
Sparse Tensor Factorization on Many-Core Processors
with High-Bandwidth Memory

Shaden Smith∗, Jongsoo Park†, George Karypis∗
∗ Department of Computer Science and Engineering, University of Minnesota

† Parallel Computing Lab, Intel Corporation
{shaden, karypis}@cs.umn.edu, jongsoo.park@intel.com

Abstract—HPC systems are increasingly used for data in-
tensive computations which exhibit irregular memory accesses,
non-uniform work distributions, large memory footprints, and
high memory bandwidth demands. To address these challeng-
ing demands, HPC systems are turning to many-core archi-
tectures that feature a large number of energy-efficient cores
backed by high-bandwidth memory. These features are exem-
plified in Intel’s recent Knights Landing many-core processor
(KNL), which typically has 68 cores and 16GB of on-package
multi-channel DRAM (MCDRAM). This work investigates how
the novel architectural features offered by KNL can be used
in the context of decomposing sparse, unstructured tensors
using the canonical polyadic decomposition (CPD). The CPD
is used extensively to analyze large multi-way datasets arising
in various areas including precision healthcare, cybersecurity,
and e-commerce. Towards this end, we (i) develop problem
decompositions for the CPD which are amenable to hundreds
of concurrent threads while maintaining load balance and
low synchronization costs; and (ii) explore the utilization of
architectural features such as MCDRAM. Using one KNL
processor, our algorithm achieves up to 1.8× speedup over
a dual socket Intel Xeon system with 44 cores.

I. INTRODUCTION

HPC systems are increasingly used for data intensive

workloads, such as those that arise in many machine learning

applications. These applications process data coming from

sources such as electronic health records, social networks,

and retail. These workloads are highly unstructured and

commonly exhibit irregular memory accesses, non-uniform

data distributions, large memory footprints, and demand high

memory bandwidth.

The growing demands of data intensive applications have

driven the adoption of many-core processors. These are

highly parallel processors that feature several tens of cores

with wide vector instructions. The large processing capabil-

ities of many-core processors places increased pressure on

memory bandwidth that DDR memory is unable to satisfy.

A key recent trend of many-core processors is the inclusion

of high-bandwidth memory, which has several times higher

bandwidth than traditional DDR memory. This trend is

exemplified in recent architectures such as NVIDIA Pascal,

AMD Fiji, and Intel Knights Landing (KNL).

In order to harness the power of many-core processors,

applications must expose a high degree of parallelism, load

balance tens to hundreds of parallel threads, and effectively

utilize the high-bandwidth memory. Algorithm developers

must embrace these challenges and, in many cases, re-

evaluate existing parallel algorithms.
To that end, we present an exploration of performance op-

timizations for a characteristic data intensive workload. We

study the KNL many-core processor and use the canonical

polyadic decomposition (CPD) [1] as a benchmark.
Tensors are the generalization of matrices to more than

two dimensions (called modes). The CPD is a commonly

used approach to approximate a tensor as the summation of a

small number of rank-one tensors. The CPD is an important

tool in areas such as healthcare [2], cybersecurity [3], and

recommender systems [4]. Sparse tensor factorization is of

particular interest to our study because it features many of

the classic challenges present in sparse matrix kernels, while

bringing new challenges that arise with multi-way data.
We identify and address challenges that involve both

the algorithms used for the CPD and the utilization of

KNL’s architectural features. Specifically, we address issues

associated with extracting concurrency at different levels

of granularity from unstructured and sparse data, load

balancing computations in the presence of highly skewed

data distributions, and understanding the different trade-offs

between fine-grained synchronization and storage overheads.

Our contributions include:

1) Algorithmic improvements to increase the degree of

concurrency, decrease synchronization overheads, and

improve load balance for hundreds of threads.

2) A strategy for explicitly managing high-bandwidth

memory to achieve high performance when the dataset

exceeds its capacity.

3) An extensive experimental evaluation on a variety of

real-world datasets that demonstrates the effectiveness

of both the algorithmic improvements and KNL’s

hardware features.

4) A comparison of hardware atomics on traditional

and many-core processors, and recommendations for

future many-core architectures.

The rest of this paper is organized as follows. Section II

provides an overview of the KNL architecture and a back-

ground on tensor factorization. Section III reviews related

2017 IEEE International Parallel and Distributed Processing Symposium

1530-2075/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPS.2017.84

1058

≈ + · · ·+

Figure 1: The canonical polyadic decomposition as a sum

of outer products.

work on parallel sparse tensor factorization. Section IV

details our algorithm for computing the CPD on a KNL

processor. Section V presents experimental results. Lastly,

Section VI offers concluding remarks.

II. PRELIMINARIES

A. Knights Landing (KNL)

KNL [5] is the second generation Xeon Phi many-core

processor from Intel. KNL has up to 72 cores, each with

two 512-bit vector processing units and 4-way simultaneous

multi-threading. Cores have 32KB of L1 cache and are

arranged in pairs which share 1MB of L2 cache.

KNL includes two types of memory: DDR4 and multi-

channel DRAM (MCDRAM). MCDRAM offers up to

480GB/s achievable memory bandwidth measured by the

STREAM benchmark [6], or approximately 4× the band-

width of the latest 2-socket Xeon systems with DDR4.

MCDRAM can be configured to either be explicitly managed

by the software (flat mode), used as a last-level cache (cache
mode), or a combination of the two (hybrid mode).

