
Finding Frequent Patterns in a Large Sparse Graph∗

Michihiro Kuramochi and George Karypis

Department of Computer Science & Engineering/
Digital Technology Center/Army HPC Research Center

University of Minnesota

4-192 EE/CS Building, 200 Union St SE

Minneapolis, MN 55455

{kuram, karypis}@cs.umn.edu

Technical Report #03-039

Last updated on September 25, 2003 at 2:11 PM

Abstract

This paper presents two algorithms based on the horizon-
tal and vertical pattern discovery paradigms that find the
connected subgraphs that have a sufficient number of edge-
disjoint embeddings in a single large undirected labeled
sparse graph. These algorithms use three different methods
to determine the number of the edge-disjoint embeddings of a
subgraph that are based on approximate and exact maximum
independent set computations and use it to prune infrequent
subgraphs. Experimental evaluation on real datasets from
various domains show that both algorithms achieve good per-
formance, scale well to sparse input graphs with more than
100,000 vertices and around 200,000 edges, and significantly
outperform previously developed algorithms.

Keywords pattern discovery, frequent subgraph, graph min-
ing.

1 Introduction

Data mining is the process of automatically extracting new
and useful knowledge hidden in large datasets. This emerging
discipline is becoming increasingly important as advances in
data collection have led to the explosive growth in the amount
of available data.

In recent years, there has been an increased interest in
developing data mining algorithms that operate on graphs.
Such graphs arise naturally in a number of different appli-

∗This work was supported in part by NSF CCR-9972519, EIA-9986042,
ACI-9982274, ACI-0133464, and ACI-0312828; the Digital Technology
Center at the University of Minnesota; and by the Army High Performance
Computing Research Center (AHPCRC) under the auspices of the Depart-
ment of the Army, Army Research Laboratory (ARL) under Cooperative
Agreement number DAAD19-01-2-0014. The content of which does not
necessarily reflect the position or the policy of the government, and no of-
ficial endorsement should be inferred. Access to research and computing
facilities was provided by the Digital Technology Center and the Minnesota
Supercomputing Institute.

cation domains including network intrusion [47, 41], seman-
tic web [4], behavioral modeling [67, 55], VLSI reverse en-
gineering [70], link analysis [34, 40, 39, 58], and chemical
compound classification [14, 43, 22, 16]. Moreover, they can
be used to effectively model the structural and relational char-
acteristics of a variety of datasets arising in other areas such
as physical sciences (e.g., chemistry, fluid dynamics, astron-
omy, structural mechanics, and ecosystem modeling), life sci-
ences (e.g., genomics, proteomics, pharmacogenomics, and
health informatics), and home-land defense (e.g., informa-
tion assurance, network intrusion, infrastructure protection,
and terrorist-threat prediction/identification).

The focus of this paper is on developing algorithms for a
particular data mining task, which is that of finding frequently
occurring patterns in graph datasets. Frequent patterns play
a critical role in many data mining tasks as they can be used
among other to derive association rules [1], act as composite
features for classification algorithms [14, 56, 63, 51, 22, 50,
15], cluster the (graph) transactions [1, 48, 35, 36, 49, 24],
and help in determining the similarity between graphs [54,
23, 42, 59, 9, 49, 13, 60, 66]. Within the context of graphs, the
most widely used definition of a pattern is that of a connected
subgraph [8, 68, 32, 29, 69, 30, 44] and is the definition
that we will use in this paper. However, different pattern
definitions have been proposed as well [32].

There are two distinct problem formulations for frequent
pattern mining in graph datasets that are referred to as the
graph-transaction settingand thesingle-graph setting. In
the graph-transaction setting, the input to the pattern mining
algorithm is a set of relatively small graphs (called transac-
tions), whereas in the single-graph setting the input data is
a single large graph. The difference affects the way the fre-
quency of the various patterns is determined. For the graph-
transaction setting, the frequency of a pattern is determined
by the number of graph transactions that the pattern occurs in,
irrespective of how many times a pattern occurs in a partic-

ular transaction, whereas in the single-graph setting, the fre-
quency of a pattern is based on the number of its occurrences
(i.e., embeddings) in the single graph. Due to the inherent
differences of the characteristics of the underlying dataset and
the problem formulation, algorithms developed for the graph-
transaction setting cannot be used to solve the single-graph
setting, whereas the latter algorithms can be easily adapted to
solve the former problem.

In recent years, a number of efficient and scalable algo-
rithms have been developed to find patterns in the graph-
transaction setting [8, 68, 32, 29, 69, 30, 44]. These algo-
rithms are complete in the sense that they are guaranteed to
discover all frequent subgraphs and were shown to scale to
very large graph datasets. However, developing algorithms
that are capable of finding patterns in the single-graph set-
ting has received much less attention, despite the fact that
this problem setting is more generic and applicable to a wider
range of datasets and application domains than the other.
Moreover, existing algorithms that are guaranteed to find all
frequent patterns [21, 65] or algorithms that are heuristic,
such as GBI [71] and SUBDUE [28] which tend to miss a
large number of frequent patterns, are computationally ex-
pensive and do not scale to large datasets.

Developing algorithms that find the complete set of fre-
quent patterns in the single-graph setting is the focus of
this paper. We present two computationally efficient algo-
rithms that can find subgraphs which are frequently embed-
ded within a large sparse graph. The first algorithm, called
HSIGRAM, follows ahorizontal approachand finds the fre-
quent subgraphs in a breadth-first fashion, whereas the second
algorithm, calledVSIGRAM, follows avertical approachand
finds the frequent subgraphs in a depth-first fashion. These al-
gorithms incorporate efficient algorithms for candidate gen-
eration and frequency counting that allow them to scale to
graphs containing over 100,000 vertices and find patterns
with relatively low occurrence frequency. Our experimen-
tal evaluation on six real graphs shows that bothHSIGRAM
andVSIGRAM achieve reasonably good performance, scale
to large graphs, and substantially outperform previously de-
veloped approaches for solving similar or simpler versions of
the problem.

The rest of this paper is organized as follows. Section 2 de-
fines the graph model that we use, reviews some graph-related
definitions, and introduces the notation that is used in the pa-
per. Section 3 surveys related research in this area. Section 4
formally defines the problem of frequent subgraph discovery
and discusses the challenges associated with finding them in
a computationally efficient manner. Section 5 describes in de-
tail theHSIGRAM andVSIGRAM algorithms that we devel-
oped for solving the problem of frequent subgraph discovery
from a single large sparse graph. Section 6 provides a detailed
experimental evaluation of theHSIGRAM andVSIGRAM al-
gorithms on various real datasets and compares them against
existing algorithms. Finally, Section 7 provides some con-
cluding remarks.

2 Definitions and Notation

A graph G = (V, E) is made of two sets, the set of vertices
V and the set of edgesE. Each edge itself is a pair of
vertices, and throughout this paper we assume that the graph
is undirected, i.e., each edge is an unordered pair of vertices.
Furthermore, we will assume that the graph islabeled. That
is, each vertex and edge has a label associated with it that is
drawn from a predefined set of vertex labels (LV) and edge
labels (L E). Each vertex (or edge) of the graph is not required
to have a unique label and the same label can be assigned to
many vertices (or edges) in the same graph. If all the vertices
and edges of the graph have the same vertex and edge label
assigned to them, we will call this graphunlabeled.

Given a graphG = (V, E), a graphGs = (Vs, Es) is a
subgraphof G if and only if Vs ⊆ V andEs ⊆ E. A graph is
connectedif there is a path between every pair of vertices in
the graph. Two graphsG1 = (V1, E1) andG2 = (V2, E2) are
isomorphic if they are topologically identical to each other,
that is, there is a mapping fromV1 to V2 such that each edge
in E1 is mapped to a single edge inE2 and vice versa. In
the case of labeled graphs, this mapping must also preserve
the labels on the vertices and edges. Anautomorphism is
an isomorphism mapping whereG1 = G2. Given two graphs
G1 = (V1, E1) andG2 = (V2, E2), the problem ofsubgraph
isomorphism is to find an isomorphism betweenG2 and a
subgraph ofG1, i.e., determine whether or notG2 is included
in G1.

Given a subgraphGs and a graphG, two embeddings of
Gs in G are calledidentical if they use the same set of edges
of G, and they are callededge-disjoint if they do not have
any edges ofG in common. Given a set of all embeddings
of a particular subgraphGs in a graphG, theoverlap graph
of Gs is a graph obtained by creating a vertex for each non-
identical embedding and creating an edge for each pair of
non-edge-disjoint embeddings. An example of a subgraph
and its overlap graph are shown in Figure 2.

The notation that we will be using throughout the paper is
shown in Table 1.

