00 1.00
3 0.37 0.37 0.48 0.49 0.20 0.20 0.23 0.23 1.00 1.00 1.00 1.00

nn 2 0.57 0.57 0.56 0.56 0.31 0.31 0.31 0.31 1.00 1.00 1.00 1.00
3 0.37 0.37 0.49 0.50 0.29 0.29 0.30 0.31 1.00 1.00 1.00 1.00

fn 2 0.40 0.44 0.53 0.54 0.20 0.23 0.22 0.22 0.96 0.91 1.00 1.00
3 0.40 0.40 0.49 0.50 0.18 0.20 0.20 0.21 1.00 1.00 1.00 1.00

KOR,K

random 2 0.62 0.62 0.55 0.56 0.27 0.27 0.29 0.29 1.00 1.00 1.00 1.00
3 0.51 0.53 0.48 0.48 0.27 0.30 0.30 0.30 1.00 1.00 1.00 1.00

nn 2 0.59 0.59 0.56 0.56 0.32 0.32 0.32 0.32 1.00 1.00 1.00 1.00
3 0.51 0.51 0.49 0.50 0.32 0.31 0.31 0.31 1.00 1.00 1.00 1.00

fn 2 0.56 0.60 0.56 0.56 0.30 0.32 0.31 0.32 0.96 0.91 1.00 1.00
3 0.56 0.53 0.49 0.49 0.30 0.31 0.31 0.31 1.00 1.00 1.00 1.00

Kavg,K

random 2 0.64 0.64 0.57 0.57 0.30 0.30 0.31 0.31 0.96 0.96 0.93 0.93
3 0.54 0.54 0.49 0.49 0.29 0.29 0.30 0.30 0.96 0.96 0.94 0.94

nn 2 0.57 0.63 0.56 0.56 0.31 0.31 0.31 0.31 0.96 0.96 0.93 0.93
3 0.52 0.53 0.51 0.51 0.31 0.31 0.31 0.31 0.96 0.96 0.94 0.94

fn 2 0.59 0.58 0.58 0.58 0.32 0.32 0.32 0.32 0.90 0.89 0.98 0.98
3 0.51 0.53 0.52 0.51 0.31 0.31 0.32 0.32 0.85 0.88 0.94 0.88

tmc dataset media dataset rcv1 dataset
kernel methods s m = 5 m = 10 m = 15 m = 20 m = 5 m = 10 m = 15 m = 20 m = 5 m = 10 m = 15 m = 20

Kavg,K

random 2 0.82 0.82 0.82 0.82 0.59 0.60 0.60 0.60 0.65 0.65 0.65 0.65
3 0.64 0.64 0.64 0.64 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

nn 2 0.83 0.83 0.84 0.86 0.59 0.62 0.62 0.61 0.75 0.73 0.73 0.72
3 0.82 0.82 0.82 0.81 0.59 0.61 0.61 0.60 0.63 0.66 0.66 0.64

fn 2 0.55 0.71 0.76 0.79 0.37 0.50 0.54 0.57 0.70 0.67 0.66 0.69
3 0.28 0.45 0.55 0.65 0.32 0.45 0.50 0.54 0.63 0.65 0.66 0.65

KOR,K

random 2 0.88 0.88 0.88 0.88 0.59 0.60 0.60 0.60 0.75 0.74 0.74 0.74
3 0.84 0.84 0.84 0.84 0.58 0.58 0.57 0.57 0.78 0.78 0.78 0.78

nn 2 0.87 0.87 0.87 0.88 0.59 0.62 0.61 0.61 0.78 0.78 0.78 0.79
3 0.87 0.87 0.87 0.87 0.59 0.61 0.61 0.60 0.74 0.74 0.77 0.76

fn 2 0.89 0.93 0.92 0.92 0.37 0.50 0.54 0.57 0.77 0.75 0.75 0.74
3 0.93 0.96 0.95 0.92 0.32 0.45 0.50 0.54 0.78 0.78 0.75 0.73

