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Abstract. Graph-based modeling has emerged as a powerful abstraction capable of capturing in a single and
unified framework many of the relational, spatial, topological, and other characteristics that are present in a
variety of datasets and application areas. Computationally efficient algorithms that find patterns corresponding
to frequently occurring subgraphs play an important role in developing data mining-driven methodologies for
analyzing the graphs resulting from such datasets. This paper presents two algorithms, based on the horizontal
and vertical pattern discovery paradigms, that find the connected subgraphs that have a sufficient number of edge-
disjoint embeddings in a single large undirected labeled sparse graph. These algorithms use three different methods
for determining the number of edge-disjoint embeddings of a subgraph and employ novel algorithms for candidate
generation and frequency counting, which allow them to operate on datasets with different characteristics and to
quickly prune unpromising subgraphs. Experimental evaluation on real datasets from various domains show that
both algorithms achieve good performance, scale well to sparse input graphs with more than 120,000 vertices or
110,000 edges, and significantly outperform previously developed algorithms.
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1. Introduction

In recent years, there has been an increased interest in developing data mining algorithms
that operate on graphs. Such graphs arise naturally in a number of different application
domains including network intrusion (Lee and Stolfo, 2000; Ko, 2000), semantic web
(Berendt et al., 2002), behavioral modeling (Wasserman et al., 1994; Mooney et al., 2004),
VLSI reverse engineering (Yoshida and Motoda, 1995), link analysis (Jensen and Goldberg,
1998; Kleinberg et al., 1999; Kleinberg, 1999; Palmer et al., 2002), and chemical compound
classification (Dehaspe et al., 1998; Kramer et al., 2001; Gonzalez et al., 2001; Deshpande
et al., 2003). Moreover, they can be used to effectively model the structural and relational
characteristics of a variety of datasets arising in other areas such as physical sciences (e.g.,
chemistry, fluid dynamics, astronomy, structural mechanics, and ecosystem modeling),
life sciences (e.g., genomics, proteomics, pharmacogenomics, and health informatics), and
home-land defense (e.g., information assurance, network intrusion, infrastructure protec-
tion, and terrorist-threat prediction/identification).
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The focus of this paper is on developing algorithms for a particular data mining task,
which is that of finding frequently occurring patterns in graph datasets. Frequent patterns
play a critical role in many data mining tasks as they can be used among other to derive
association rules (Agrawal and Srikant, 1994), act as composite features for classification
algorithms (Dehaspe et al., 1998; Muggleton, 1999; Srinivasan et al., 1997; Liu et al.,
1998; Gonzalez et al., 2001; Li et al., 2001; Deshpande et al., 2002), cluster the (graph)
transactions (Agrawal et al., 1998; Leibowitz et al., 1999; Jonyer et al., 2001a, 2001;
Leibowitz et al., 2001; Guralnik and Karypis, 2001), and help in determining the similarity
between graphs (Mitchell et al., 1989; Grindley et al., 1993; Koch et al., 1996; Pennec
and Ayache, 1998; Chew et al., 1999; Leibowitz et al., 2001; De Raedt and Kramer, 2001;
Raymond, 2002; Wang et al., 2002). Within the context of graphs, the most widely used
definition of a pattern is that of a connected subgraph (Borgelt and Berthold, 2002; Yan and
Han, 2002, 2003; Inokuchi et al., 2003; Hong et al., 2003; Huan et al., 2003; Kuramochi
and Karypis, 2004a) and is the definition that we will use in this paper. However, different
pattern definitions have been proposed as well (Inokuchi et al., 2003).

There are two distinct problem formulations for frequent pattern mining in graph datasets
that are referred to as the graph-transaction setting and the single-graph setting. In the
graph-transaction setting, the input to the pattern mining algorithm is a set of relatively
small graphs (called transactions), whereas in the single-graph setting the input data is a
single large graph. The difference affects the way the frequency of the various patterns
is determined. For the graph-transaction setting, the frequency of a pattern is determined
by the number of graph transactions that the pattern occurs in, irrespective of how many
times a pattern occurs in a particular transaction, whereas in the single-graph setting, the
frequency of a pattern is based on the number of its occurrences (i.e., embeddings) in the
single graph. Due to the inherent differences of the characteristics of the underlying dataset
and the problem formulation, algorithms developed for the graph-transaction setting cannot
be used to solve the single-graph setting, whereas the latter algorithms can be easily adapted
to solve the former problem.

In recent years, a number of efficient and scalable algorithms have been developed to
find patterns in the graph-transaction setting (Borgelt and Berthold, 2002; Yan and Han,
2002; Inokuchi et al., 2003; Hong et al., 2003; Yan and Han, 2003; Huan et al., 2003;
Kuramochi and Karypis, 2004a). These algorithms are complete in the sense that they
are guaranteed to discover all frequent subgraphs and were shown to scale to very large
graph datasets. However, algorithms that are capable of finding patterns in the single-graph
setting has received much less attention, despite the fact that this problem setting is more
generic and applicable to a wider range of datasets and application domains than the other.
Moreover, existing algorithms that are guaranteed to find all frequent patterns (Ghazizadeh
and Chawathe, 2002b; Vanetik et al., 2002) or algorithms that are heuristic, such as GBI
(Yoshida et al., 1994) and SUBDUE (Holder et al., 1994), which tend to miss a large number
of frequent patterns, are computationally expensive and do not scale to large datasets.