2.1 Canonical Labeling

One of the key operations required by any frequent sub-
graph discovery algorithm is a mechanism by which to check
whether two subgraphs are identical or not. One way of per-
forming this check is to perform a graph isomorphism op-
eration. However, in cases in which many such checks are
required among the same set of subgraphs, a better way of
performing this task is to assign to each graph a uniquecode
(i.e., a sequence of bits, a string, or a sequence of numbers)
that is invariant on the ordering of the vertices and edges in
the graph. Such a code is referred to as thecanonical label
of a graphG = (V, E) [61, 18], and we will denote it by
cl(G). By using canonical labels, we can check whether or
not two graphs are identical by checking to see whether they
have identical canonical labels. Moreover, by comparing the
canonical labels we can obtain a complete ordering of a set
of graphs in a unique and deterministic way, regardless of the

Table 1: Notation used throughout the paper

Notation Description
k-subgraph A connected subgraph withk edges

(also written as a size-k subgraph)
Gk, Hk Graphs of sizek
E(G) Edges of a graphG
V(G) Vertices of a graphG
cl(G) Canonical label of a graphG
dia(G) Diameter of a graphG
a,b, c,e, f Edges
u, v Vertices
d(v) Degree of a vertexv
l (v) Label of a vertexv
l (e) Label of an edgee
H = G− e H is a graph obtained by the deletion of

edgee∈ E(G)
G Input graph
Gi G’s connected component
S(Gk+1) Set of all connected size-k subgraphs ofGk+1

M(G) = {mi } All embeddings of a subgraphG in G
A(G) = {ei } All anchor edges of a subgraphG in G
C Candidate subgraph
Ck Set of candidates withk edges
C Set of all candidates
F Frequent subgraph
Fk Set of frequentk-subgraphs
F Set of all frequent subgraphs
k∗ Size of the largest frequent subgraph inG
L E Set of all edge labels inG
LV Set of all vertex labels inG

original vertex and edge ordering.
A simple way of defining the canonical label of a graph is

as the string obtained by concatenating the upper triangular
entries of the graph’s adjacency matrix when this matrix has
been symmetrically permuted so that this string becomes the
lexicographically largest (or smallest) over the strings that
can be obtained from all such permutations. This is illustrated
in Figure 1 that shows a graphG3 and the permutation of its
adjacency matrix1 that leads to its canonical label “aaazyx”.
In this code, “aaa” was obtained by concatenating the vertex-
labels in the order that they appear in the adjacency matrix
and “zyx” was obtained by concatenating the columns of
the upper triangular portion of the matrix. Note that any
other permutation ofG3’s adjacency matrix will lead to a
code that is lexicographically smaller (or equal) to “aaazyx”.
If a graph has|V | vertices, the complexity of determining
its canonical label using this scheme is inO(|V |!) making
it impractical even for moderate size graphs. Note that
the problem of determining the canonical label of a graph
is equivalent to determining isomorphism between graphs,
because if two graphs are isomorphic with each other, their
canonical labels must be identical. Both canonical labeling
and determining graph isomorphism are not known to be
either in P or in NP-complete [18].

In practice, the complexity of finding a canonical labeling
of a graph can be reduced by using various heuristics to
narrow down the search space or by using alternate canonical
label definitions that take advantage of special properties that
may exist in a particular set of graphs [53, 52, 18]. As part
of our earlier research we have developed such canonical
labeling algorithm that fully makes use of edge- and vertex-

1The symbolvi in the figure is a vertex ID, not a vertex label, and
blank elements in the adjacency matrix means there is no edge between the
corresponding pair of vertices.

v2

v0 v1

x y

za

a

a

(a) G3

a

a

a

a a a

z

z

y

y

x

x

(b)

v0

v1

v2

v2v1v0

code= aaa zxy

a

a

a

a a a

y

y

x

z

z

x

(c)

v0

v1

v2

v2v0v1

code= aaa zyx

Figure 1: Simple examples of codes and canonical adjacency
matrices

labels for fast processing and various vertex invariants to
reduce the complexity of determining the canonical label of
a graph [45, 46]. Our algorithm can compute the canonical
label of graphs containing up to 50 vertices extremely fast and
will be the algorithm used to compute the canonical labels of
the different subgraphs in this paper.

2.2 Maximum Independent Set

As discussed later in Section 4, our frequent subgraph dis-
covery algorithm focuses on finding subgraphs whose embed-
dings are edge-disjoint. A critical step in obtaining this set of
edge-disjoint embeddings for a particular subgraph is to find
the maximum independent set of its overlap graph. Given a
graphG = (V, E), a subset of verticesI ⊂ V is calledin-
dependentif no two vertices inI are connected by an edge
in E. An independent setI is calledmaximal independent
set for every vertexv in I if there is an edge inE that con-
nectsv to a vertex inV \ I . A maximal independent setI
is calledmaximum independent set(MIS) if I contains as
many vertices ofV as possible.

The problem of finding the MIS of a graph was among
the first problems proved to be in NP-complete [19], and re-
mains so even for bounded degree graphs. Moreover, it has
been shown that the size of MIS cannot be approximated even
within a factor ofn1−o(1) in polynomial time [17]. However,
the importance of the problem and its applicability to a wide-
range of domains has attracted a considerable amount of re-
search. This research has been focused on developing both
faster exact algorithms as well as approximate algorithms.
The faster exact algorithm to date is the algorithm by Rob-
son [62] that solves the MIS problem in timeO(1.211n),
making it possible to solve in reasonable amount of time
problem instances containing up to around 100 vertices. In
this study, we used a fast implementation of the exactmax-
imum clique (MC) problem solverwclique [57] instead of
those fast exact MIS algorithms. Because the MIS problem
on a graphG is equivalent to the MC problem on aG’s com-
plement graphḠ, we can usewclique as a fast exact MIS al-
gorithm (EMIS). Heuristic algorithms focus on finding max-
imal independent sets whose size is bounded in terms of the
size of the optimal solution, and a number of such methods
have been developed [27, 6, 38, 25].

One of the most widely used heuristic is thegreedy
algorithm (GMIS) which selects a vertex of the minimum
degree, deletes that vertex and all of its neighbors from
the graph, and repeats this process until the graph becomes
empty. A recent detailed analysis of theGMIS algorithm has

shown that it produces reasonably good approximations of the
MIS for bounded- and low-degree graphs [25]. In particular,
for a graphG with a maximum degree1 and an average
degreed, the size|I | of the MIS satisfies the following:

(2.1) |I | ≤ min

(
1+ 2

3
|GMIS(G)|, d + 2

2
|GMIS(G)|

)

where|GMIS(G)| is the size of the approximate MIS found
by theGMIS algorithm.

3 Related Work

The previous research on finding frequent subgraphs in graph
datasets falls under two categories. The first category con-
tains algorithms for finding subgraphs that occur multiple
times in a single input graph [71, 28, 21, 65] and are directly
related to the algorithms presented in this paper, whereas the
second category contains algorithms that find subgraphs that
occur frequently across a database of small graphs [14, 31,
43, 45, 33, 8, 68, 32, 29, 30, 44]. Between these two classes
of algorithms, those developed for the latter problem are in
general more mature as they have moderate computational
requirements and scale to large datasets.

In the rest of this section, we will describe on the related
research for the single-graph setting as it is directly related to
the topic of the paper.

The most well-known algorithm for finding recurring sub-
graphs in a single large graph is the SUBDUE system, orig-
inally developed in 1994, and improved over the years [28,
10, 12, 11]. SUBDUE is an approximate algorithm and
finds patterns that can compress the original input graph by
substituting those patterns with a single vertex. In evalu-
ating the extent to which a particular pattern can compress
the original graph it uses the minimum description length
(MDL) principle, and employs a heuristic beam search to
narrow the search-space. These approximations improve its
computational efficiency but at the same time it prevents it
from finding subgraphs that are indeed frequent. GBI [71]
is another greedy heuristics based algorithm similar to SUB-
DUE. Ghazizadeh and Chawathe [21] developed an algorithm
called SEuS that uses a data structure calledsummaryto con-
struct a lossy compressed representation of the input graph.
This summary is obtained by collapsing together all the ver-
tices of the input graph that have the same label and is used
to quickly prune infrequent candidates. As the authors in-
dicate, this summary data-structure is useful only when the
input graph contains a relatively small number of frequent
subgraphs with high frequency, and is not effective if there
are a large number of frequent subgraphs with low frequency.
Finally, Vanetik, Gudes and Shimony [65] presented an al-
gorithm for finding all frequently occurring subgraphs from
a single labeled undirected graph using the maximum num-
ber of edge-disjoint embeddings of a graph as a measure of
its frequency. Each subgraph is represented by its minimum
number of edge-disjoint paths (path number), and use a level-
by-level approach to grow the patterns based on their path-
number. Their emphasis is on efficient candidate generation

(a) Size-12 graphG (b) Size-7 subgraphG7 (c) Size-6 subgraphG6

Figure 3: Patterns with the non-monotonic frequency

and no special attention is paid for frequency counting.

4 Discovering Frequent Patterns in a Single Graph:
Problem Definition

A fundamental issue that needs to be considered by any fre-
quent subgraph discovery problem formulation similar to the
single-graph setting is the counting method of the occurrence
frequency. In general, there are two possible methods of the
frequency counting. According to the first method, two em-
beddings of a subgraph are considered different, as long as
they differ by at least one edge (i.e., non-identical). As a re-
sult, arbitrary overlaps of embeddings of the same subgraph
are allowed. On the other hand, by the second method, two
embeddings are considered different, only if they do not share
edges (i.e., they are edge-disjoint). These two methods are
illustrated in Figure 2. In this example, there are three pos-
sible embeddings of the subgraph shown in Figure 2(1) in
the input graph of Figure 2(2). Two of these embeddings
(Figures 2(3) and (5)) do not share any edges, whereas the
third embedding (Figure 2(4)) shares edges with the other
two. Thus, if we allow overlaps, the frequency of the sub-
graph is 3, and if we do not it is 2.