B. Notation

Tensors are denoted using bold calligraphic letters (X)

and matrices using bold letters (A). Tensors have M modes

of lengths I1, . . . , IM and nnz(X) non-zeros. Entries in

tensors and matrices are denoted X (i1, . . . , iM) and A(i, j),
respectively. A colon in the place of an index takes the place

of all non-zero entries. For example, A(i, :) is the ith row

of A. A fiber is a vector produced from holding all but

one index constant (e.g., X (i1, . . . , iM−1, :)). An important

matrix kernel is the Hadamard product, or element-wise

product. The Hadamard product is denoted A � B.

C. Canonical Polyadic Decomposition (CPD)

The CPD is one interpretation of the SVD in tensor

algebra. Shown in Figure 1, the CPD models a tensor with

a set of M matrices A(1) ∈ R
I1×F , . . . ,A(M) ∈ R

IM×F ,

where F is the desired model rank. Applications in machine

learning are usually interested in the low-rank CPD, where

F is a small constant on the order of 10 or 100.

Computing the CPD is a non-convex optimization prob-

lem most often approximated with an iterative alternating

least squares (CPD-ALS) [1]. The concept behind CPD-ALS

is that by holding all but one factor constant, the solution has

a least squares solution. An important consequence of using

ALS is that computations are mode-centric, meaning each

of the kernels will update one mode of the factorization at

Algorithm 1 CPD-ALS

1: while not converged do
2: for m = 1→M do
3: G← �n�=m A(n)T A(n)

4: Y← MTTKRP(X , {A(n)}n�=m)

5: A(m) ← YG−1

6: end for
7: end while

a time while reading all others. Therefore, when discussing

algorithmic details we will sometimes only refer to the first

mode and imply that the other modes proceed similarly.

Algorithm 1 details the CPD-ALS algorithm. Line 3

constructs the Gram matrix of size F×F . While each

A(m)T A(m) computation requires O(F 2Im) work, they can

be cached and only require recomputation after A(m) is

updated. Line 4 performs a chain of M−1 tensor-vector

products using F vectors, often referred to as the matricized
tensor times Khatri-Rao product (MTTKRP).

MTTKRP is the most computationally expensive step of

CPD-ALS. The output of MTTKRP for the mth mode is

Y ∈ R
Im×F . Each non-zero v = X (i1, . . . , iM) contributes:

Y(im, :)← Y(im, :) + v

(
�

n�=m
A(n)(in, :)

)
, (1)

for a total of (M+1)F nnz(X) operations.

D. Compressed Sparse Fiber (CSF)

In prior work, we proposed the compressed sparse fiber
(CSF) data structure for sparse tensors [7], [8]. CSF is a

generalization of the compressed sparse row (CSR) data

structure that is popular for sparse matrices. Figure 2 illus-

trates a four-mode tensor in CSF format. CSF recursively

compresses each mode of the tensor into a set of I1 prefix

trees. Each path from a root to leaf forms one tensor

non-zero. CSF is implemented with three multidimensional

arrays: (i) fptr, which encodes the sparsity structure; (ii)

fids, which stores the label of each node; and (iii) vals,

which stores the non-zero values. Conceptually, the fptr
structure is a sequence of M rowptr arrays used in CSR.

Each array is used to index into the next in the sequence,

with the final array indexing directly into the non-zeros.

The tree structure reveals opportunities for computational

and bandwidth savings. Consider a fiber of X , which is

represented as a set of siblings in the leaf level of the tree.

Their contributions to Equation 1 vary only in the non-

zero values and the Hadamard products involving the final

mode. This redundancy can be exploited by moving from

an element-wise algorithm to a fiber-centric algorithm. The

algorithm (i) accumulates the interactions of all non-zeros

with the last factor matrix; (ii) scales the accumulation by the

overlapping Hadamard products; and (iii) adds the result to

Y(i1, :). If a fiber has l non-zeros, this fiber-centric algorithm

1059

(a) Coordinate format. (b) CSF: conceptual. (c) CSF: implementation.

Figure 2: Compressed Sparse Fiber. Each path from root to leaf in (b) encodes a non-zero found in (a).

eliminates l−1 Hadamard products and their corresponding

l−1 accesses to matrix rows. Furthermore, this algorithm is

recursive in that subtrees which have common ancestors can

share the overlapping subset of Hadamard products.

Figure 2 shows the tensor modes in the user-supplied

order. When storing a tensor in CSF, the ordering of the

modes is arbitrary and any one of the M ! permutations is a

valid option. However, the ordering can significantly affect

the amount of required storage. An effective heuristic for

achieving high levels of compression is to sort the modes

by length, with the shortest mode at the top of the tree [8].

The above discussion focused on performing an MTTKRP

operation with respect to the mode of X stored at the

root. A reformulation of the above algorithm permits one to

perform all MTTKRP operations with an arbitrarily-ordered

tensor representation [8]. Assume that we are operating with

respect to the mode stored at the mth level of the CSF. The

algorithm proceeds as a depth-first traversal on each tree

in the CSF structure. As the traversal moves downwards

toward the mth level, Hadamard products are computed and

stored for later use. Next, starting from the leaves, non-zero

contributions and their corresponding Hadamard products

are computed and brought up the tree to the (m+1)th level.

Finally, the contributions from above and below are joined

with a final Hadamard product and added to Y(im, :). The

only auxiliary memory required is an M×F matrix for

accumulating and propagating Hadamard products.

III. RELATED WORK

Heinecke et al. [9] explored optimizations in a seismic

simulation code on KNL. They show 3× improvement over

the previous generation Xeon Phi by tuning small matrix-

matrix multiplication kernels for AVX-512, managing MC-

DRAM by using an out-of-core computational kernel, and

decreasing memory traffic by selectively replicating and

scattering data. Sparse matrix-vector multiplication also has

a history of optimization on many-core processors [10]–[12].