Developing algorithms that find the complete set of frequent patterns in the single-graph
setting is the focus of this paper. We present two computationally efficient algorithms
that can find subgraphs which are frequently embedded within a large sparse graph. The
first algorithm, called HSIGRAM, follows a horizontal approach and finds the frequent
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subgraphs in a breadth-first fashion, whereas the second algorithm, called VSIGRAM,
follows a vertical approach and finds the frequent subgraphs in a depth-first fashion. These
algorithms incorporate efficient algorithms for candidate generation and frequency counting
that allow them to scale to graphs containing over 120,000 vertices and find patterns with
relatively low occurrence frequency. Our experimental evaluation on eight real graphs shows
that both HSIGRAM and VSIGRAM achieve reasonably good performance, scale to large
graphs, and substantially outperform previously developed approaches for solving similar
or simpler versions of the problem. A shorter version of this paper has previously appeared
in Kuramochi and Karypis (2004b). This paper is enhanced with various modifications
including a section on recent related work and new experimental evaluations.

The rest of this paper is organized as follows. Section 2 defines the graph model that we
use, reviews some graph-related definitions, and introduces the notation that is used in the
paper. Section 3 surveys related research in this area. Section 4 formally defines the problem
of frequent subgraph discovery and discusses the challenges associated with finding them
in a computationally efficient manner. Section 5 describes in detail the HSIGRAM and
VSIGRAM algorithms that we developed for solving the problem of frequent subgraph
discovery from a single large sparse graph. Section 6 provides a detailed experimental
evaluation of the HSIGRAM and VSIGRAM algorithms on various real datasets and compares
them against existing algorithms. Finally, Section 7 provides some concluding remarks.

2. Definitions and notation

A graph G = (V, E) is made of two sets, the set of vertices V and the set of edges E.
Each edge itself is a pair of vertices, and throughout this paper we assume that the graph
is undirected, i.e., each edge is an unordered pair of vertices. Furthermore, we will assume
that the graph is labeled. That is, each vertex and edge has a label associated with it that
is drawn from a predefined set of vertex labels (LV ) and edge labels (LE). Each vertex (or
edge) of the graph is not required to have a unique label and the same label can be assigned
to many vertices (or edges) in the same graph. If all the vertices and edges of the graph
have the same vertex and edge label assigned to them, we will call this graph unlabeled.

Given a graph G = (V, E), a graph Gs = (Vs, Es) is a subgraph of G if and only if Vs

⊆ V and Es ⊆ E. A graph is connected if there is a path between every pair of vertices
in the graph. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if they are
topologically identical to each other, that is, there is a mapping from V1 to V2 such that each
edge in E1 is mapped to a single edge in E2 and vice versa. In the case of labeled graphs,
this mapping must also preserve the labels on the vertices and edges. An automorphism is
an isomorphism mapping where G1 = G2. Given two graphs G1 = (V1, E1) and G2 = (V2,
E2), the problem of subgraph isomorphism is to find an isomorphism between G2 and a
subgraph of G1, i.e., determine whether or not G2 is included in G1.

Given a subgraph Gs and a graph G, two embeddings of Gs in G are called identical
if they use the same set of edges of G, and they are called edge-disjoint if they do not
have any edges of G in common. Given a set of all embeddings of a particular subgraph
Gs in a graph G, the overlap graph of Gs is a graph obtained by creating a vertex for each
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Table 1. Notation used throughout the paper.

Notation Description

k-subgraph A connected subgraph with k edges

(also written as a size-k subgraph)

Gk ,Hk Graphs of size k

E(G) Edges of a graph G

V(G) Vertices of a graph G

cl(G) Canonical label of a graph G

dia(G) Diameter of a graph G

a, b, c, e, f Edges

u, ν Vertices

d(ν) Degree of a vertex ν

l(ν) Label of a vertex ν

l(e) Label of an edge e

H = G − e A graph obtained by deleting edge e ∈ E(G)

G Input graph

Gi G’s connected component

S(Gk+1) Set of all connected size-k subgraphs of Gk+1

M(G) = {mi} All embeddings of a subgraph G in G
A(G) = {ei} All anchor edges of a subgraph G in G
C Candidate subgraph

C{k} Set of candidates with k edges

C Set of all candidates

F Frequent subgraph

Fk Set of frequent k-subgraphs

F Set of all frequent subgraphs

k* Size of the largest frequent subgraph in G
LE Set of all edge labels in G
LV Set of all vertex labels in G

non-identical embedding and creating an edge for each pair of non-edge-disjoint embed-
dings. An example of a subgraph and its overlap graph are shown in figure 1.

The notation that we will be using throughout the paper is shown in Table 1.