These two ways of counting the frequency of a subgraph
lead to problems with dramatically different characteristics.
If we allow arbitrary overlaps between non-identical embed-
dings, then the resulting frequency is not any longer down-
ward closed (i.e., the frequency of a subgraph does not mono-
tonically decrease as a function of its length). This is il-
lustrated in Figure 3. BothG7 and G6 are subgraphs of
G. Although the smaller subgraphG6 has only one non-
identical embedding, the largerG7 has six non-identical em-
beddings. On the other hand, if we determine the frequency of
each subgraph by counting the maximum number of its edge-
disjoint embeddings, then the resulting frequency is down-
ward closed [65].

Being able to take advantage of a frequency counting
method that is downward closed is essential for the compu-
tational tractability of most frequent pattern discovery algo-
rithms. For this reason, our problem formulations uses edge-
disjoint embeddings. Given this, one way of formulating the
frequent subgraph discovery problem for the single-graph set-
ting as follows [65]:

Definition 1 (Exact Discovery Problem) Given an input
graph G which is undirected and labeled, and a parameter
f , find all connected undirected labeled subgraphs that have
at least f edge-disjoint embeddings inG.

Unfortunately quite often this problem can be intractable. By

(1) Subgraph (2) Input graph (3) Embedding 1 (4) Embedding 2 (5) Embedding 3
Embedding 2

Embedding 3

Embedding 1

(6) Overlaps

Figure 2: Overlapped embeddings

this definition, in order to determine if a subgraph is frequent
or not, we need to find whether the overlap graph of its non-
identical embeddings contain an independent set whose size
is at leastf . When a subgraph is relatively frequent compared
to the frequency thresholdf , by using approximate MIS
algorithms we can quickly tell that such a subgraph is actually
frequent. However, in the cases in which the approximate
MIS algorithm does not find a sufficiently large independent
set, the exact MIS needs to be computed before a pattern will
be kept or discarded. Depending on the resulting size of the
maximum independent set, the subgraph will be identified
as frequent or infrequent. Also, if we need not only to find
frequent subgraphs, but also to find their exact frequency,
then the exact MIS needs to be computed on the overlap graph
of every pattern. In both cases, because solving the exact
MIS problem is in NP-complete (see Section 2.2), the above
definition of the frequent subgraph discovery problem cannot
be tractable, even for a relatively simple input graph.

To make the problem more practical, we propose two
alternative formulations that can find frequent subgraphs
without solving the exact MIS problem.

Definition 2 (Approximate Discovery Problem) Given an
input graphG which is undirected and labeled, and a pa-
rameter f , find connected undirected labeled subgraphs that
have at leastf edge-disjoint embeddings inG as much as
possible.

Definition 3 (Upper Bound Discovery Problem) Given an
input graphG which is undirected and labeled, and a pa-
rameter f , find all connected undirected labeled subgraphs
such that an upper bound on the number of its edge-disjoint
embeddings is above the thresholdf .

Essentially the solutions for those two problems become
a subset and a superset of the solution for Definition 1,
respectively. The first formulation, Definition 2, which asks
for a subset of the solution of Definition 1, requires that the
embeddings of each subgraph form an overlap graph that has
an approximate MISwhose size is greater than or equal to
f . The second formulation, Definition 3, which asks for
a superset of the solution of Definition 1, requires that an
upper bound on the size of the exact MIS of this overlap
graph is greater than or equal tof . Note that as discussed
in Section 2.2, such upper bounds can be easily obtained for
both theGMIS algorithm as well as for other approximate
algorithms.

5 Algorithms for Finding Frequent Subgraphs in a
Large Graph

We developed two algorithms, calledHSIGRAM 2 andVSI-
GRAM, which find all frequent subgraphs according to Def-
initions 1–3 described in Section 4. In both algorithms, the
frequent patterns are conceptually organized in a form of a
lattice that is referred to as thelattice of frequent subgraphs.
The kth level of this lattice contains all frequent subgraphs
with k edges (i.e., size-k subgraphs), and a node at levelk
representing a subgraphGk is connected to at mostk nodes
at level k − 1, each corresponding to a distinct (i.e., non-
isomorphic) connected size-(k−1) subgraph ofGk. The goal
of both HSIGRAM andVSIGRAM is to identify the various
nodes of this lattice and the frequency of the associated sub-
graphs.

The difference between the two algorithms is the method
they use to discover (i.e., generate) the nodes of the lattice.
HSIGRAM follows a horizontal approach and discovers the
nodes in a breadth-first fashion, whereasVSIGRAM follows
a vertical approach and discovers the nodes in a depth-first
fashion. Both horizontal and vertical approaches have been
previously used to find frequent subgraphs in the graph-
transaction setting [33, 44, 68, 8] and have their origins
on algorithms developed for finding frequent itemsets and
sequences [2, 3, 26, 72].

A detailed description ofHSIGRAM and VSIGRAM is
provided in the rest of this section.

5.1 Horizontal Algorithm: HSI GRAM

The general structure ofHSIGRAM is shown in Algorithm 1
(the notation used in the pseudo-code is shown in Table 1).
HSIGRAM takes as input the graphG, the minimum fre-
quency thresholdf , and the parameterMIS type that spec-
ifies the particular problem definition (as discussed in Sec-
tion 4). It starts by enumerating all frequent single- and
double-edge subgraphs inG, and then enters its main compu-
tational loop (Lines 7–10). During each iteration,HSIGRAM
first generates all candidate subgraphs of sizek+1 by joining
pairs of size-k frequent subgraphs (Line 8) and then computes
their frequency (HSIGRAM-COUNT in Line 11). The candi-
date subgraphs whose frequency is lower than the minimum
threshold f are discarded and the remaining are kept for the
next level of the algorithm. The computation terminates when
no frequent subgraphs are generated during a particular itera-
tion.

The two key components of theHSIGRAM algorithm that
significantly affect its overall computational complexity are

2SiGraM stands for Single Graph Miner.

Algorithm 1 HSIGRAM(G,MIS type, f)
1: B f is the minimum frequency threshold.
2: BMIS typeis either approximate, exact or upper bound.
3: F ← ∅
4: F1← all frequent size-1 subgraphs inG
5: F2← all frequent size-2 subgraphs inG
6: k← 2
7: while Fk 6= ∅ do
8: Ck+1← HSIGRAM-GEN(Fk−1, Fk, f)
9: Fk+1← ∅

10: for eachcandidateC in Ck+1 do
11: C.freq← HSIGRAM-COUNT(C,MIS type)
12: if C.freq≥ f then
13: addC toFk+1

14: F ← F ∪Fk+1

15: k← k+ 1
16: return F

the methods used to perform candidate generation and to
compute the frequency of the candidate subgraphs. In the
rest of this section we provide additional details on how these
operations are performed and describe various optimizations
that are designed to reduce their runtime.

5.1.1 Candidate Generation

HSIGRAM generates candidate subgraphs of sizek + 1 by
joining two frequent size-k subgraphs. In order for two such
frequent size-k subgraphs to be eligible for joining each of the
two must contain the same size-(k − 1) connected subgraph.
The simplest way to generate the complete set of candidate
subgraphs is to join all pairs of size-k frequent subgraphs
that have a common size-(k − 1) subgraph. Unfortunately,
the problem with this approach is that a particular size-k
subgraph may have up tok different size-(k − 1) subgraphs
and as a result, if we consider all such possible subgraphs
and perform the resulting join operations, we will end up
generating the same candidate pattern multiple times, and
generating a large number of candidate patterns that are
not downward closed. Such an algorithm would spend a
significant amount of time identifying unique candidates and
eliminating non-downward closed candidates (both of which
operations are non-trivial as they require to determine the
canonical label of the generated subgraphs).