Several works have optimized sparse MTTKRP

for shared- and distributed-memory systems.

Baskaran et al. [13] proposed a NUMA-aware balanced

work scheduler for sparse tensor operations. The scheduler

is designed for a fine-grained element-wise algorithm.

Ravindran et al. [14] presented an MTTKRP formulation

for three-mode tensors that accesses only non-zeros by

X (:, i2, i3) slabs, and thus relies on a single tensor

representation. Their formulation achieves the same

computational savings as the generalized algorithm for

CSF. Distributed-memory algorithms were developed by

Choi and Vishwanathan [15], Kaya and Uçar [16], and

Smith and Karypis [17].

IV. MANY-CORE SPARSE TENSOR FACTORIZATION

We now detail our method of obtaining high performance

on KNL. This is a challenge which spans both high-level

design and low-level implementation. The problem decom-

position must expose a sufficient amount of parallelism,

load balance hundreds of threads, and minimize fine-grained

synchronization. Additionally, the implementation must uti-

lize advanced hardware features such as vector instructions,

efficient synchronization primitives, and MCDRAM.

A. Problem Decomposition for Many-Core Processors

1) Partial Tensor Tiling: The existing CSF-based algo-

rithms use coarse-grained parallelism via distributing indi-

vidual trees to threads. Computing with respect to the root

mode has no race conditions to consider, as each root node

ID is unique. There are no uniqueness guarantees for levels

below the root, and thus we must consider the case of threads

overlapping additions to Y(im, :), where m is a level below

the root. Two solutions were proposed [8]: a mutex pool can

be indexed by node IDs to protect rows during updates; or

X can be tiled using a grid of dimension PM , where P is

the number of threads. Note that root nodes are no longer

unique if tiling is used, and thus it must be performed on

all M modes. Tiling for P=2 is illustrated in Figure 3.

Expensive synchronization is avoided by distributing the

mode-m layers of tiles to threads.

This approach of decomposing the computations is limited

in two major ways. First, coarse-grained parallelism is only

effective when the tensor modes are sufficiently long. Many

real-world tensors exhibit a combination of long, sparse

1060

A(1)

A(2)

A(3)

Figure 3: Tiling for two threads to avoid synchronization.

Layers of mode-m blocks are distributed to threads.

modes and short, substantially more dense ones. For exam-

ple, tensors used in context-aware recommendation will have

many users but only a few contexts (e.g., time or location

of purchase). Indeed, the recent performance evaluation by

Rolinger et al. [18] showed that CSF-based computation

is severely impacted by tensors with short modes. Second,

tiling each tensor mode to avoid synchronization faces

serious scalability issues when there are many threads or

many tensor modes. For example, a six-mode tensor on a

68-core KNL system would require 686 ≈ 99 billion tiles.

The alternative of relying solely on a mutex pool performs

poorly even at small thread counts [8].

To address these problems, we developed a method that

tiles a subset of the tensor modes and uses atomics for the

remaining ones. In determining which modes to tile, priority

is given to the longest modes for two reasons. First, they

provide more opportunities for parallelism by permitting

us to decompose the long tensor modes. As long as the

tensor has at least one mode which is sufficiently long

to distribute among P threads, then this decomposition is

not hindered by the presence of short modes. Second, the

longer modes contain more nodes in the CSF structure than

shorter ones, and thus require more frequent synchroniza-

tion. This intuition is supported in a previous evaluation

which showed that the last modes (i.e., the lower levels of

the CSF structure) experienced more overhead from fine-

grained synchronization than the first modes [8].

Tiling long modes fits easily into the CSF framework

because the modes are sorted by length. Our partial tiling

is parameterized by h, referred to as the tiling height. The

tiling height which defines a level in the CSF data structure

and also how many modes will be tiled. When we compute

for a mode which resides above level h, atomics are used to

prevent race conditions. At or below level h, tile layers are

distributed to threads to avoid using atomics. The resulting

tensor will have Ph tiles, where P is the number of threads

being used. For example, h=0 results in an untiled tensor,

h=1 results in a 1D decomposition on the longest mode,

and h=M tiles each mode.

Our method of partial tiling bears some resemblance to the

medium-grained decomposition for distributed-memory MT-

TKRP [17]. The medium-grained decomposition imposes a

(q×r×s)=P grid over the tensor to distribute non-zeros and

balance communication volume. The two decompositions

vary in that partial tiling does not require exactly P blocks

of non-zeros. Furthermore, if a mode is tiled its layers will

be distributed among threads instead of individual blocks of

non-zeros.

2) Multiple Tensor Representations: A single CSF repre-

sentation is attractive because of its low memory overhead

compared to M specialized representations [8]. However,

beyond the previously discussed synchronization challenges,

an additional disadvantage of using a single CSF repre-

sentation is less favorable writes to memory. Consider the

difference between computing with respect to the first and

M th mode. During the first mode, Y is written to once at

the conclusion of each tree and A(M) is read for each non-

zero (see Section II-D). In contrast, updating the M th mode

involves reading from A(1) once at the start of each tree and

updating Y for each non-zero. Writing for each non-zero

places significantly more pressure on memory bandwidth

and cache coherency mechanisms. Furthermore, the updates

to Y follow the sparsity pattern and are generally scattered,

which challenges the hardware prefetcher. Additionally,

when Y has few columns, only a few bytes out of a cache

line may be utilized.