2.1. Canonical labeling

One of the key operations required by any frequent subgraph discovery algorithm is a
mechanism by which to check whether two subgraphs are identical or not. One way of
performing this check is to perform a graph isomorphism operation. However, in cases in
which many such checks are required among the same set of subgraphs, a better way of
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Figure 1 Simple examples of codes and canonical adjacency matrices.

performing this task is to assign to each graph a unique code (i.e., a sequence of bits, a
string, or a sequence of numbers) that is invariant on the ordering of the vertices and edges
in the graph. Such a code is referred to as the canonical label of a graph G = (V, E) (Read
and Corneil, 1977; Fortin, 1996), and we will denote it by cl(G). By using canonical labels,
we can check whether or not two graphs are identical by checking to see whether they have
identical canonical labels. Moreover, by comparing the canonical labels we can obtain a
complete ordering of a set of graphs in a unique and deterministic way, regardless of the
original vertex and edge ordering.

A simple way of defining the canonical label of a graph is as the string obtained by
concatenating the upper-triangular entries of the graph’s adjacency matrix when this matrix
has been symmetrically permuted so that this string becomes the lexicographically largest
(or smallest) over the strings that can be obtained from all such permutations. This is
illustrated in figure 1 that shows a graph G3 and the permutation of its adjacency matrix1

that leads to its canonical label “aaazyx”. In this code, “aaa” was obtained by concatenating
the vertex-labels in the order that they appear in the adjacency matrix and “zyx” was obtained
by concatenating the columns of the upper-triangular portion of the matrix. Note that any
other permutation of G3’s adjacency matrix will lead to a code that is lexicographically
smaller (or equal) to “aaazyx”. If a graph has |V| vertices, the complexity of determining its
canonical label using this scheme is in O(|V|!) making it impractical even for moderate size
graphs. Note that the problem of determining the canonical label of a graph is equivalent to
determining isomorphism between graphs, because if two graphs are isomorphic with each
other, their canonical labels must be identical. Both canonical labeling and determining
graph isomorphism are not known to be either in P or in NP-complete (Fortin, 1996).

In practice, the complexity of finding a canonical labeling of a graph can be reduced by
using various heuristics to narrow down the search space or by using alternate canonical
label definitions that take advantage of special properties that may exist in a particular
set of graphs (McKay, 1981, n.d.; Fortin, 1996). As part of our earlier research we have
developed such canonical labeling algorithm that fully makes use of edge- and vertex-labels
for fast processing and various vertex invariants to reduce the complexity of determining
the canonical label of a graph (Kuramochi and Karypis, 2001, 2002). Our algorithm can
compute the canonical label of graphs containing up to 50 vertices extremely fast and will
be the algorithm used to compute the canonical labels of the different subgraphs in this
paper.
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2.2. Maximum independent set

As discussed later in Section 4, our frequent subgraph discovery algorithm focuses on
finding subgraphs whose embeddings are edge-disjoint. A critical step in obtaining this set
of edge-disjoint embeddings for a particular subgraph is to find the maximum independent
set of its overlap graph. Given a graph G = (V, E), a subset of vertices I ⊂ V is called
independent if no two vertices in I are connected by an edge in E. An independent set I is
called maximal independent set for every vertex ν in I if there is an edge in E that connects
ν to a vertex in V\ I. A maximal independent set I is called maximum independent set
(MIS) if I contains as many vertices of V as possible.

The problem of finding the MIS of a graph was among the first problems proved to be in
NP-complete (Garey and Johnson, 1979), and remains so even for bounded degree graphs.
Moreover, it has been shown that the size of MIS cannot be approximated even within a
factor of |V|1 − o(1) in polynomial time (Feige et al., 1991). However, the importance of the
problem and its applicability to a wide-range of domains has attracted a considerable amount
of research. This research has been focused on developing both faster exact algorithms as
well as approximate algorithms. The faster exact algorithm to date is the algorithm by
Robson (1986) that solves the MIS problem in time O(1.211|V|), making it possible to solve
in reasonable amount of time problem instances containing up to around 100 vertices. In
this study, we used a fast implementation of the exact maximum clique (MC) problem
solver wclique (Östergård, 2002) instead of those fast exact MIS algorithms. Because
the MIS problem on a graph G is equivalent to the MC problem on a G’s complement
graph Ḡ, we can use wclique as a fast exact MIS algorithm (EMIS). Heuristic algorithms
focus on finding maximal independent sets whose size is bounded in terms of the size of
the optimal solution, and a number of such methods have been developed (Hochbaum,
1983; Berman and Fujito, 1995; Khanna et al., 1994; Halldórsson and Radhakrishnan,
1997).