HSIGRAM addresses both of these problems by only join-
ing two frequent subgraphs if and only if they share a certain,
properly selected, size-(k− 1) subgraph. Algorithm 2 shows
the pseudo-code for the candidate generation, where the prop-
erly selected size-(k−1) subgraph is denoted byF . For each
frequent size-k subgraphFi , letP(Fi) = {Hi,1, Hi,2} be the
two size-(k−1) connected subgraphs ofFi such thatHi,1 has
the smallest canonical label andHi,2 has the second smallest
canonical label among the various connected size-(k−1) sub-
graphs ofFi . We will refer to these subgraphs as theprimary
subgraphsof Fi . Note that if every size-(k − 1) subgraph of
Fi is isomorphic to each other,Hi,1 = Hi,2 and|P(Fi)| = 1.
HSIGRAM will only join two frequent subgraphsFi andF j ,
if and only if P(Fi) ∩ P(F j) 6= ∅, and the join operation
will be done with respect to the common size-(k − 1) sub-
graph(s). The proof that this approach will correctly generate

Algorithm 2 HSIGRAM-GEN(Fk−1,Fk, f)

1: Ck+1← ∅
2: for each F in Fk−1 do
3: for eachpair Fi , F j in F.childrendo
4: C← join Fi andF j based onF
5: B test if the downward closure property holds.
6: S(C)← all connected size-k subgraphs ofC
7: P(C)← two primary subgraphs of sizek
8: skip← false
9: for each S in S(C) do

10: if S.freq< f then
11: skip← true
12: break
13: if skip 6= true then
14: addC to Ck+1

15: B P(C) = {H1, H2}
16: addC to H1.children and toH2.children
17: return Ck+1

Algorithm 3 HSIGRAM-COUNT(Ck+1,MIS type)

1: (M(Ck+1),A(Ck+1))← HSIGRAM-EMBED(C,G)
2: G← build an overlap graph fromM(Ck+1)

3: {G1,G2, . . . ,Gm} ← decomposeG
4: fMIS ← 0
5: for each Gi in {G1,G2, . . . ,Gm} do
6: if Gi is easy to handlethen
7: fMIS ← fMIS + |EMIS(Gi)|
8: else ifMIS type= approximatethen
9: fMIS ← fMIS + |GMIS(Gi)|

10: else ifMIS type= exactthen
11: fMIS ← fMIS + |EMIS(Gi)|
12: else ifMIS type= upper boundthen
13: fMIS ← fMIS + |GMIS(Gi)|min((1+ 2)/3, (d + 2)/2)
14: B S(Ck+1) is a set of all connected size-k subgraphs inCk+1

15: f p← the lowest frequency amongS(Ck+1)

16: return min(fMIS, f p)

all valid candidate subgraphs is presented in [44]. This candi-
date generation approach dramatically reduces the number of
redundant and non-downward closed patterns that are gener-
ated and leads to significant performance improvements over
the naive approach [45].

5.1.2 Frequency Counting

HSIGRAM-COUNT in Algorithm 3 computes the frequency
of a candidate subgraphC by first identifying all of its embed-
dings, constructing the overlap graph of these embeddings,
and then, based on theMIS type parameter, finding an ap-
proximate or exact MIS of this overlap graph. The outline
of this process is shown in Algorithms 4 and 3. In the rest
of this section we first describe how the various embeddings
are identified followed by a description of the method used to
efficiently compute the desired maximal independent sets.

Embedding Identification In order to identify all the em-
beddings of a candidateC, HSIGRAM-EMBED shown in Al-
gorithm 4 needs to solve the subgraph isomorphism prob-
lem. Performing the subgraph isomorphism for every can-
didate from scratch may be expensive, especially when an
input graph is large.HSIGRAM-EMBED reduces this com-
putational requirement by usinganchor edges. An anchor
edge is a partial embedding of a candidateC and works as

Algorithm 4 HSIGRAM-EMBED(C,G)
1: BA: a set of all anchor edges ofC
2: A← intersection of anchor edges acrossS(C)
3: B collect all unique embeddings ofC intoM
4: M← ∅
5: for eachanchor edgee in A do
6: Me← all embeddings ofC that includes the edgee
7: M←M ∪Me
8: B collect all unique anchor edges ofC intoA
9: A← ∅

10: for eachembeddingm in M do
11: e← choose one edge fromm arbitrarily
12: adde toA
13: return (M,A)

a constraint of the subgraph isomorphism problem in which
narrows down the search space only around the anchor edge.

More specifically,HSIGRAM-EMBED creates and uses
anchor edges as follows. First, the list of anchor edges
are created right after frequency counting for size-(k − 1)
frequent subgraph, by converting the list of its non-identical
embeddings. These edges will be used later for counting a
candidate of sizek. Let Fi denote a frequent subgraph of
sizek − 1 and supposeFi hasN non-identical embeddings
in total. After the frequency counting,Fi has a list of all its
embeddingsM(Fi) = {m1, . . . ,mN}. An anchor edgee of
an embeddingmi of F is an edge inE(G) that is also a part of
mi . For everymi , HSIGRAM-EMBED arbitrarily chooses an
edge and adds it toA(Fi) (Line 11 in Algorithm 4). Because
of overlapped embeddings, some embeddings may lead to the
same anchor edge.

Now, in the next iteration, suppose ak-candidateC con-
tains a frequent(k − 1)-subgraphFi . Because there are
k edges inE(C), C may have up tok distinct such fre-
quent subgraphs of sizek − 1, and eachFi holds the an-
chor edge list. Before starting the frequency counting ofC,
first HSIGRAM-EMBED selects one ofFi whose frequency
is the lowest among{Fi }. For eachen ∈ A(Fi), HSIGRAM-
EMBED checks if there is an edgeem ∈ A(F j) for all j 6= i
such that the shortest path length betweenen andem, denoted
by d, is within the diameter ofC, denoted by dia(C). If there
is such an edgeem from everyA(F j) for j 6= i , en may be
a part of an embedding ofC, because ifC is a frequent sub-
graph of sizek, there must be a set of frequent subgraphs of
sizek − 1 inside the same embedding ofC. To compute the
exact path length between edgesen andem in Gi requires all
pairs shortest paths, which may be computationally expensive
when|E(Gi)| is large.HSIGRAM-EMBED bounds this length
d by the difference between two lengths,|dn− dm|, wheredn

anddm are the shortest path lengths from an arbitrarily cho-
sen vertexv ∈ V(Gi) to en andem respectively. Ifen andem

are in the same embedding ofCi , alwaysd ≤ dia(C) holds
anddn ≤ dm+d. Thus, if|dn−dm| ≤ dia(C) is true, thenen

andem may belong to the same embedding ofC , otherwise
en andem cannot be in the same embedding (see Figure 4).
If en cannot find suchem from everyA(F j) for j 6= i , em is
removed fromA(Fi) (Line 2). Because the subgraph isomor-
phism will be performed for eachen, this pruning procedure
can effectively reduce the run-time.

dia(G)

en

v dn

em

dm d

Figure 4: Distance estimation between two edges

Finally, after removing unnecessary anchor edges, for each
of the remaining anchor edges, all the subgraph isomorphisms
of C are repeatedly identified and the set of embeddingsM
is built (Line 6).

Computing the Frequency The frequency of each subgraph
Ck+1 is computed by theHSIGRAM-COUNT function shown
in Algorithm 3. In particular,HSIGRAM-COUNT computes
two different frequencies. The first, denoted byfMIS, is
computed based on the size of the MIS of the overlap graph
created from the embeddings ofCk+1. The second, denoted
by f p, is the least frequency of all the connected size-k
subgraphs ofCk+1 (Line 15), which represents an upper
bound onCk+1’s frequency derived entirely from the lattice
of frequent subgraphs. In the case in whichfMIS is computed
using Definition 3, the frequency bound provided byf p

may actually be tighter, and thus may lead to more effective
pruning. For this reason, the overall frequency ofCk+1 is
obtained by taking the minimum offMIS and f p.

The frequency fMIS is computed as follows (Lines 2–
13). Given a pattern and all of its non-identical embeddings,
HSIGRAM-COUNT generates its overlap graphG. Then,
HSIGRAM-COUNT decomposesG into its connected com-
ponentsG1,G2, . . . ,Gm (m ≥ 1). Next, for each connected
componentGi , it checks the maximum degree of its vertices
and if it is less that or equal to two (a cycle or a path), it com-
putes its maximum independent set directly by theEMIS al-
gorithm because it is trivial to compute the exact MIS for this
class of graphs (Line 7). If the maximum degree is greater
than two, HSIGRAM-COUNT uses either the result of the
GMIS algorithm (Line 9), the result of theEMIS algorithm
(Line 11), or the upper bound on the size of the exact MIS
(Equation 2.1). The summation of those MIS sizes for the
components is the final value offMIS. Note that the decom-
position of the overlap graph into its connected components
allow us to take advantage of the properties of the special
graphs and also obtain tighter bounds for each component as
the maximum degree for some of them will be lower than the
maximum degree of the entire overlap graph.

In addition, every edge is marked if it is included in any
embedding of a frequent subgraph. Unmarked edges are
removed before proceeding to the next iteration.

5.2 Vertical Algorithm: VSI GRAM

The most computationally expensive step in theHSIGRAM
algorithm is frequency counting as it needs to repeatedly
perform subgraph isomorphism computations. The overall
time can be greatly reduced if instead of storing only the
anchor-edges we store the complete set of embeddings across

successive levels of the algorithm. Because ofHSIGRAM’s
level-by-level structure, these complete embeddings need
to be stored for the entire set of frequent and candidate
patterns of each successive pair of levels. This substantially
increases the memory requirements of this approach, making
it impractical for the most of interesting datasets. On the other
hand, within the context of a vertical algorithm, storing the
complete set of embeddings is feasible since we need to do
that only for the subgraphs along the path from the current
node to the root. Thus, a vertical algorithm has potentially a
computational advantage over a horizontal algorithm, which
motivated the development ofVSIGRAM.