Kavg,K

random 2 0.86 0.87 0.86 0.86 0.66 0.68 0.68 0.68 0.74 0.74 0.76 0.76
3 0.85 0.85 0.85 0.85 0.64 0.64 0.64 0.64 0.76 0.76 0.76 0.76

nn 2 0.87 0.87 0.86 0.86 0.63 0.67 0.67 0.67 0.78 0.79 0.79 0.79
3 0.87 0.87 0.86 0.86 0.59 0.66 0.67 0.67 0.77 0.77 0.78 0.77

fn 2 0.90 0.90 0.89 0.88 0.56 0.60 0.63 0.65 0.76 0.73 0.74 0.75
3 0.90 0.91 0.92 0.91 0.47 0.53 0.58 0.61 0.80 0.76 0.74 0.73

yeast dataset
kernel methods s m = 5 m = 10 m = 15 m = 20

KAND,rbf

random 2 0.47 0.47 0.47 0.47
3 0.49 0.49 0.49 0.49

nn 2 0.48 0.46 0.40 0.42
3 0.43 0.40 0.40 0.40

fn 2 0.48 0.50 0.50 0.46
3 0.56 0.54 0.52 0.50

KOR,rbf

random 2 0.47 0.47 0.47 0.47
3 0.49 0.49 0.49 0.49

nn 2 0.48 0.46 0.40 0.42
3 0.43 0.40 0.40 0.40

fn 2 0.48 0.50 0.50 0.46
3 0.56 0.54 0.52 0.50

Kavg,rbf

random 2 0.59 0.58 0.59 0.59
3 0.62 0.62 0.62 0.62

nn 2 0.51 0.50 0.52 0.54
3 0.51 0.49 0.49 0.52

fn 2 0.56 0.66 0.68 0.68
3 0.63 0.66 0.66 0.68

The results show the UPrec values. The column labeled “methods” represents the method used to generate the instance-subsets (Section 4.2.1): random,
nearest-neighbor (nn), and furthest-neighbor (fn); s and m are the size of each instance-subset and the number of instance-subsets that are derived for each
instance (Section 4.2.1); Boldfaced entries denote results that are better than those obtained by the consensus prediction method (baseline).

proves for larger values of m, whereas the performance of
the nearest-neighbor scheme tends to remain the same (or de-
crease) as m increases. One plausible explanation for the im-
proved gains of the furthest-neighbor scheme with increasing
values of m is that because the instances that are included in
these subsets are dissimilar to the instance itself, the degree
of variation among the selected instance-subsets is higher
than those selected by the nearest-neighbor scheme and as
such, there are gains to be made by including them in train-
ing.

However, the relative performance between the furthest-
and nearest-neighbor scheme is reversed when the KAND,K
kernel function is used. In this case, the nearest-neighbor
scheme does substantially better than the furthest-neighbor
scheme. The reason for that is that because the KAND,K
represents the instance-subset by using only the features
that are conserved across the instances of the subset, when
these instances are very different from each other (as it is
in the case of the furthest-neighbor scheme), it ends up
eliminating a large number of features and thus leading to
a poor representation of each instance-subset.

Finally, since the random method employs a uniform
sampling approach, it achieves reasonably good and consis-
tent performance across the different datasets, kernel func-
tions, and number of selected instance-subsets. For most
problems, its performance is usually close to the best, if not
the best.

Comparison with Consensus Prediction The results in Ta-
ble 3 show that for most instance-subset generation methods
and values of m, the subset learning methods outperform
consensus prediction when using the KOR,K and Kavg,K ker-
nel functions. In the case of KOR,K, the best overall results
are obtained for the nearest-neighbor scheme and m = 10,
which outperforms the consensus prediction in five out of the
seven datasets and achieves an average improvement of 3%,
with individual improvements on the five datasets ranging
from 1.1% to 10.7%. In the case of Kavg,K, the best over-
all results are obtained for the furthest-neighbor scheme and
m = 20, which outperforms the consensus prediction on
six out of the seven datasets and achieves an average im-
provement of 9%, with individual improvements on the five
datasets ranging from 3.2% to 38.8%.