One of the most widely used heuristic is the greedy algorithm (GMIS) which selects a
vertex of the minimum degree, deletes that vertex and all of its neighbors from the graph,
and repeats this process until the graph becomes empty. A recent detailed analysis of the
GMIS algorithm has shown that it produces reasonably good approximations of the MIS
for bounded- and low-degree graphs (Halldórsson and Radhakrishnan, 1997). In particular,
for a graph G with a maximum degree � and an average degree d̄ , the size |I| of the MIS
satisfies the following:

|I | ≤ min

(
� + 2

3
|GMIS(G)|, d̄ + 2

2
|GMIS(G)|

)
(1)

where |GMIS(G)| is the size of the approximate MIS found by the GMIS algorithm.
Note that Eq. (1) provides an upper-bound on the number of edge-disjoint embeddings of
a particular subgraph, and we will use this bound to obtain a computationally tractable
problem formulation that is guaranteed not to miss any subgraphs that can potentially be
frequent.
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3. Related work

The previous research on finding frequent subgraphs in graph datasets falls under two
categories. The first category contains algorithms for finding subgraphs that occur multiple
times in a single input graph (Yoshida et al., 1994, 2000; Holder et al., 1994; Ghazizadeh and
Chawathe, 2002b; Vanetik et al., 2002) and are directly related to the algorithms presented
in this paper, whereas the second category contains algorithms that find subgraphs that
occur frequently across a database of small graphs (Dehaspe et al., 1998; Inokuchi et al.,
2000, 2002, 2003; Kramer et al., 2001; Kuramochi and Karypis, 2001, 2004a; Borgelt and
Berthold, 2002; Yan and Han, 2002; Hong et al., 2003; Huan et al., 2003; Cohen and Gudes,
2004). Between these two classes of algorithms, those developed for the latter problem are
in general more mature as they have moderate computational requirements and scale to
large datasets. In the rest of this section, we will describe the related research only on the
single-graph setting as it is directly related to the topic of the paper. The reader should refer
to Kuramochi et al. (2004) for a survey of the different algorithms for the graph-transaction
setting.

The most well-known algorithm for finding recurring subgraphs in a single large graph is
the SUBDUE system, originally developed in 1994, and improved over the years (Holder et
al., 1994; Cook and Holder, 1994, 2000; Cook et al., 1995, 2000). SUBDUE is an approxi-
mate algorithm and finds patterns that can compress the original input graph by substituting
those patterns with a single vertex. In evaluating the extent to which a particular pattern
can compress the original graph it uses the minimum description length (MDL) principle,
and employs a heuristic beam search to narrow the search-space. These approximations im-
prove its computational efficiency but at the same time it prevents it from finding subgraphs
that are indeed frequent. GBI (Yoshida et al., 1994) is another greedy heuristics based
algorithm similar to SUBDUE. Ghazizadeh and Chawathe (2002b) developed an algorithm
called SEuS that uses a data structure called summary to construct a lossy compressed
representation of the input graph. This summary is obtained by collapsing together all the
vertices of the input graph that have the same label and is used to quickly prune infrequent
candidates. As the authors indicate, this summary data-structure is useful only when the
input graph contains a relatively small number of frequent subgraphs with high frequency,
and is not effective if there are a large number of frequent subgraphs with low frequency.
Vanetik et al. (2002) presented an algorithm for finding all frequently occurring subgraphs
from a single labeled undirected graph using the maximum number of edge-disjoint em-
beddings of a graph as a measure of its frequency. Each subgraph is represented by its
minimum number of edge-disjoint paths (path number) and use a level-by-level approach
to grow the patterns based on their path-number. Their emphasis is on efficient candidate
generation and no special attention is paid for frequency counting.

4. Discovering frequent patterns in a single graph: Problem definition

A fundamental issue that needs to be considered by any frequent subgraph discovery
problem formulation that is applicable to the single-graph setting is the counting method of
the occurrence frequency. In general, there are two possible methods for determining the
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Figure 2 Overlapped embeddings.

Figure 3 Patterns with the non-monotonic frequency.

frequency of a subgraph. In the first method, two embeddings of a subgraph are considered
different, as long as they differ by at least one edge (i.e., non-identical). As a result, arbitrary
overlaps of embeddings of the same subgraph are allowed. On the other hand, in the second
method, two embeddings are considered different, only if they do not share edges (i.e.,
they are edge-disjoint). These two methods are illustrated in figure 2. In this example, there
are three possible embeddings of the subgraph shown in figure 2(a) in the input graph
of figure 2(b). Two of these embeddings (figures 2(c) and (e)) do not share any edges,
whereas the third embedding (figure 2(d)) shares edges with the other two. Thus, if we
allow overlaps, the frequency of the subgraph is 3, and if we do not it is 2.

These two ways of counting the frequency of a subgraph lead to problems with dra-
matically different characteristics. If we allow arbitrary overlaps between non-identical
embeddings, then the resulting frequency is not any longer downward closed (i.e., the fre-
quency of a subgraph does not monotonically decrease as a function of its length). This is
illustrated in Figure 3. Both G7 and G6 are subgraphs of G. Although the smaller subgraph
G6 has only one non-identical embedding, the larger G7 has six non-identical embeddings.
On the other hand, if we determine the frequency of each subgraph by counting the max-
imum number of its edge-disjoint embeddings, then the resulting frequency is downward
closed (Vanetik et al., 2002).