We propose to use two CSF representations when memory

allows. The first CSF is as before, with the modes sorted and

the shortest mode at the root level. The second CSF places

the longest mode at the root level and sorts the remaining

modes by non-decreasing length. When computing for the

longest mode, we use the second CSF in order to improve

access patterns. Since the longest mode is placed at the root

level, we forego tiling on the second CSF in order to avoid

any additional storage or computational overheads.

Note that this concept is not limited to one, two, or M
representations. However, the combinations of CSF repre-

sentations and orderings grows exponentially. Due to the

combinatorial nature of the problem, we restrict our focus

to either one, two, or M representations; each with modes

sorted by length except for the specialized root.

3) Load Balancing the Computations: Many tensors have

a non-uniform distribution of non-zeros. Algorithms which

rely on distributing whole slices or tiles to many threads

(i.e., a coarse-grained decomposition) can exhibit severe load

imbalance. On the other hand, a fine-grained decomposition

which distributes individual non-zeros can load balance a

computation at the cost of frequent synchronizations.

We refer to a slice with a disproportionately large number

of non-zeros as a hub slice. We call slice i a hub slice if

nnz(X (i, :, . . . , :)) ≥ δ

(
nnz(X)

P

)
,

where δ is a user-supplied threshold. We empirically found

δ=0.5 to be an effective value.

1061

When a hub slice is identified during the construction of

the CSF, it is not assigned to a thread. Instead, we evenly

distribute all of its non-zeros among threads as a form of

fine-grained parallelism. During the MTTKRP operation, all

threads first process the set of non-hub slices in parallel

using any synchronization construct as before. Second, each

thread processes its assigned portion of the hub slices. By

definition, there cannot be many hub slices relative to the

total number of slices, and thus synchronization overheads

are negligible.

B. Leveraging Architectural Features

1) Vectorization: KNL (and other modern architectures)

heavily rely on vectorization to achieve peak performance.

KNL uses the new AVX-512 instruction set and has two

512-bit vector units per core. The MTTKRP formulation

that we use accesses the tall, skinny factor matrices in a

row-major fashion. Processing a node in the CSF structure

requires O(F) operations. The micro-kernels are either in

the form of (i) scaling a row by a non-zero value (i.e., a

BLAS-1 axpy), or (ii) an element-wise multiplication of two

rows (i.e., a Hadamard product). In practice, useful values

of F will saturate at least one vector width. Therefore, we

vectorize each of the micro-kernels.

2) Synchronization: Partial tiling of the tensor requires

synchronization of some form to be used on the untiled

tensor modes. The choice of synchronization primitive is

heavily dependent on both hardware support and the char-

acteristics of the data (e.g., whether conflicts are expected

to be common). We will now discuss several options and

evaluate them in Section V-D.

Mutexes: The most simple synchronization strategy,

and the one used in prior work [8], is to surround updates

with a mutex. Most writes will be to unique data when the

tensor mode is sufficiently large. We can maintain a pool of

mutexes in order to reduce lock contention, but performance

is still limited when mutexes have a high overhead in

hardware. A challenge of mutexes is that we must tune the

size of the pool to find the best trade-offs between storage

overhead and contention.

Compare-and-Swap: CAS instructions are often opti-

mized in hardware and bring no storage overhead unlike a

mutex pool. Their limitation comes from the granularity of

the protected memory. CAS is currently limited to 16 bytes

on KNL and other popular architectures. Thus, four CAS

instructions must be issued to utilize a full cache line (or

full vector register) on a KNL system.

Transactional Memory: Modern architectures such as

Intel’s Haswell and Broadwell include hardware support for

restricted transactional memory (RTM). While KNL does

not include RTM, it is an efficient option for other parallel

architectures.

Privatization: Hardware atomics may introduce a large

overhead when the tensor mode is small and contention is

probable. In that event, we instead allocate a thread-local

matrix which is the same size as Y. Each thread accumulates

into its own buffer without need for atomics. Finally, all

buffers are combined with a parallel reduction. The memory

overhead of privatization makes it only practical for short

modes. We privatize mode m if

ImP ≤ γ nnz(X), (2)

where P is the number of threads and γ is a user-supplied

threshold. We empirically found γ=0.2 to be effective.
3) Managing High-Bandwidth Memory: The 16GB ca-

pacity of MCDRAM on KNL is sufficient to factor some, but

not all tensors. When the working set entirely fits in memory,

explicitly managing MCDRAM and running in cache mode

should offer similar performance.
When the working set exceeds the MCDRAM capacity,

we prioritize placement of the factor matrices in MCDRAM.

Each node in the CSF structure consumes O(1) memory

but spawns O(F) accesses to the factors. In total, the CSF

structure consumes O(nnz(X)) bandwidth. When the tensor

and factors exceed the size of MCDRAM, it is likely that the

the factors do not fit in the on-chip caches and thus consume

O(F · nnz(X)) bandwidth.