6.3 Model-Based and Co-learning Methods The perfor-
mance of the set classification methods based on model com-
parison (Section 4.3) and co-learning (Section 4.4) is shown
in the first four columns of Table 5. The last three columns of
that table show the performance of the consensus prediction
methods and the two best schemes based on subset learning.
These results are reproduced here from Tables 2 and 4 so that
to make it easier to compare the performance of all schemes
together.

Comparing the performance of these schemes we see

that the model-based approach that directly determines the
similarity between a pair of models performs poorly and
achieves results that are considerably worse than those
achieved by the baseline scheme (consensus predictor).
However, the cross-classification based scheme does better
and outperforms the baseline scheme in four out of the seven
datasets. In particular, its performance on the tf dataset is
75% higher than that of the baseline scheme. Comparing the
performance of the co-learning method against the baseline
scheme we see that it is not very good and underperforms the
baseline scheme in all but one of the datasets.

Finally, comparing the overall performance of the var-
ious schemes in Table 5 we see that the subset-learning
methods achieve the best overall results and that they lead
to considerable improvements over the consensus prediction
method.

6.4 Additional Experiments In addition to constructing
subsets by looking at the instance similarities, which can be
thought of as exploring the structure of the instances’ input
space, we also experimented with schemes that generated
subsets by considering the class labels of the instances.
In particular, when the instances were multi-labeled, we
constructed subsets using the instances which have the most
similar or dissimilar labels. This can be thought of as
exploring the structure of the instances’ output space. Our
experiments with this approach (not reported here) showed
that it did not lead to any significant improvements over
consensus predictions. This may be because the labels
are only a high-level description of the instances, and thus
subsets from similar or dissimilar labels do not necessarily
provide additional information to the learner.

We also applied the C4.5 decision tree algorithm on
instance-subsets in order to evaluate that the subset learning
methods are not limited only within the SVM framework.
We generated a random forest of pruned trees on the features
of instance-subsets for each class of each dataset. The clas-
sification of an instance-subset is the majority prediction of
the forest. Our experiments showed (not reported here) that
as measured in terms of recall, learning on subsets improved
the classification performance over consensus prediction as
well.

7 Conclusion and Directions for Further Research
In this paper we introduced the set classification problem and
developed various approaches for solving it. These methods
included the consensus predictor, which is a natural applica-
tion of traditional classification methods, methods that build
models on examples corresponding to various subsets of the
instances, methods that build models for the testing set and
compare it against those built on the training set, and finally
methods that measure the improvement in the classification
performance by using the test set to co-learn a model with

Table 5: Performance of all the schemes.

Model-based consensus KOR,K Kavg,K
dataset dsim xsim co-learning prediction nn, s = 2, m = 10 fn, s = 2, m = 20

face 0.42 0.45 0.39 0.55 0.59 0.58
tf 0.20 0.54 0.44 0.31 0.32 0.32
scene 0.68 1.00 0.78 0.93 1.00 0.98
tmc 0.35 0.91 0.73 0.87 0.87 0.92
media 0.11 0.27 0.23 0.56 0.62 0.65
rcv1 0.37 0.74 0.62 0.79 0.78 0.75
yeast 0.46 0.50 0.43 0.49 0.46 0.68

The ranking of the different classes for xsim and co-learning during prediction was done using AUC.
Boldfaced entries denote results that are better than those obtained by the consensus prediction method.

the training set. We performed a detailed parameter study of
these methods using four datasets. Our results showed that
among these methods, significant performance gains can be
obtained by the subset learning methods across the majority
of the datasets.