Being able to take advantage of a frequency counting method that is downward closed is
essential for the computational tractability of most frequent pattern discovery algorithms.
For this reason, our problem formulations uses edge-disjoint embeddings. Given this, one
way of formulating the frequent subgraph discovery problem for the single-graph setting
as follows (Vanetik et al., 2002):

Definition 1 (Exact discovery). Given an input graph G which is undirected and labeled,
and a parameter f, find all connected undirected labeled subgraphs that have at least f
edge-disjoint embeddings in G.
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By this definition, in order to determine if a subgraph is frequent or not, we need to
find whether the overlap graph of its non-identical embeddings contain an independent set
whose size is at least f. When a subgraph is relatively frequent compared to the frequency
threshold f, by using approximate MIS algorithms we can quickly tell that such a subgraph
is actually frequent. However, in the cases in which the approximate MIS algorithm does
not find a sufficiently large independent set, the exact MIS needs to be computed before
a pattern can be kept or discarded. Also, if we need not only to find frequent subgraphs,
but also to find their exact frequency, then the exact MIS needs to be computed on the
overlap graph of every pattern. In both cases, because solving the exact MIS problem is
in NP-complete (see Section 2.2), the above definition of the frequent subgraph discovery
problem may not be tractable, even for a relatively simple input graph.

To make the problem more practical, we propose two alternative formulations that can
find frequent subgraphs without solving the exact MIS problem.

Definition 2 (Approximate discovery). Given an input graph G which is undirected and
labeled, and a parameter f, find as many as possible connected undirected labeled subgraphs
that have at least f edge-disjoint embeddings in G.

Definition 3 (Upper bound discovery). Given an input graph G which is undirected and
labeled, and a parameter f, find as few as possible connected undirected labeled subgraphs
such that an upper bound on the number of their edge-disjoint embeddings is above the
threshold f.

Essentially the solutions for those two problems become a subset and a superset of the
solution for Definition 1, respectively. The first formulation, Definition 2, which asks for
a subset of the solution of Definition 1, requires that the embeddings of each subgraph
form an overlap graph that has an approximate MIS whose size is greater than or equal
to f. The second formulation, Definition 3, which asks for a superset of the solution of
Definition 1, requires that an upper bound on the size of the exact MIS of this overlap graph
is greater than or equal to f. As discussed in Section 2.2, such upper bounds can be easily
obtained for both the GMIS algorithm as well as for other approximate algorithms. Note
that inherent in these two last problem formulations is our desire to obtain a set of subgraphs
whose size is as closed as possible to the actual number of frequent subgraphs that satisfy
Definition 1. Thus, the effectiveness of these formulations and the associated algorithms
will be evaluated with respect to both the computational efficiency that they achieve, and
the number of patterns (or the size of the largest frequent patterns) they discover compared
with the number of patterns discovered by 1.

5. Algorithms for finding frequent subgraphs in a large graph

We developed two algorithms, called HSIGRAM2 and VSIGRAM, which find all frequent
subgraphs according to Definitions 1–3 described in Section 4. In both algorithms, the
frequent patterns are conceptually organized in a form of a lattice that is referred to as the
lattice of frequent subgraphs. The kth level of this lattice contains all frequent subgraphs
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with k edges (i.e., size-k subgraphs), and a node at level k, representing a subgraph Gk,
is connected to at most k nodes at level k − 1, each corresponding to a distinct (i.e.,
non-isomorphic) connected size-(k − 1) subgraph of Gk. The goal of both HSIGRAM and
VSIGRAM is to identify the various nodes of this lattice and the frequency of the associated
subgraphs.

The difference between the two algorithms is the method they use to discover (i.e.,
generate) the nodes of the lattice. HSIGRAM follows a horizontal approach and discovers
the nodes in a breadth-first fashion, whereas VSIGRAM follows a vertical approach and
discovers the nodes in a depth-first fashion. Both horizontal and vertical approaches have
been previously used to find frequent subgraphs in the graph-transaction setting (Inokuchi
et al., 2002; Kuramochi and Karypis, 2004a; Yan and Han, 2002; Borgelt and Berthold,
2002) and have their origins on algorithms developed for finding frequent itemsets and
sequences (Agrawal and Srikant, 1994, 1995; Han et al., 2000; Zaki and Gouda, 2003). A
detailed description of HSIGRAM and VSIGRAM is provided in the rest of this section.

5.1. Horizontal algorithm: HSIGRAM

The general structure of HSIGRAM is shown in Algorithm 1 (the notation used in the
pseudo-code is shown in Table 1). HSIGRAM takes as input the graph G, the minimum
frequency threshold f, and the parameter MIS type that specifies the particular problem
definition (as discussed in Section 4). It starts by enumerating all frequent single- and
double-edge subgraphs in G, and then enters its main computational loop (Lines 7–15).
During each iteration, HSIGRAM first generates all candidate subgraphs of size k + 1 by
joining pairs of size-k frequent subgraphs (Line 8) and then computes their frequency
(HSIGRAM-COUNT in Line 11). The candidate subgraphs whose frequency is lower than
the minimum threshold f are discarded and the remaining are kept for the next level of the
algorithm. The computation terminates when no frequent subgraphs are generated during
a particular iteration.
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The two key components of the HSIGRAM algorithm that significantly affect its overall
computational complexity are the method used to perform candidate generation and the
method used to compute the frequency of the candidate subgraphs. In the rest of this section
we provide additional details on how these operations are performed and describe various
optimizations that are designed to reduce their runtime.