V. EXPERIMENTAL METHODOLOGY & RESULTS

A. Experimental Setup
We use two hardware configurations for experimentation.

One machine has two sockets of 22-core Intel Xeon E5-

2699v4 Broadwell processors, each with 55MB of last-level

cache, and 128GB of DDR4 memory. The second machine

has an Intel Xeon Phi Knights Landing 7250 processor

with 68 cores, 16GB of MCDRAM, and 94GB of DDR4

memory. Throughout our discussion, we will refer to the

dual-socket Broadwell machine as BDW and the Knights

Landing machine as KNL. Importantly, KNL is a socketed

processor and all application code runs directly on the

hardware. Thus, there are no PCIe transfer overheads to

consider. Unless otherwise specified, KNL is configured in

flat mode with quadrant configuration.
Source code is written in C++ and modified from SPLATT

v1.1.1, a library for sparse tensor factorization [19]. We use

double-precision floating point numbers, 64-bit integers for

indexing non-zeros, and 32-bit integers for node IDs. The

MTTKRP kernel is optimized with both AVX2 intrinsics for

BDW and AVX-512 intrinsics for KNL. We use the Intel

compiler version 17.0.0 with -xCORE-AVX2 on BDW and

-xMIC-AVX512 on KNL, and Intel MKL for LAPACK

routines. All source code is publicly available1. We set the

environment variable KMP_LOCK_KIND=tas to use test-

and-set locks [20].
Reported runtimes are the arithmetic mean of thirty iter-

ations and error bars mark the standard deviation. Unless

otherwise noted, we use F=16 for experiments.

1http://cs.umn.edu/∼shaden/ipdps17

1062

Table I: Summary of datasets.

Dataset NNZ Dimensions Size (GB)
Outpatient [21] 87M 1.6M, 6K, 13K, 6K, 1K, 192K 4.1
Netflix [22] 100M 480K, 18K, 2K 1.6
Delicious [24] 140M 532K, 17M, 3M 2.7
NELL [25] 143M 3M, 2M, 25M 2.4
Yahoo [23] 262M 1M, 624K, 133 4.3
Reddit [26] 924M 1.2M, 23K, 1.3M 15.0
Amazon [27] 1.7B 5M, 18M, 2M 36.4

NNZ is the number of nonzero entries in the dataset. K, M, and B stand for thousand,
million, and billion, respectively. Size is the amount of memory in gigabytes required to
represent the tensor in a single CSF.

B. Datasets

Table I details the tensors used in our evaluation.

We selected tensors from a variety of real-world appli-

cations which extensively use the CPD. Outpatient is a

six-mode patient-institution-physician-diagnosis-procedure-
date tensor formed from synthetic electronic medical

records [21]. Netflix [22] and Yahoo [23] are both user-
movie-date tensors formed from movie ratings. Delicious

is a user-item-tag tensor formed from user-supplied tags of

websites [24]. NELL is a noun-verb-noun tensor from the

Never Ending Language Learning project [25]. Reddit [26]

is a user-community-word tensor representing a subset of

user comments from Reddit2 from 2007 to 2012. Amazon

is a user-item-word tensor representing product reviews [27].

The Delicious, NELL, Reddit, and Amazon datasets are

publicly available in the FROSTT collection [28].

C. Exploring Decompositions on Many-Core Processors

We first explore the performance implications of problem

decomposition on a many-core processor. In order to sepa-

rate the effects of decomposition and KNL-specific hardware

features, we explicitly place all allocations in DDR4 memory

and use one thread per core. We use a pool of 1024 OpenMP

mutexes for synchronization.

1) Partial Tiling: Figure 4 shows the effects of tiling

one, two, and three modes with a single CSF representation

according to the strategy described in Section IV-A. No

strategy consistently outperforms the others. Amazon sees

the most benefit from tiling two and three modes, achieving

a 4.5× speedup over the untiled implementation. The large

disparity between tiling one and multiple modes of Amazon

is not due to synchronization costs, but due to load imbal-

ance. We further explore this challenge in Section V-C4.

2) Privatization: The Netflix, Outpatient, Reddit, and

Yahoo tensors have a combination of long and short modes.

The short modes result in lock contention. Figure 5 shows

the effects of privatization (Section IV-B) as we change the

number of tiled modes with a single CSF representation. The

two- and three-mode tiling schemes see small performance

gains from privatization, but tiling a single mode achieves

2https://reddit.com/

Figure 4: Speedup over untiled MTTKRP while tiling the

longest (Tile-1), two longest (Tile-2), and three longest

modes (Tile-3).

Figure 5: Speedup over untiled MTTKRP using one, two,

and three tiled modes with privatization for synchronization.

Privatized modes were selected per Equation 2 with γ=0.2.

significant speedups compared to untiled and also mutex-

only synchronization (Figure 4). The slowdowns beyond a

single tiled mode are attributed to the overheads of storing

and operating with additional tiles. We use privatization with

single-mode tiling for Netflix, Outpatient, Reddit, and Yahoo

in the remaining experiments.

3) Number of CSF Representations: Figure 6 shows

MTTKRP’s performance as we increase the number of

CSF representations. We follow the scheme presented in

Section IV-A and use one, two, and M CSF representations.

The tensors fall into two categories. Delicious and NELL

benefit from a second and a third CSF representation,

with diminishing returns after the second. The remaining

tensors achieve the best performance with either one or two

1063

Figure 6: Effects of the number of CSF representations

on MTTKRP runtime, using 1, 2, and M representations.

Amazon is omitted due to memory constraints.

Table II: Load imbalance on the Amazon dataset.

Load Imbalance Time (s)
BDW KNL BDW KNL

Mode slice hub slice hub slice hub slice hub
1 0.72 0.04 0.84 0.05 2.37 0.71 3.22 0.53
2 0.13 0.04 0.05 0.03 1.31 0.79 0.73 0.72
3 0.07 0.03 0.24 0.18 2.67 2.61 1.96 1.82

Load imbalance is defined as the relative difference between the maximum and average
time spent by all threads. slice denotes coarse-grained parallelism in which full slices
are distributed to threads. hub denotes using fine-grained parallelism on “hub” slices
and coarse-grained parallelism on all others.

representations. We note that these are the four tensors that

have highly skewed mode lengths. When a short mode is

moved from the top CSF level, the resulting tree structure

is changed and often achieves less compression than before.