However, before developing efficient algorithms that gen-
erate the lattice of frequent subgraphs in a depth-first fashion
two critical steps need to be addressed. The first step is the
method that is used to ensure that the same node of the lat-
tice and the depth-first subtree rooted at that node should not
be discovered and explored multiple times. This is impor-
tant because each node at levelk will be connected to up to
k different nodes at level(k − 1). As a result, if there are no
mechanisms by which to prevent the repeated generation of
the same node, a depth-first algorithm will end-up perform-
ing redundant computations (i.e., generating the same nodes
multiple times), adversely impacting the overall performance
of the algorithm.VSIGRAM eliminates these redundant com-
putations by assigning each node at levelk (corresponding to
a subgraphFk) to a unique parent node at levelk− 1 (corre-
sponding to a subgraphFk−1, such that onlyFk−1 is allowed
to createFk. The subgraphFk−1 is called the generating
parentof Fk. Details on how this is achieved is provided in
Section 5.2.1.

The second step is the method that is used to create succes-
sor nodes in the course of the traversal. In the case ofHSI-
GRAM, this corresponds to the candidate generation phase,
and is performed by joining the frequent subgraphs of the pre-
vious level. However, since the lattice is explored in a depth-
first fashion, such joining-based approach will not work, as
the algorithm may not have yet discovered the required fre-
quent subgraphs. To address this problem,VSIGRAM creates
the successor nodes (i.e., extended subgraphs) by analyzing
all the embeddings of the current subgraphFk, and identify-
ing the distinct one-edge extensions to these embeddings that
are sufficiently frequent. The frequent extensions for which
Fk is the generating parent are then used as the successor
nodes during the depth-first traversal.

The general structure ofVSIGRAM is shown in Algo-
rithm 5. VSIGRAM starts by determining all frequent size-1
patterns and then uses each one of them as the starting point of
a recursive depth-first extension (VSIGRAM-EXTEND func-
tion). VSIGRAM-EXTEND takes as input a size-k frequent
subgraphFk and all of its embeddingsM(Fk) in G and pro-
ceeds as follows. For each size-k embeddingm ∈M(Fk), it
identifies and stores every possible size-(k + 1) subgraph in
G that containsm. From this set of subgraphs, it extracts all
size-(k+1) subgraphs which are not isomorphic to each other
and stores them inCk+1. Then,VSIGRAM-EXTEND elimi-
nates fromCk+1 all the subgraphs that do not haveFk as their

Algorithm 5 VSIGRAM
VSIGRAM(G,MIS type, f)

1: F ← ∅
2: F1← all frequent size-1 subgraphs inG
3: for each F1 in F1 do
4: M(F1)← all embeddings ofF1

5: for each F1 in F1 do
6: F ← F ∪ VSIGRAM-EXTEND(F1,G, f)
7: return F

VSIGRAM-EXTEND(Fk,G,MIS type, f)

1: F ← ∅
2: for eachembeddingm in M(Fk) do
3: Ck+1← Ck+1 ∪ {all (k+ 1)-subgraphs ofG containingm}
4: for eachCk+1 in Ck+1 do
5: if Fk is notthe generating parentof Ck+1 then
6: continue
7: computeCk+1.freq fromM(Ck+1)

8: if Ck+1.freq< f then
9: continue

10: addCk+1 toF
11: return F

generating parent (Lines 5–6) or are infrequent (Lines 7–8).
The subgraphs remaining inCk+1 are the frequent subgraphs
of size-(k+ 1) obtained by an one-edge-extension ofFk and
are used as input for the next recursive call. The recursion
terminates whenCk+1 = ∅, and the depth-first search back-
tracks.

In the rest of this section we provide additional details on
how the various operations are performed and describe var-
ious optimizations that are designed to reduceVSIGRAM’s
run-time.

5.2.1 Generating Parent Identification

The scheme thatVSIGRAM uses to determine the generating
parent of a particular subgraph is as follows. Suppose a size-
(k + 1) frequent subgraphFk+1 is just created by extension
from a size-k frequent subgraphFk. By the canonical
labeling, the order of edges and vertices inFk+1 is uniquely
determined.VSIGRAM removes the last edge that does not
disconnectFk+1 and obtains another size-k subgraphF .

If F is isomorphic toFk thenFk becomes the generating
parent ofFk+1, andVSIGRAM keeps the further exploration
from Fk+1. Similar type of approaches have been used earlier
in the context of vertical algorithms for the graph-transaction
setting [65, 68]. All of these share the same idea, which
avoids redundant frequent pattern generation and traverses
the lattice of patterns as if it was a tree.

5.2.2 Efficient Subgraph Extension

Starting from a frequent size-k subgraph,VSIGRAM obtains
the extended subgraphs of sizek+ 1 by adding an additional
edge (while preserving connectivity) to all of its possible em-
beddings. Specifically, for each embeddingm of a frequent
k-subgraphF , VSIGRAM enumerates all the edges that can
be added tom to form a size-(k + 1) extended subgraph.
Each of those edges is represented by a tuple of 5 elements
s= (x, y, u, v, e), called astem, wherex andy are the vertex

v2

v3

v4v1

v0 v5

φ0

cvid

φ1
φ2
φ3

φ∗

v1
v1
v3
v3

φ0

v1

v0
v0
v0
v0

v0
φ0

v2

φ0

v2
v2
v2

v2

v3

φ2

v1

v3

v1

v1

v4

φ1

v4

v5v5

v5

v4

(b) Canonical vertex ID
and automorphsm

(a) GraphG

Figure 5: Size-6 graphG, canonical vertex IDs, and canonical
automorphism

IDs of the edge inG, u andv, u < v, are the corresponding
vertex IDs inF , ande is the label of the edge. Foru andv,
if there is no corresponding vertex inF , −1 is used to show
that it is outside the subgraphF .

However, because of the automorphism of the subgraph
F , we cannot use this stem representation directly. For
a particular embeddingm of a frequent subgraphF in G,
there may be more than one vertex mapping of the subgraph
onto the embedding. If we simply used a pair of vertex
IDs of the subgraph to represent a stem, depending on the
mapping, the same edge addition might be considered a
different stem, which would result in the wrong frequency
of the subgraph. To avoid this problem, every time a stem
is generated, its representation is normalized as follows .
VSIGRAM enumerates all possible automorphisms ofF ,
denoted by{φi }. By an appropriateφi we obtain the canonical
vertex ID for every vertexv ∈ V(F). Thecanonical IDof a
vertexv, denoted by cvid(v), is defined as

cvid(v) = min
i
φi (v).

The automorphism with the least subscript that gives the
canonical ID forv is called thecanonical automorphism,
denoted byφ∗v .

φ∗v = arg min
φi
φi (v), i < j if φi (v) = φ j (v)

For example, given the size-6 graphG shown in Figure 5(a),
cvid(v3) = v1 andφ∗v3

= φ2. Figure 5(b) shows cvid andφ∗
for every vertex inG. Note that althoughφ3(v3) is alsov1,
becauseφ2 has the smaller subscript, 2,φ∗v3

is φ2. Now for
each stems = (x, y, u, v, e), φ∗(u, v) = (u′, v′) are defined
as follows.

u′ ≡ cvid(u), v′ ≡ φ∗u(v) if cvid(u) ≤ cvid(v)

u′ ≡ φ∗v (u), v′ ≡ cvid(v) otherwise

Then, stems is rewritten as(x, y, u′, v′, e), which is automor-
phism invariant representation ofs and is used byVSIGRAM
to properly determine the frequency of size-(k+ 1) extended
subgraphs.

Additional Optimization: Keeping Track of Edge Cre-
ation Status Each frequent subgraph maintains a three-
dimensional table, called aconnection table. Each element in
the table is denoted by ct(u′, v′,e) which shows if it is possi-
ble to form an edge between the verticesu′ andv′ whose edge
label ise. Every time a stem(x, y, u′, v′, e) is discarded, the

corresponding element in the connection table is updated to
show that it is now impossible to create an edge with a label
e betweenu′ andv′. If ct(u′, v′,e) is deactivated for a fre-
quent subgraph of sizek, then for anyl > k, there should not
be any frequent subgraph that has an edge betweenu′ andv′
with the edge labele. We can reduce the number of stems to
be generated by looking up the connection table during the
stem enumeration phase.

5.2.3 Frequency Counting

In the vertical algorithm, when a size-(k + 1) extension is
processed, there is only one size-k frequent subgraph visible,
the generating parent.VSIGRAM’s frequency counting is
similar to HSIGRAM-COUNT, except for the computation
of f p (see Line 15 in Algorithm 3). HSIGRAM enforces
the downward closure property on the frequency of a size-
(k + 1) candidate, by using the least frequency of all size-k
subgraphs of the candidate.VSIGRAM cannot take the same
step becauseVSIGRAM does not hold all size-k frequent
subgraphs at the time a size-(k + 1) extended subgraph is
created. InsteadVSIGRAM simply uses the frequency of the
size-k generating parent from which the current size-(k + 1)
extension is obtained. As a result,VSIGRAM’s pruning is
looser than that ofHSIGRAM.

6 Experimental Evaluation

In this section, we study the performance of the proposed
algorithms with various parameters and real datasets. All
experiments were done on dual AMD Athlon MP 1800+
(1.53 GHz) machines with 2 GBytes main memory, running
the Linux operating system. All the run-times reported are in
seconds.

6.1 Datasets

We used six different datasets, each obtained from a different
domain, to evaluate and compare the performance ofHSI-
GRAM and VSIGRAM. The basic characteristics of these
datasets are shown in Table 2. Note that even though some
of these graphs consist of multiple connected components,
the HSIGRAM and VSIGRAM algorithm treat them as one
large graph and discover the frequent patterns according to
Definitions 1–3 described in Section 4.