5.1.1. Candidate generation. HSIGRAM generates candidate subgraphs of size k + 1 by
joining two frequent size-k subgraphs. In order for two such frequent size-k subgraphs to be
eligible for joining each of the two must contain the same size-(k − 1) connected subgraph.
The simplest way to generate the complete set of candidate subgraphs is to join all pairs
of size-k frequent subgraphs that have a common size-(k − 1) subgraph. Unfortunately, the
problem with this approach is that a particular size-k subgraph may have up to k different
size-(k − 1) subgraphs and as a result, if we consider all such possible subgraphs and
perform the resulting join operations, we will end up generating the same candidate pattern
multiple times, and generating a large number of candidate patterns that are not downward
closed. Such an algorithm would spend a significant amount of time identifying unique
candidates and eliminating non-downward closed candidates (both of which operations are
non-trivial as they require to determine the canonical label of the generated subgraphs).

HSIGRAM addresses both of these problems by only joining two frequent subgraphs if
and only if they share a certain, properly selected, size-(k − 1) subgraph. Algorithm 2
shows the pseudo-code for the candidate generation, where the properly selected size-(k −
1) subgraph is denoted by F. For each frequent size-k subgraph Fi, let P(Fi) = {Hi,1, Hi,2}
be the two size-(k − 1) connected subgraphs of Fi such that Hi,1 has the smallest canonical
label and Hi,2 has the second smallest canonical label among the various connected size-(k
− 1) subgraphs of Fi. We will refer to these subgraphs as the primary subgraphs of Fi. Note
that if every size-(k − 1) subgraph of Fi is isomorphic to each other, Hi,1 = Hi,2 and |P(Fi)| =
1. HSIGRAM will only join two frequent subgraphs Fi and Fj, if and only if P(Fi)∩P(Fj) �= φ,
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and the join operation will be done with respect to the common size-(k − 1) subgraph(s). The
proof that this approach will correctly generate all valid candidate subgraphs is presented in
Kuramochi and Karypis (2004a). This candidate generation approach dramatically reduces
the number of redundant and non-downward closed patterns that are generated and leads to
significant performance improvements over the naive approach (Kuramochi and Karypis,
2001).

5.1.2. Frequency counting. HSIGRAM-COUNT in Algorithm 3 computes the frequency
of a candidate subgraph C by first identifying all of its embeddings, constructing the
overlap graph of these embeddings, and then, based on the MIS type parameter, finding an
approximate or exact MIS of this overlap graph. The outline of this process is shown in
Algorithms 3 and 4.

5.1.2.1. Embedding identification In order to identify all the embeddings of a candidate
C, HSIGRAM-EMBED shown in Algorithm 4 needs to solve the subgraph isomorphism
problem. Performing the subgraph isomorphism for every candidate from scratch is ex-
pensive, especially when the input graph is large. The overall computational requirements
can be dramatically reduced if for each frequent subgraph we keep track of the exact lo-
cation, within the input graph, of its various non-identical embeddings. This information
can then be used to constraint the subgraph isomorphism problem by narrowing down the
search space to only around these locations. However, this solution represents the classi-
cal memory-time trade-off. By maintaining in memory the complete embeddings of each
pattern at a particular level of the lattice it reduces the computational complexity at the
expense of dramatically increasing the memory requirements.

HSIGRAM takes the middle road between these two approaches (recompute everything vs.
save everything) and it only stores partial information about the embeddings of the frequent
subgraphs. Specifically, for each embedding mi of a frequent pattern F, HSIGRAM-EMBED

arbitrarily selects one of the edges in the original graph that is also a part of mi and uses it to
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represent this partial information. We will refer to this edge as the anchor-edge, and the set
of anchor-edges of a particular pattern F, as its anchor-edge listA(F). Note that the memory
requirements of this approach is just one edge per embedding and does not change with
the size of the frequent pattern. In addition, in the cases in which there is a high degree of
overlap between the different embeddings, there can be a number of identical edges being
selected as anchor-edges of different embeddings, out of which HSIGRAM stores only one,
further reducing the memory requirements.

These anchor-edge lists are used to reduce the overall computational requirements as
follows. Suppose a k-candidate C contains a frequent (k − 1)-subgraph Fi. Because there
are k edges in E(C), C may have up to k distinct such frequent subgraphs of size k − 1,
and each Fi holds the anchor-edge list. Before starting the frequency counting of C, first
HSIGRAM-EMBED selects one of Fi whose frequency is the lowest among {Fi}. For each
en ∈ A(Fi), HSIGRAM-EMBED checks if there is an edge em ∈ A(Fj) for all j �= i such that
the shortest path length between en and em, denoted by d, is within the diameter of C,
denoted by dia(C). If there is such an edge em from every A(Fj) for j �= i, en may be a part
of an embedding of C, because if C is a frequent subgraph of size k, there must be a set of
frequent subgraphs of size k − 1 inside the same embedding of C. To compute the exact
path length between edges en and em in G i requires all pairs shortest paths, which may be
computationally expensive when |E(G i)| is large. HSIGRAM-EMBED bounds this length d
by the difference between two lengths, |dn − dm|, where dn and dm are the shortest path
lengths from an arbitrarily chosen vertex v ∈ V(G i) to en and em respectively. Note that
because this v is fixed through the entire process of the algorithm, it is necessary to compute
the shortest paths such as dn and dm only once. If en and em are in the same embedding of
Ci, always d ≤ dia(C) holds and dn ≤ dm + d. Thus, if |dn − dm| ≤ dia(C) is true, then
en and em may belong to the same embedding of C, otherwise en and em cannot be in the
same embedding (see Figure 4). If en cannot find such em from every A(Fj) for j �= i, em is
removed from A(Fi) (Line 2). Because the subgraph isomorphism will be performed for
each en, this pruning procedure is quite effective in reducing the overall runtime.
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Figure 4 Distance estimation between two edges.