Even though the overall results of this study have been
positive, we believe that there are a number of issues that
need to be further investigated for each one of the four
classes of methods presented in this paper. Additional re-
search is required for the consensus prediction approach as
it relates to the methods used to derive the consensus pre-
diction that does not utilize every individual instance but se-
lects reliable subsets upon which to build the consensus. In
the case of the subset learning methods additional research
is required to determine the relation between the size of the
instance-subset and the number of instance-subsets used for
training. In addition, further research is required to improve
the performance of the KAND,K kernel by relaxing the re-
quirement of 100% conservation. In the case of model-based
methods, being able to determine the similarity between two
models by only comparing their support vectors is theoret-
ically appealing and we believe that more effective meth-
ods can potentially be developed. Finally, even though the
methods based on co-learning did not perform competitively,
there may be room for further improvements by developing
methods to differentially weight the positive instances that
came from the original training set over those that came from
the test set.

Acknowledgements This work was supported by IIS-
0431135, NIH RLM008713A, and by the Digital Technol-
ogy Center at the University of Minnesota.

References

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support
vector machines for multiple-instance learning. In NIPS,
pages 561–568, Vancouver, 2002. MIT press.

[2] O. Arandjelović. and R. Cipolla. Face set classification
using maximally probable mutual modes. In Proc. IAPR
International Conference on Pattern Recognition, pages 511–
514, August 2006.

[3] A. Blum and T. Mitchell. Combining labeled and unlabeled
data with co-training. In Proceedings of the 11th Annual
Conference on Computational Learning Theory, pages 92–
100. Morgan Kaufmann Publishers, 1998.

[4] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learn-
ing multi-label scene classification. Pattern Recognition,
37:1757–1771, 2004.

[5] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext
categorization using hyperlinks. In SIGMOD ’98: Proceed-
ings of the 1998 ACM SIGMOD international conference on
Management of data, pages 307–318, New York, NY, USA,
1998. ACM.

[6] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-
Supervised Learning. MIT Press, Cambridge, MA, 2006.

[7] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Fre-
quent substructure-based approaches for classifying chemi-
cal compounds. IEEE Trans. on Knowl. and Data Eng.,
17(8):1036–1050, 2005.

[8] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving
the multiple instance problem with axis-parallel rectangles.
Artif. Intell., 89(1-2):31–71, 1997.

[9] A. E. Elisseeff and J. Weston. A kernel method for multi-
labelled classification. In In Advances in Neural Information
Processing Systems 14, pages 681–687. MIT Press, 2001.

[10] J. Euzenat and P. Shvaiko. Ontology Matching. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[11] T. Fawcett. An introduction to roc analysis. Pattern Recogn.
Lett., 27(8):861–874, 2006.

[12] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola.
Multi-instance kernels. In ICML ’02: Proceedings of the
Nineteenth International Conference on Machine Learning,
pages 179–186, San Francisco, CA, USA, 2002. Morgan
Kaufmann Publishers Inc.

[13] D. B. Graham and N. M. Allinson. Characterizing virtual
eigensignatures for general purpose face recognition. Face
Recognition: From Theory to Applications, NATO ASI Series
F, Computer and Systems Sciences, 163:446–456, 1998.

[14] M. A. Hearst and J. O. Pedersen. Reexamining the clus-

ter hypothesis: scatter/gather on retrieval results. In SIGIR
’96: Proceedings of the 19th annual international ACM SI-
GIR conference on Research and development in information
retrieval, pages 76–84, New York, NY, USA, 1996. ACM.

[15] B. Heisele, P. Ho, and T. Poggio. Face recognition with
support vector machines: global versus component-based ap-
proach. In In Proc. 8th International Conference on Com-
puter Vision, pages 688–694, 2001.

[16] J. L. Jenkins, A. Bender, and J. W. Davies. In silico target
fishing: Predicting biological targets from chemical structure.
Drug Discovery Today: Technologies, 3:413–421, 2006.

[17] D. Jensen, J. Neville, and B. Gallagher. Why collective in-
ference improves relational classification. In KDD ’04: Pro-
ceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 593–598,
New York, NY, USA, 2004. ACM.

[18] T. Joachims. Making large-scale svm learning practical.
Advances in Kernel Methods - Support Vector Learning.,
1999.