The Aviation andCredit datasets are obtained from [64].
The Aviation dataset is originally from the Aviation Safety
Reporting System Database and the Credit dataset is from the
UCI machine learning repository [7]. The directed edges in
the original graph data were converted into undirected ones.
For the Aviation dataset, we removed undirected edges to
show “nearto” relation between two vertices because those
edges form cliques which makes this graph difficult to mine.

The Citation dataset was created from the citation graph
used in KDD Cup 2003 [37]. Each vertex in this graph
corresponds to a document and each edge corresponds to a
citation. Because our algorithms are for undirected graphs,
the direction of these citations was ignored. Since the original
dataset does not have any meaningful label for vertices, we

generated vertex labels as follows. We first used a clustering
algorithm to form clusters of the document abstracts into 50
thematically coherent topics, and then assigned the cluster ID
as the label to the corresponding vertices. For the edges, we
used as labels the difference in the publication year of the two
papers. For example, if two papers were published in 1997
and 2002, an edge is created between those two document
vertices with the label “5”. Finally, because some of the
vertices in the resulting graph had a very high degree (i.e.,
authorities and hubs), we kept only the vertices whose degree
was less or equal to 15.

The Contact Mapdataset is made of 170 proteins from
the Protein Data Bank [5] with pairwise sequence identity
lower than 25%. The vertices in these graphs correspond to
the different amino acids and the edges connect two amino
acids if they are either at consecutive sequence positions or
they are in contact in their 3D structure. To amino acids are
considered to be in contact if the distance between theirCα
atoms is less than 8̊A. Furthermore, while creating the graphs
we only considered non-local contacts that are defined as the
contacts between amino acids whose sequence separation is
at least six amino acids.

The DTP dataset is a collection of 2,319 chemical com-
pounds randomly selected from the dataset of 223,644 chem-
ical compounds provided by the Developmental Therapeutics
Program (DTP) at National Cancer Institute3. Note that each
chemical compound forms a connected component and there
are 2,319 such components in this dataset. Each vertex corre-
sponds to an atom and its label represents the atom type. An
edge is formed between two vertices if the corresponding two
atoms are connected by a bond. The type of a bond is used as
an edge label, and there are three distinct edge labels.

Finally, theVLSI dataset was obtained from the Interna-
tional Symposium on Physical Design ’98 (ISPD98) bench-
mark suite4 and corresponds to the netlist of a real circuit.
The netlist was converted into a graph by first removing any
nets that are longer than four and then using a star-based ap-
proach to replace each net (i.e., hyperedge) by a set of edges.
Note that for this dataset we limited the size of the largest dis-
covered pattern to five edges. This is because for the values
of the frequency threshold used in our experiments, the only
frequent patterns that contained more than five edges were
paths, and because of the highly connected nature of the un-
derlying graph, there were a very large number of such paths,
making it hard to find these longer path patterns in reasonable
amount of time.

6.2 Results

Table 3 shows the results obtained by theHSIGRAM and
VSIGRAM algorithms for the different datasets, for a wide
range of the minimum frequency threshold valuesf , and the
three different MIS-based problem definitions. For each ex-
periment, Table 3 shows the amount of time (in seconds) re-

3DTP 2D and 3D Structural Information. http://dtp.nci.nih.gov/docs/
3d database/structuralinformation/structuraldata.html

4http://vlsicad.cs.ucla.edu/∼cheese/ispd98.html

Table 2: Datasets used in the experiments

Dataset Connected Vertices Edges Labels
Components Vertex Edge

Aviation 2703 101185 196964 6173 51
Credit 700 14700 28000 59 20
Citation 16999 29014 42064 50 12
Contact Map 170 33443 224488 21 2
DTP 2319 41190 86140 58 3
VLSI 2633 12752 23084 23 1

quired by the particular algorithm, the total number of pat-
terns that were discovered, and size of the largest pattern.
Entries in the table marked with “—” represents experiments
that were aborted because of high computational require-
ments.

From these results we can see that as expected, for all
datasets and algorithms, as the value off decreases, the run-
time for finding the frequent patterns increases as well. The
rate of increase in runtime follows the corresponding rate of
increase in the number of patterns that are being discovered.
Besides that, the results in this table help illustrate the relation
between the two key variables in these experiments, which
are the type of the particular algorithm (HSIGRAM vs VSI-
GRAM) and the type of frequency calculation (approximate
MIS, exact MIS, or upper bound MIS).

In general, the amount of time required byVSIGRAM is
smaller than that required byHSIGRAM. In fact, as the value
of the frequency threshold decreases,VSIGRAM is up to five
times faster thanHSIGRAM. This is true across all datasets
for the approximate and exact MIS problem formulation, and
for those datasets for which the upper bound MIS formulation
leads to the same number of frequent patterns for both
algorithms. As discussed in Section 5.2, the reason for that
performance advantage is the fact that by keeping track the
embeddings of the frequent subgraphs along the depth-first
path, VSIGRAM spends significantly less time in subgraph
isomorphism related computations thanHSIGRAM does.

However, for certain datasets, when the upper bound MIS
formulation is used,VSIGRAM ends up generating signifi-
cantly more patterns than those generated byHSIGRAM. For
example, in the case of the DTP dataset andf = 20, VSI-
GRAM generates almost 16 times more patterns thanHSI-
GRAM. In such cases, the amount of time required byVSI-
GRAM is substantially greater than that required byHSI-
GRAM (32.4 times greater in the DTP example). The rea-
son for that is the fact that because of its depth-first nature,
VSIGRAM cannot take advantage of the frequent subgraph
lattice to get a tight upper bound on the frequency of a sub-
graph based on the frequency of all of its subgraphs, and it
bases its upper bound only on the frequency of the generat-
ing parent. On the other hand, because of its level-by-level
nature,HSIGRAM can use the information from all its sub-
patterns, and obtains better upper bounds (see discussion in
Section 5.1.2).

Comparing the different MIS-based problem formulations,
we can see that the one based on the approximate MIS usu-
ally leads to the fastest execution time for both algorithms.
Moreover, for datasets for which the various overlap graphs

Table 3: Run-time in seconds and the number of found frequent patterns for the different datasets. this is that and that is this
and it is what and what is it.

Aviation Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
2000 308 130 306 130 320 130 833 833 833 833 833 833 8 8 8 8 8 8
1750 779 342 787 342 789 341 2249 2249 2249 2249 2249 2249 9 9 9 9 9 9
1500 1603 743 1674 745 1584 739 5207 5207 5207 5207 5207 5207 10 10 10 10 10 10
1250 2726 1461 2720 1496 2781 1486 11087 11087 11087 11087 11087 11087 12 12 12 12 12 12
1000 5256 3667 5158 3683 5596 3818 30331 30331 30331 30331 30331 30331 13 13 13 13 13 13

Citation Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
100 0.1 0.0 0.1 0.0 0.1 0.0 6 6 6 6 7 11 1 1 1 1 2 5
50 0.1 0.1 0.1 0.1 0.6 — 39 39 39 39 113 — 2 2 2 2 7 —
20 0.6 0.3 0.9 0.5 139 — 266 266 266 266 12203 — 3 3 3 3 16 —
10 4.0 1.5 4.2 1.9 — — 986 986 988 988 — — 5 5 5 5 — —

Contact Run-time[sec] Number of Found Patterns Largest Pattern Size
Map f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
400 3 2 3 2 10 — 100 100 100 100 246 — 2 2 2 2 8 —
300 10 3 10 3 183 — 186 186 186 186 2358 — 2 2 2 2 10 —
200 44 9 45 9 — — 505 505 505 505 — — 3 3 3 3 — —
100 362 63 356 71 — — 3183 3183 3186 3186 — — 5 5 5 5 — —
50 3505 607 3532 632 — — 29237 29237 29298 29298 — — 6 6 6 6 — —

Credit Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
500 0 0 0 0 0 0 24 24 24 24 24 24 3 3 3 3 3 3
200 10 4 10 4 9 4 1325 1325 1325 1325 1325 1325 7 7 7 7 7 7
100 49 20 45 21 45 20 11696 11696 11696 11696 11696 11696 9 9 9 9 9 9
50 169 78 172 80 169 78 73992 73992 73992 73992 73992 73992 11 11 11 11 11 11
20 2019 461 1855 468 1880 462 613884 613884 613884 613884 613884 613884 13 13 13 13 13 13

DTP Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
500 92 20 86 21 96 30 109 109 109 109 153 226 7 7 7 7 12 13
200 101 23 100 24 115 38 414 414 415 415 641 916 9 9 9 9 15 15
100 113 27 114 27 169 64 1244 1244 1244 1244 2484 3788 12 12 12 12 16 18
50 145 34 134 35 247 103 4028 4028 4028 4028 8295 13622 14 14 14 14 18 21
20 243 86 249 83 616 19998 21477 21477 21478 21478 52180 824702 16 16 16 16 20 81
10 813 311 882 294 2018 — 112535 112535 112539 112539 232810 — 21 21 21 21 21 —