Finally, after removing unnecessary anchor-edges, for each of the remaining anchor-
edges, all the subgraph isomorphisms of C are repeatedly identified and the set of embed-
dings M is built (Line 6).

5.1.2.2. Computing the frequency. The frequency of each subgraph Ck+1 is computed by
the HSIGRAM-COUNT function shown in Algorithm 3.

HSIGRAM-COUNT computes two different frequencies. The first, denoted by fMIS, is
computed based on the size of the MIS of the overlap graph created from the embeddings
of Ck+1. The second, denoted by fp, is the least frequency of all the connected size-k
subgraphs of Ck+1 (Line 15), which represents an upper bound on Ck+1’s frequency derived
entirely from the lattice of frequent subgraphs. In the case in which fMIS is computed using
Definition 3, the frequency bound provided by fp may actually be tighter, and thus may
lead to more effective pruning. For this reason, the overall frequency of Ck+1 is obtained
by taking the minimum of fMIS and fp.

The frequency fMIS is computed as follows (Lines 2–13). Given a pattern and all of its non-
identical embeddings, HSIGRAM-COUNT generates its overlap graph G. Then, HSIGRAM-
COUNT decomposes G into its connected components G1, G2, . . ., Gm (m≥ 1). Next, for
each connected component Gi, it checks the maximum degree of its vertices and if it is less
than or equal to two (a cycle or a path), it computes its maximum independent set directly
by the EMIS algorithm because it is trivial to compute the exact MIS for this class of
graphs (Line 7). If the maximum degree is greater than two, HSIGRAM-COUNT uses either
the result of the GMIS algorithm (Line 9), the result of the EMIS algorithm (Line 11), or
the upper bound on the size of the exact MIS (Eq. (1)). The summation of those MIS sizes
for the components is the final value of fMIS. Note that the decomposition of the overlap
graph into its connected components allow us to take advantage of the properties of the
special graphs and also obtain tighter bounds for each component as the maximum degree
for some of them will be lower than the maximum degree of the entire overlap graph.

In addition, every edge is marked if it is included in any embedding of a frequent
subgraph. Unmarked edges are removed before proceeding to the next iteration.

5.2. Vertical algorithm: VSIGRAM

The most computationally expensive step in the HSIGRAM algorithm is frequency counting
as it needs to repeatedly perform subgraph isomorphism computations. The overall time can
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be greatly reduced if instead of storing only the anchor-edges we store the complete set of
embeddings across successive levels of the algorithm. Because of HSIGRAM’s level-by-level
structure, these complete embeddings need to be stored for the entire set of frequent and
candidate patterns of each successive pair of levels. This substantially increases the memory
requirements of this approach, making it impractical for most of interesting datasets. On
the other hand, within the context of a vertical algorithm, storing the complete set of
embeddings is feasible since we need to do that only for the subgraphs along the path from
the current node to the root. Thus, a vertical algorithm has potentially a computational
advantage over a horizontal algorithm, which motivated the development of VSIGRAM.

However, before developing efficient algorithms that generate the lattice of frequent
subgraphs in a depth-first fashion two critical steps need to be addressed. The first step
is the method used to ensure that the same node of the lattice and the depth-first subtree
rooted at that node should not be discovered and explored multiple times. This is important
because each node at level k will be connected to up to k different nodes at level (k − 1).
As a result, if there are no mechanisms by which to prevent the repeated generation of the
same node, a depth-first algorithm will end-up performing redundant computations (i.e.,
generating the same nodes multiple times), adversely impacting the overall performance
of the algorithm. VSIGRAM eliminates these redundant computations by assigning each
node at level k (corresponding to a subgraph Fk) to a unique parent node at level k −
1 (corresponding to a subgraph Fk−1), such that only Fk−1 is allowed to create Fk. The
subgraph Fk−1 is called the generating parent of Fk. Details on how this is achieved is
provided in Section 5.2.1.

The second step is the method used to create successor nodes in the course of the
traversal. In the case of HSIGRAM, this corresponds to the candidate generation phase, and
is performed by joining the frequent subgraphs of the previous level. However, since the
lattice is explored in a depth-first fashion, such joining-based approach will not work, as
the algorithm may not have yet discovered the required frequent subgraphs. To address this
problem, VSIGRAM creates the successor nodes (i.e., extended subgraphs) by analyzing all
the embeddings of the current subgraph Fk, and identifying the distinct one-edge extensions
to these embeddings that are sufficiently frequent. The frequent extensions for which
Fk is the generating parent are then used as the successor nodes during the depth-first
traversal.