Since we have already improved performance on the skewed

tensors through partial tiling and privatization, there is little

to be gained from additional representations.

4) Load Imbalance: Table II shows load imbalance and

runtime on the Amazon dataset with one tiled mode. We

measure load imbalance as the relative difference between

the maximum and average time spent by all threads:

imbalance =
tmax − tavg

tmax
.

The first mode of Amazon has a highly skewed distribu-

tion, with 6.5% of all non-zeros residing in a single slice.

This overloaded slice prevents load balance for any coarse-

grained (i.e., slice-based) parallelism.

BDW and KNL suffer from 72% and 84% load imbalance,

respectively. When we switch to a fine-grained parallelism

for the hub slices, load imbalance reduces to 4% and 5%
on BDW and KNL, leading to 3.3× and 6.1× speedups,

respectively. This resulting performance exceeds that of

tiling with two and three modes.

Table III: Summary of the best known decompositions.

Dataset Tiled Modes CSF Reps. Hub Prv.
Outpatient 1 2 �
Netflix 1 1 �
Delicious 0 3 �
NELL 0 3 �
Yahoo 1 2 �
Reddit 1 1 �
Amazon 1 1 �

Tiled Modes is the number of tiled modes. CSF is the number of CSF
representations. Hub indicates if there are any hub slices. Prv. indicates
if we used privatization for at least one mode.

D. Harnessing the KNL Architecture

We now explore performance optimizations specific to the

KNL architecture. Unless otherwise noted, we work from the

best decompositions learned in the previous experiments,

which are summarized in Table III. We note that every

dataset in the evaluation benefits from at least one algorith-

mic contribution (i.e., partial tiling, privatization, multiple

CSF representations, or hub slices).

1) MCDRAM: Figure 7 illustrates the benefits of MC-

DRAM over only DDR4 memory. We computed memory

bandwidth by measuring the amount of data transferred from

DDR4 or MCDRAM via hardware counters and divided this

number by the time to compute MTTKRP [5].

Reddit and Amazon do not fit entirely inside of MC-

DRAM, and so we place only the factors inside of MC-

DRAM and measure the bandwidth from both memories.

Interestingly, placing additional structures in MCDRAM

(e.g., the tensor values or indices) does not improve perfor-

mance due to KNL’s ability to access DDR4 and MCDRAM

concurrently. Any additional MCDRAM allocations simply

increase the observed MCDRAM bandwidth while equally

decreasing the observed DDR4 bandwidth, resulting in no

net performance increase.

Outpatient is not memory-bound and sees little benefit

from MCDRAM. We attribute this to its short mode lengths,

which encourage temporal reuse. Additionally, Outpatient

has a large number of modes, forcing it to incur high

synchronization costs relative to the lower order tensors. We

therefore omit it from the remaining MCDRAM evaluation.

When constrained to DDR4 memory, the remaining

datasets are bounded by the maximum achievable band-

width. MCDRAM increases the achieved bandwidth from

2.7× on Delicious to 3.7× on Netflix. The three datasets

with the longest mode lengths (i.e., Delicious, NELL, and

Amazon) are heavily dominated by read-bandwidth. NELL

and Amazon achieve approximately 80% of the maximum

380 GB/s of read-bandwidth. The observed bandwidths do

not fully saturate the MCDRAM’s capabilities. We note

that the MTTKRP time also includes computation which

may not be overlapped with data movement, leading to an

observed bandwidth which is lower than actually achieved.

Thus, the presented bandwidth is a lower bound for the

1064

Figure 7: Observed memory bandwidth (BW) on KNL in

flat mode with DDR4 and MCDRAM. Values indicate the

maximum BW achieved for an MTTKRP kernel during

CPD. Stacked bars encode read-BW (bottom) and write-

BW (top). DDR4-STREAM and MCDRAM-STREAM
indicate the maximum attainable read+write-BW per the

STREAM benchmark [6]. KNL’s maximum read-BW out

of MCDRAM is 380 GB/s.

achieved bandwidth. A more detailed profiling or a formal

performance analysis would be beneficial in determining the

precise achieved bandwidth and whether MTTKRP is still

bandwidth-bound in the presence of MCDRAM. We leave

these tasks to future work.

The two-level memory hierarchy provided by KNL facili-

tates large scale computations which could not be performed

in the presence of only MCDRAM. Reddit and Amazon

demonstrate that a problem does not need to entirely fit in

MCDRAM to obtain significant speedup, and instead we

can focus on the bandwidth-intensive data structures for

MCDRAM allocation.

2) Synchronization Primitives: Figure 8 illustrates the

overheads associated with various synchronization primitives

during MTTKRP execution on KNL, compared to BDW. We

report runtimes on Outpatient, which has the highest number

of modes and also the shortest modes in our evaluation,

and therefore the highest synchronization overheads. We do

not use any tiling or privatization constructs in order to

better evaluate the synchronization primitives provided by

hardware. NOSYNC uses no synchronization and serves as

a performance baseline. OMP uses a pool of 1024 OpenMP

mutexes. 16B CAS uses 16B compare-and-swap (CAS) and

64B CAS simulates 64B CAS by issuing one 16B CAS

for every 64B of data. RTM uses restricted transactional

memory, which is available on BDW.