VLSI Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact UB Apprx. Exact UB Apprx. Exact UB

H V H V H V H V H V H V H V H V H V
200 11 3 — — 37 8 137 137 — — 347 415 5 5 — — 5 5
150 13 4 — — 46 9 156 156 — — 437 503 5 5 — — 5 5
100 42 7 — — 54 10 379 379 — — 519 609 5 5 — — 5 5
75 49 8 — — 56 10 409 409 — — 571 679 5 5 — — 5 5
50 236 15 — — 282 17 683 683 — — 946 1051 5 5 — — 5 5
25 428 18 — — 469 20 1452 1452 — — 1907 2131 5 5 — — 5 5

Note. Dashes indicate the computation was aborted because of the too long run-time or memory exhaustion.
f : the minimum frequency threshold, H:HSIGRAM, V: VSIGRAM, Approx.: with approximate MIS, Exact: with exact MIS, UB: with upper bound MIS

are reasonably small (this is true for all our datasets except
VLSI), the exact MIS-based formulation leads to small exe-
cution time as well. Also, the upper bound MIS formulation
tends to be slower than the other two primarily because it
generates more patterns. However, the advantage of the up-
per bound formulation over the one based on the exact MIS
can be seen for the VLSI graph for which the resulting over-
lap graph was large, and exact MIS computations could not
finish in reasonable amount of time. Finally, comparing the
number of patterns found by the approximate and the exact
MIS-based formulations, we can see that, in general, the ap-
proximate algorithm fails to discover a very small number of
patterns.

Table 4: SUBDUE Results

Dataset Run-time Number of Pattern Frequency of
[sec] Patterns Size Found Patterns

Aviation — — — — — — — —
Citation 8812 3 27 26 27 1 1 1
Contact Map 5043 3 224 223 223 1 1 1
Credit 517 3 6 5 5 341 395 387
DTP 1525 3 2 2 6 4957 4807 1950
VLSI 16 3 1 1 1 773 773 244

6.3 Performance Comparison with Existing Algorithms

Comparison with SUBDUE We ran SUBDUE [28] version
5.0.65 on the same datasets described in Section 6.1 and

5Although this version is not the latest one, it runs significantly faster
than the current latest version, 5.0.8.

measured the run-time, the number of discovered patterns,
their size, and their frequency. These results are shown in
Table 4. These results were obtained by using SUBDUE’s
default settings for all but the VLSI dataset. For the VLSI
dataset, we run SUBDUE so that to find subgraphs that
contain at most five edges, as was done in the case of
HSIGRAM and VSIGRAM. Note that SUBDUE’s default
settings returns at most three subgraphs that were determined
to be the most important.

Because of the inherent differences between SUBDUE and
our algorithms, it is impossible to perform a direct compari-
son of the results that they generate. For this reason our com-
parisons will focus mostly on highlighting some key points.
First, the amount of time required by SUBDUE is in gen-
eral, considerably higher than that required by our algorithms.
For example, SUBDUE did not finish the computation for the
Aviation dataset after spending four entire days. Also for the
Citation and Contact Map datasets, SUBDUE could not find
any meaningful patterns at all, as the patterns that it found
had a frequency of one. For the Credit dataset with the min-
imum frequency threshold of 50, bothHSIGRAM and VSI-
GRAM with upper bound MIS spent 169 and 78 seconds re-
spectively to discover the same number of subgraphs, 73992.
The largest pattern has 11 edges and had a frequency of 58. In
contrast, the largest pattern found by SUBDUE had six edges
with a frequency of 341. This indicates that if there are small
subgraphs that have relatively high frequency, SUBDUE will
focus on them and will not discover the larger patterns. We
can see the similar result for the DTP dataset. The size of
the patterns SUBDUE found are very small, 2–6 edges, but
their frequency is very high. On the other hand, the results
in Table 3 show that with the minimum frequency threshold
20, bothHSIGRAM andVSIGRAM under exact MIS spend
249 and 83 seconds respectively to find 21,478 frequent sub-
graphs, and the largest size is 16.

Comparison with SEuS The SEuS [21] algorithm is de-
signed to find all frequent subgraphs in a single-graph set-
ting. However, when determining the frequency of a sub-
graph they consider all embeddings irrespective of whether
they are disjoint or not. As a result, a subgraph may have high
frequency even though it has small number of edge-disjoint
embeddings because of overlapped embeddings. In [21], the
run-time of SEuS on the PTE chemical dataset6 is reported.
SEuS (SEuS-S1) spent more than 20 seconds to find 34 fre-
quent subgraphs, that is 1.4 frequent subgraphs per second.
On the same dataset given the minimum frequency thresh-
old of 500, VSIGRAM with upper bound MIS requires 20
seconds to find 168 frequent subgraphs, which translates to
8.4 frequent subgraphs per second. Similarly, with the Credit
dataset (which is called “Credit-4” in [20]), SEuS-S1 spent
50 seconds to produce 48 frequent subgraphs (one frequent
subgraphs per second), whileVSIGRAM with upper bound
MIS finds 1,325 frequent subgraphs in four seconds for the
minimum frequency threshold 200 (331 frequent subgraphs

6ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/carcinogenesis/
progol/carcinogenesis.tar.Z

per second).

7 Conclusions

In this paper we addressed the problem of finding all the
subgraphs that have many edge-disjoint embeddings in a
large sparse graph, a step critical to discovering patterns
in graph datasets. We studied three distinct formulations
of the problem that were motivated by the complexity of
identifying the maximum set of edge-disjoint embeddings of
a subgraph, and developed two frequent subgraph mining
algorithms for solving them. These algorithms are based
on the horizontal and vertical paradigms, respectively. Our
experimental evaluation on many real datasets showed that
for most datasets and problem formulations both algorithms
achieve good performance, with the vertical algorithm being
two-to-five times faster.

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
Automatic subspace clustering of high dimensional data for
data mining applications. InProc. of 1998 ACM-SIGMOD Int.
Conf. on Management of Data, 1998.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining associ-
ation rules. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors,
Proc. of the 20th Int. Conf. on Very Large Data Bases (VLDB),
pages 487–499. Morgan Kaufmann, September 1994.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In P. S.
Yu and A. L. P. Chen, editors,Proc. of the 11th Int. Conf. on
Data Engineering (ICDE), pages 3–14. IEEE Press, 1995.

[4] B. Berendt, A. Hotho, and G. Stumme. Towards semantic web
mining. In International Semantic Web Conference (ISWC),
pages 264–278, 2002.

[5] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein
data bank.Nucleic Acids Research, 28:235–242, 2000.

[6] P. Berman and T. Fujito. On the approximation properties
of independent set problem in degree 3 graphs. InProc. of
Workshop on Algorithms and Data Structures, pages 449–460,
1995.

[7] C. L. Blake and C. J. Merz. UCI repository of machine
learning databases, 1998.

[8] C. Borgelt and M. R. Berthold. Mining molecular fragments:
Finding relevant substructures of molecules. InProc. of 2002
IEEE International Conference on Data Mining (ICDM), 2002.

[9] L. P. Chew, D. Huttenlocher, K. Kedem, and J. Kleinberg. Fast
detection of common geometric substructure in proteins. In
Proc. of the 3rd ACM RECOMB International Conference on
Computational Molecular Biology, 1999.

[10] D. J. Cook and L. B. Holder. Substructure discovery us-
ing minimum description length and background knowledge.
Journal of Artificial Intelligence Research, 1:231–255, 1994.

[11] D. J. Cook and L. B. Holder. Graph-based data mining.IEEE
Intelligent Systems, 15(2):32–41, 2000.

[12] D. J. Cook, L. B. Holder, and S. Djoko. Knowledge discovery
from structural data.Journal of Intelligent Information Sys-
tems, 5(3):229–245, 1995.

[13] L. De Raedt and S. Kramer. The level-wise version space
algorithm and its application to molecular fragment finding. In
Proc. of the 17th International Joint Conference on Artificial
Intelligence (IJCAI-01), 2001.

[14] L. Dehaspe, H. Toivonen, and R. D. King. Finding fre-
quent substructures in chemical compounds. In R. Agrawal,
P. Stolorz, and G. Piatetsky-Shapiro, editors,Proc. of the 4th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD-98), pages 30–36. AAAI Press,
1998.

[15] M. Deshpande, M. Kuramochi, and G. Karypis. Automated
approaches for classifying structures. InProc. of the 2nd
Workshop on Data Mining in Bioinformatics (BIOKDD ’02),
2002.

[16] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent
sub-structure based approaches for classifying chemical com-
pounds. InProc. of 2003 IEEE International Conference on
Data Mining (ICDM), 2003. to appear.

[17] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy.
Approximating clique is almost NP-complete. InProc. of the
32nd IEEE Symposium on Foundations of Computer Science
(FOCS), pages 2–12, 1991.

[18] S. Fortin. The graph isomorphism problem. Technical Report
TR96-20, Department of Computing Science, University of
Alberta, 1996.

[19] M. R. Garey and D. S. Johnson.Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, New York, 1979.

[20] S. Ghazizadeh and S. Chawathe. Discovering freuqent struc-
tures using summaries. Technical Report CS-TR-4364, De-
partment of Computer Science, University of Maryland, 2002.