[19] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A
new benchmark collection for text categorization research. J.
Mach. Learn. Res., 5:361–397, 2004.

[20] T. Liu, Y. Lin, X. Wen, R. N. Jorissen, and M. K. Gilson.
Bindingdb: a web-accessible database of experimentally de-
termined protein-ligand binding affinities. Nucleic Acids Re-
search 00(Database Issue), pages D1–D4, 2006.

[21] Q. Lu and L. Getoor. Link-based classification. In Proceed-
ings of the Twentieth International Conference on Machine
Learning, pages 496–503, DC, USA, 2003. AAAI.

[22] O. Maron and T. Lozano-Pérez. A framework for multiple-
instance learning. In NIPS ’97: Proceedings of the 1997
conference on Advances in neural information processing
systems 10, pages 570–576, Cambridge, MA, USA, 1998.
MIT Press.

[23] A. Nichols. High content screening as a screening tool in
drug discovery. Methods in Molecular Biology, 356:379–387,
2007.

[24] R. J. Quinlan. C4.5: Programs for Machine Learning
(Morgan Kaufmann Series in Machine Learning). Morgan
Kaufmann, January 1993.

[25] B. L. Roth, E. Lopez, S. Patel, and W. K. Kroeze. The multi-
plicity of serotonin receptors: Uselessly diverse molecules or
an embarrasment of riches? The Neuroscientist, 6:252–262,
2000.

[26] G. Shakhnarovich, I. John W. Fisher, and T. Darrell. Face
recognition from long-term observations. In ECCV ’02:
Proceedings of the 7th European Conference on Computer
Vision-Part III, pages 851–868, London, UK, 2002. Springer-
Verlag.

[27] C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geuse-
broek, and A. W. M. Smeulders. The challenge problem for
automated detection of 101 semantic concepts in multimedia.
In MULTIMEDIA ’06: Proceedings of the 14th annual ACM
international conference on Multimedia, pages 421–430, New
York, NY, USA, 2006. ACM.

[28] B. Taskar, P. Abbeel, and D. Koller. Discriminative prob-
abilistic models fro relational data. In Proceedings of the
Eighteenth Conference on Uncertainty in Artificial Intelli-

gence, pages 485–492, Edmonton, Canada, 2002. Morgan
Kaufmann.

[29] V. Vapnik. Statistical Learning Theory. John Wiley, New
York, 1998.

[30] N. Wale, I. A. Watson, and G. Karypis. Comparison of de-
scriptor spaces for chemical compound retrieval and classifi-
cation. Knowledge and Information Systems, 14(3):347–375,
2008.

[31] J. Wang and J.-D. Zucker. Solving multiple-instance prob-
lem: A lazy learning approach. In Proceedings of 17th Inter-
natial Conference on Machine Learning, pages 1119–1125,
2000.

[32] P. Willett. Chemical similarity searching. Journal of Chemi-
cal Information and Computer Science, 38(6):983–996, 1998.

[33] D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Has-
sanali, P. Stothard, Z. Chang, and J. Woolsey. DrugBank: a
comprehensive resource for in silico drug discovery and ex-
ploration. Nucl. Acids Res., 34(suppl1):D668–672, 2006.

[34] D. W. Young, A. Bender, J. Hoyt, E. McWhinnie, G.-W.
Chirn, C. Y. Tao, J. A. Tallarico, M. Labow1, J. L. Jenk-
ins, T. J. Mitchison, and Y. Feng. Integrating high-content
screening and ligand-target prediction to identify mechanism
of action. Nature Chemical Biology, 4:59–68, 2008.

[35] Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label
learning with application to scene classification. Advances
in Neural Information Processing Systems, 19:1609–1616,
2007.

[36] Z.-H. Zhou and M.-L. Zhang. Solving multi-instance prob-
lems with classifier ensemble based on constructive cluster-
ing. Knowl. Inf. Syst., 11(2):155–170, 2007.