OMP and 16B CAS introduce over 100% overhead on

KNL. The large vector instructions that AVX-512 offers are

not well utilized with 16B CAS, as four CAS must be issued

Figure 8: Comparison of synchronization primitives on the

Outpatient dataset. All data is placed in MCDRAM on KNL.

per fused multiply-add (FMA) instruction. The simulated

64B CAS reduces overhead to 30% due to KNL utilizing

an entire AVX-512 FMA per CAS. Future many-core archi-

tectures could benefit significantly if CAS instructions are

made wide enough to support the large vector registers.

RTM introduces the least overhead on BDW, including

the simulated 64B CAS instructions. There is still a 42%
overhead associated with RTM, however, suggesting that

relying solely upon hardware-provided synchronization is

insufficient for the best performance.

3) Simultaneous Multi-threading: KNL supports 4-way

simultaneous multi-threading (SMT) as a method of hiding

memory access latency. We examine the benefits of SMT

in Figure 9. We execute in MCDRAM cache mode and run

with 1, 2, and 4 threads per core for a total of 68, 136, and

272 threads. If a tensor is tiled, we fix the tile dimensions to

be 272 and distribute additional tile layers to threads. Thus,

each configuration performs the same amount of work and

has the same sparsity structure. This allows us to eliminate

the effects of varying decomposition while observing the

effects of hiding latency.

Using two threads per core universally improves perfor-

mance by masking access latencies. Performance is mixed

beyond two threads due to increased synchronization costs

resulting from lock contention or larger data reductions when

using privatization. In the worst case, Outpatient spends

3.5× more time on synchronization. We note that load

imbalance is not affected due to the same decomposition

being used across thread configurations. We recommend

using two threads per core due to its consistent benefit.

E. Comparing BDW and KNL

Figure 10 shows the performance of best-performing

decompositions on KNL and BDW. We include KNL in both

cache and flat mode configurations.

1065

Figure 9: Effects of simultaneous multi-threading on KNL

in cache mode. Amazon is omitted due to memory limita-

tions when using four threads (due to the changed sparsity

structure induced by tiling).

Observe that flat mode is up to 30% faster than cache

mode when the dataset does not fit in MCDRAM. The tensor

is accessed in a streaming fashion and exhibits no temporal

locality, but still may be placed in the MCDRAM cache. By

fixing the matrix factors in MCDRAM, which do exhibit

temporal locality, we can ensure better utilization of the

valuable MCDRAM resource.

KNL ranges from 0.84× slowdown on Reddit to 1.24×
speedup on Amazon over BDW. Unsurprisingly, we can

see that KNL is most advantageous on the large, sparse

tensors which are bandwidth-bound and benefit the most

from MCDRAM. The last-level cache (LLC) of BDW allows

it to outperform KNL on tensors with short modes. Netflix,

for example, only requires 64MB to store all three factors.

We explore larger CPD ranks with Netflix and Yahoo in

Figure 11. In both cases, BDW is either faster or competitive

to KNL for the smaller ranks due to the small factors mostly

fitting in BDW’s large LLC. BDW sees a sharp slowdown

between ranks 64 and 128 as the factors no longer fit in

LLC. KNL then proceeds to outperform BDW up to 1.8×
due to MCDRAM’s larger capacity.

VI. CONCLUSIONS AND FUTURE WORK

We presented the first exploration of sparse tensor factor-

ization on a many-core processor, using the new Xeon Phi

Knights Landing processor as a case study. We addressed

challenges such as managing high-bandwidth memory, load

balancing hundreds of threads, and reducing fine-grain syn-

chronization. We showed that no parallelization or syn-

chronization strategy works consistently across datasets and

provided guidelines for deciding which strategies to employ

that take into account various tensor properties. Our evalu-

ation highlighted the need for improved hardware atomics

on many-core architectures. Our algorithmic advancements

Figure 10: Comparison of MTTKRP performance on KNL

and BDW. KNL-flat and KNL-cache denote KNL in flat

and cache mode, respectively. Datasets which fit entirely in

MCDRAM have identical running times in cache and flat

mode and are thus omitted.

(a) Netflix (b) Yahoo

Figure 11: Effects of increasing CPD rank on MTTKRP.

achieved up to 4.9× speedup over existing implementations.

Lastly, we show that a Knights Landing processor can reduce

time-to-solution up to 1.8× compared to a 44-core Xeon

system.

We presented several problem decompositions which im-

prove MTTKRP performance. A limitation is the lack of

predictive performance understanding – no decomposition

is universally better than others. As future work, we will

develop a performance model for MTTKRP which would

allow one to better understand the performance benefits and

limitations of each decomposition.

The computations presented in this work closely resemble

those in other data intensive applications. We plan to explore

the application of the presented optimizations to other data

intensive problems on many-core architectures.

1066

ACKNOWLEDGMENTS

This work was supported in part by NSF (IIS-0905220,

OCI-1048018, CNS-1162405, IIS-1247632, IIP-1414153,

IIS-1447788), Army Research Office (W911NF-14-1-0316),

a University of Minnesota Doctoral Dissertation Fellow-

ship, Intel Software and Services Group, and the Digital

Technology Center at the University of Minnesota. Access

to research and computing facilities was provided by the

Digital Technology Center and the Minnesota Supercomput-

ing Institute. The authors acknowledge the Texas Advanced

Computing Center (TACC) at The University of Texas at

Austin for providing HPC resources that have contributed

to the research results reported within this paper.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and
applications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[2] Y. Wang, R. Chen, J. Ghosh, J. C. Denny, A. Kho, Y. Chen,
B. A. Malin, and J. Sun, “Rubik: Knowledge guided tensor
factorization and completion for health data analytics,” in Pro-
ceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2015, pp.
1265–1274.