[21] S. Ghazizadeh and S. Chawathe. SEuS: Structure extraction
using summaries. InProc. of the 5th International Conference
on Discovery Science, 2002.

[22] J. Gonzalez, L. B. Holder, and D. J. Cook. Application
of graph-based concept learning to the predictive toxicology
domain. In Proc. of the Predictive Toxicology Challenge
Workshop, 2001.

[23] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Wil-
lett. Identification of tertiary structure resemblance in proteins
using a maximal common subgraph isomorphism algorithm.
Journal of Molecular Biology, 229:707–721, 1993.

[24] V. Guralnik and G. Karypis. A scalabale algorithm for clus-
tering sequence datasets. InProc. of 2001 IEEE International
Conference on Data Mining (ICDM), 2001.

[25] M. M. Halldórsson and J. Radhakrishnan. Greed is good:
Approximating independent sets in sparse and bounded-degree
graphs.Algorithmica, 18(1):145–163, 1997.

[26] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. InProc. of ACM SIGMOD Int. Conf. on
Management of Data, Dallas, TX, May 2000.

[27] D. S. Hochbaum. Efficient bounds for the stable set, vertex
cover, and set packing problems.Discrete Applied Mathemat-
ics, 6:243–254, 1983.

[28] L. B. Holder, D. J. Cook, and S. Djoko. Substructure discovery
in the SUBDUE system. InProc. of the AAAI Workshop on
Knowledge Discovery in Databases, pages 169–180, 1994.

[29] M. Hong, H. Zhou, W. Wang, and B. Shi. An efficient
algorithm of frequent connected subgraph extraction. InProc.
of the 7th Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD-03), volume 2637 ofLecture Notes
in Computer Science, pages 40–51. Springer-Verlag, 2003.

[30] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraph in the presence of isomophism. InProc. of 2003
IEEE International Conference on Data Mining (ICDM’03),
2003. to appear.

[31] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based
algorithm for mining frequent substructures from graph data.
In Proc. of the 4th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD’00),
pages 13–23, Lyon, France, September 2000.

[32] A. Inokuchi, T. Washio, and H. Motoda. Complete mining of
frequent patterns from graphs: Mining graph data.Machine
Learning, 50(3):321–354, March 2003.

[33] A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast
algorithm for mining frequent connected subgraphs. Technical
Report RT0448, IBM Research, Tokyo Research Laboratory,
2002.

[34] D. Jensen and H. Goldberg, editors.Artificial Intelligence and
Link Analysis Papers from the 1998 Fall Symposium. AAAI
Press, 1998.

[35] I. Jonyer, D. J. Cook, and L. B. Holder. Discovery and evalu-
ation of graph-based hierarchical conceptual clusters.Journal
of Machine Learning Research, 2:19–43, 2001.

[36] I. Jonyer, L. B. Holder, and D. J. Cook. Hierarchical concep-
tual structural clustering.International Journal on Artificial
Intelligence Tools, 10(1–2):107–136, 2001.

[37] KDD Cup 2003. http://www.cs.cornell.edu/projects/kddcup/
datasets.html.

[38] S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani. On
syntactic versus computational views of approximability. In
Proc. of IEEE Symposium on Foundations of Computer Sci-
ence, pages 819–830, 1994.

[39] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM (JACM), 46(5):604–632,
1999.

[40] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and
A. S. Tomkins. The Web as a graph: Measurements, models
and methods.Lecture Notes in Computer Science, 1627, 1999.

[41] C. Ko. Logic induction of valid behavior specifications for
intrusion detection. InIEEE Symposium on Security and
Privacy (S&P), pages 142–155, 2000.

[42] I. Koch, T. Lengauer, and E. Wanke. An algorithm for finding
maximal common subtopoloties in a set of protein structures.
Journal of computational biology, 3(2):289–306, 1996.

[43] S. Kramer, L. De Raedt, and C. Helma. Molecular feature
mining in HIV data. In Proc. of the 7th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD-01), pages 136–143, 2001.

[44] M. Kuramochi and G. Karypis. An efficient algorithm for dis-
covering frequent subgraphs.IEEE Transactions on Knowl-
edge and Data Engineering. in press.

[45] M. Kuramochi and G. Karypis. Frequent subgraph discovery.
In Proc. of 2001 IEEE International Conference on Data
Mining (ICDM), November 2001.

[46] M. Kuramochi and G. Karypis. An efficient algorithm for
discovering frequent subgraphs. Technical Report 02-026,
University of Minnesota, Department of Computer Science,
2002.

[47] W. Lee and S. Stolfo. A framework for constructing features
and models for intrusion detection systems.ACM Transactions
on Information and System Security, 3(4), 2000.

[48] N. Leibowitz, Z. Y. Fligelman, R. Nussinov, and H. J. Wolf-
son. Multiple structural alignment and core detection by geo-
metric hashing. InProc. of the 7th International Conference
on Intelligent Systems in Molecular Biology, pages 169–177,
Heidelberg, Germany, August 1999.

[49] N. Leibowitz, R. Nussinov, and H. J. Wolfson. MUSTA—

a general, efficient, automated method for multiple structure
alignment and detection of common motifs: application to
proteins. Journal of computational biology, 8(2):93–121,
2001.

[50] W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient
classification based on multiple class-association rules. In
Proc. of 2001 IEEE International Conference on Data Mining
(ICDM), 2001.

[51] B. Liu, W. Hsu, and Y. Ma. Integrating classification and
association rule mining. In4th Internation Conference on
Knowledge Discovery and Data Mining, 1998.

[52] B. D. McKay. Nauty users guide. http://cs.anu.edu.au/∼bdm/
nauty/.

[53] B. D. McKay. Practical graph isomorphism.Congressus
Numerantium, 30:45–87, 1981.

[54] E. M. Mitchell, P. J. Artymiuk, D. W. Rice, and P. Willett. Use
of techniques derived from graph theory to compare secondary
structure motifs in proteins.Journal of Molecular Biology,
212:151–166, 1989.

[55] R. J. Mooney, P. Melville, L. R. Tang, J. Shavlik, I. de Cas-
tro Dutra, D. Page, and V. S. Costa. Relational data mining
with inductive logic programming for link discovery. InNa-
tional Science Foundation Workshop on Next Generation Data
Mining, November 2002.

[56] S. H. Muggleton. Scientific knowledge discovery using In-
ductive Logic Programming.Communications of the ACM,
42(11):42–46, 1999.

[57] P. R. J.Österg̊ard. A fast algorithm for the maximum clique
problem.Discrete Applied Mathematics, 120:195–205, 2002.

[58] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A fast
and scalable tool for data mining in massive graphs. InProc.
of the 8th ACM SIGKDD Internal Conference on Knowlege
Discovery and Data Mining (KDD’2002), Edmonton, AB,
Canada, July 2002.

[59] X. Pennec and N. Ayache. A geometric algorithm to find small
but highly simialar 3D substructures in proteins.Bioinformat-
ics, 14(6):516–522, 1998.

[60] J. W. Raymond. Heuristics for similarity searching of chem-
ical graphs using a maximum common edge subgraph algo-
rithm. J. Chem. Inf. Comput. Sci., 42:305–316, 2002.

[61] R. C. Read and D. G. Corneil. The graph isomorph disease.
Journal of Graph Theory, 1:339–363, 1977.

[62] J. M. Robson. Algorithms for maximum independent sets.
Journal of Algorithms, 7:425–440, 1986.

[63] A. Srinivasan, R. D. King, S. H. Muggleton, and M. J. E. Stern-
berg. Carcinogenesis predictions using ILP. In S. Džeroski
and N. Lavrǎc, editors,Proc. of the 7th International Work-
shop on Inductive Logic Programming, volume 1297, pages
273–287. Springer-Verlag, 1997.

[64] SUBDUE databases. http://cygnus.uta.edu/subdue/databases/
index.html.

[65] N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent
graph patterns from semistructured data. InProc. of 2002
IEEE International Conference on Data Mining (ICDM), pages
458–465, 2002.

[66] X. Wang, J. T. L. Wang, D. Shasha, B. A. Shapiro, I. Rigoutsos,
and K. Zhang. Finding patterns in three dimensional graphs:
Algorithms and applications to scientific data mining.IEEE
Transactions on Knowledge and Data Engineering, 14(4):731–
749, July/August 2002.

[67] S. Wasserman, K. Faust, and D. Iacobucci.Social Network
Analysis : Methods and Applications. Cambridge University

Press, 1994.
[68] X. Yan and J. Han. gSpan: Graph-based substructure pattern

mining. In Proc. of 2002 IEEE International Conference on
Data Mining (ICDM), 2002.

[69] X. Yan and J. Han. CloseGraph: Mining closed frequent
graph patterns. InProc. of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-
2003), 2003.

[70] K. Yoshida and H. Motoda. CLIP: Concept learning from
inference patterns.Artificial Intelligence, 75(1):63–92, 1995.

[71] K. Yoshida, H. Motoda, and N. Indurkhya. Graph-based
induction as a unified learning framework.Journal of Applied
Intelligence, 4:297–328, 1994.

[72] M. J. Zaki and K. Gouda. Fast vertical mining using diffsets.
In Proc. of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2003), 2003.