[3] H. Fanaee-T and J. Gama, “Tensor-based anomaly detec-
tion: An interdisciplinary survey,” Knowledge-Based Systems,
vol. 98, pp. 130–147, 2016.

[4] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic,
and N. Oliver, “Tfmap: optimizing map for top-n context-
aware recommendation,” in Proceedings of the 35th interna-
tional ACM SIGIR conference on Research and development
in information retrieval. ACM, 2012, pp. 155–164.

[5] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod,
S. Chinthamani, S. Hutsell, R. Agarwal, and Y.-C. Liu,
“Knights landing: Second-generation intel xeon phi product,”
IEEE Micro, vol. 36, no. 2, pp. 34–46, 2016.

[6] J. D. McCalpin, “Stream: Sustainable memory bandwidth
in high performance computers,” University of Virginia,
Charlottesville, Virginia, Tech. Rep., 1991-2007, a continually
updated technical report. http://www.cs.virginia.edu/stream/.
[Online]. Available: http://www.cs.virginia.edu/stream/

[7] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis,
“SPLATT: Efficient and parallel sparse tensor-matrix multi-
plication,” in International Parallel & Distributed Processing
Symposium (IPDPS’15), 2015.

[8] S. Smith and G. Karypis, “Tensor-matrix products with a
compressed sparse tensor,” in Proceedings of the 5th Work-
shop on Irregular Applications: Architectures and Algorithms.
ACM, 2015, p. 7.

[9] A. Heinecke, A. Breuer, M. Bader, and P. Dubey, “High order
seismic simulations on the intel xeon phi processor (knights
landing),” in International Conference on High Performance
Computing. Springer, 2016, pp. 343–362.

[10] N. Bell and M. Garland, “Efficient sparse matrix-vector
multiplication on cuda,” Nvidia Technical Report NVR-2008-
004, Nvidia Corporation, Tech. Rep., 2008.

[11] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient
sparse matrix-vector multiplication on x86-based many-core
processors,” in Proceedings of the 27th international ACM
conference on International conference on supercomputing.
ACM, 2013, pp. 273–282.

[12] W. Liu and B. Vinter, “CSR5: An efficient storage format
for cross-platform sparse matrix-vector multiplication,” in
Proceedings of the 29th ACM on International Conference
on Supercomputing. ACM, 2015, pp. 339–350.

[13] M. Baskaran, B. Meister, and R. Lethin, “Low-overhead load-
balanced scheduling for sparse tensor computations,” in High
Performance Extreme Computing Conference (HPEC), 2014
IEEE. IEEE, 2014, pp. 1–6.

[14] N. Ravindran, N. D. Sidiropoulos, S. Smith, and G. Karypis,
“Memory-efficient parallel computation of tensor and matrix
products for big tensor decomposition,” in Proceedings of the
Asilomar Conference on Signals, Systems, and Computers,
2014.

[15] J. H. Choi and S. Vishwanathan, “DFacTo: Distributed fac-
torization of tensors,” in Advances in Neural Information
Processing Systems, 2014, pp. 1296–1304.

[16] O. Kaya and B. Uçar, “Scalable sparse tensor decomposi-
tions in distributed memory systems,” in Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2015, p. 77.

[17] S. Smith and G. Karypis, “A medium-grained algorithm
for distributed sparse tensor factorization,” in 30th IEEE
International Parallel & Distributed Processing Symposium
(IPDPS’16), 2016.

[18] T. B. Rolinger, T. A. Simon, and C. D. Krieger, “Performance
evaluation of parallel sparse tensor decomposition implemen-
tations,” in Proceedings of the 6th Workshop on Irregular
Applications: Architectures and Algorithms. IEEE, 2016.

[19] S. Smith and G. Karypis, “SPLATT: The Surprisingly Paral-
leL spArse Tensor Toolkit,” http://cs.umn.edu/∼splatt/.

[20] H. Bae, J. Cownie, M. Klemm, and C. Terboven, “A user-
guided locking api for the openmp* application program
interface,” in International Workshop on OpenMP. Springer,
2014, pp. 173–186.

[21] Center for Medicare and Medicaid Services.
(2010) CMS data entrepreneurs synthetic public
use file (DE-SynPUF). [Online]. Available:
https://www.cms.gov/Research-Statistics-Data-and-Systems/
Downloadable-Public-Use-Files/SynPUFs/index.html

[22] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings
of KDD cup and workshop, vol. 2007, 2007, p. 35.

[23] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The
yahoo! music dataset and kdd-cup’11.” in KDD Cup, 2012,
pp. 8–18.

[24] O. Görlitz, S. Sizov, and S. Staab, “Pints: peer-to-peer infras-
tructure for tagging systems.” in IPTPS, 2008, p. 19.

[25] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hr-
uschka, and T. M. Mitchell, “Toward an architecture for never-
ending language learning,” in In AAAI, 2010.

[26] J. Baumgartner. (2015) Reddit comment dataset. [On-
line]. Available: https://www.reddit.com/r/datasets/comments/
3bxlg7/i have every publicly available reddit comment/

[27] J. McAuley and J. Leskovec, “Hidden factors and hidden
topics: understanding rating dimensions with review text,” in
Proceedings of the 7th ACM conference on Recommender
systems. ACM, 2013, pp. 165–172.

[28] S. Smith, J. W. Choi, J. Li, R. Vuduc, J. Park, X. Liu,
and G. Karypis. (2017) FROSTT: The formidable repository
of open sparse tensors and tools. [Online]. Available:
http://frostt.io/

1067