The general structure of VSIGRAM is shown in Algorithm 5. VSIGRAM starts by deter-
mining all frequent size-1 patterns and then uses each one of them as the starting point of
a recursive depth-first extension (VSIGRAM-EXTEND function). VSIGRAM-EXTEND takes
as input a size-k frequent subgraph Fk and all of its embeddings M(Fk) in G and proceeds
as follows. For each size-k embedding m ∈ M(Fk), it identifies and stores every possible
size-(k + 1) subgraph in G that contains m. From this set of subgraphs, it extracts all size-(k
+ 1) subgraphs which are not isomorphic to each other and stores them in Ck+1. Then,
VSIGRAM-EXTEND eliminates from Ck+1 all the subgraphs that do not have Fk as their
generating parent (Lines 5–6) or are infrequent (Lines 7–8). The subgraphs remaining in
Ck+1 are the frequent subgraphs of size-(k + 1) obtained by an one-edge-extension of Fk

and are used as input for the next recursive call. The recursion terminates when Ck+1 = ∅,
and the depth-first search backtracks.
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In the rest of this section we provide additional details on how the various operations
are performed and describe various optimizations that are designed to reduce VSIGRAM’s
runtime.

5.2.1. Generating parent identification. The scheme that VSIGRAM uses to determine the
generating parent of a particular subgraph is as follows (see figure 5 for example). Suppose
a size-(k + 1) frequent subgraph Fk+1 is just created by extension from a size-k frequent
subgraph Fk. By the canonical labeling, the order of edges and vertices in Fk+1 is uniquely
determined. VSIGRAM removes the last edge that does not disconnect Fk+1 and obtains
another size-k subgraph F. If F is isomorphic to Fk then Fk becomes the generating parent
of Fk+1, and VSIGRAM keeps the further exploration from Fk+1. It is easy to see that for
each subgraph Fk+1 exactly one of its distinct size-k connected subgraphs will satisfy this
property; thus, this approach will explore each subgraph exactly one time. Let us take an
illustrative example. In figure 5, a size-6 pattern F6 in (e) has four size-5 subgraphs (i.e.,
equivalence classes in terms of isomorphism) shown in (a), (b), (c) and (d). Suppose, by
canonical labeling, every edge in F6 is assigned a unique ID (from e0 to e5 as shown in
figure 5(e)). Then, we remove the last edge e5 from F6 to obtain a size-5 subgraph. Because
this size-5 subgraph is isomorphic to Fb

5 shown in figure 5(b), Fb
5 is the generating parent

of F6. In other words, when we reach a node in the depth-first search space corresponding
to F5

a , F5
c or F5

d , we will stop the exploration that leads to F6 because F5
a , F5

c and F5
d are

not the generating parent of F6. Thus, only the extension from F5
b to F6 is kept for further

exploration.
Note that similar type of approaches have been used in the past in the context of vertical

algorithms for the graph-transaction setting (Vanetik et al., 2002; Yan and Han, 2002).
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Figure 5 A simple example of parent identification.

All of these share the same idea, which avoids redundant frequent pattern generation and
traverses the lattice of patterns as if it was a tree.

5.2.2. Efficient subgraph extension. Starting from a frequent size-k subgraph, VSIGRAM
obtains the extended subgraphs of size k + 1 by adding an additional edge (while preserving
connectivity) to all of its possible embeddings. Specifically, for each embedding m of a
frequent k-subgraph F, VSIGRAM enumerates all the edges that can be added to m to form a
size-(k + 1) extended subgraph. Each of those edges is represented by a tuple of 5 elements
s = (x, y, u, v, e), called a stem, where x and y are the vertex IDs of the edge in G, u and v,
u < v, are the corresponding vertex IDs in F, and e is the label of the edge. For u and v, if
there is no corresponding vertex in F, − 1 is used to show that it is outside the subgraph F.

However, because of the automorphism of the subgraph F, we cannot use this stem
representation directly. For a particular embedding m of a frequent subgraph F in G, there
may be more than one vertex mapping of the subgraph onto the embedding. If we simply
used a pair of vertex IDs of the subgraph to represent a stem, depending on the mapping,
the same edge addition might be considered a different stem, which would result in the
wrong frequency of the subgraph. To avoid this problem, every time a stem is generated, its
representation is normalized as follows. VSIGRAM enumerates all possible automorphisms
of F, denoted by {φi}. Note that each φi can be regarded as a mapping from a vertex ID v
to another vertex ID w based on the automorphism (e.g., w = φi(v)). Then, for each vertex
ID v, the canonical vertex ID (cvid) is defined as

cvid(v) = min
i

φi (v).

The automorphism with the least subscript that gives the canonical ID for v is called the
canonical automorphism, denoted by φ∗

v . Formally φ∗
v is defined as follows:

φ∗
v = arg min

φi

φi (v), i < j if φi (v) = φ j (v).
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Figure 6 Size-6 graph G, canonical vertex IDs, and canonical automorphism.

As an example, let us take the graph G shown in figure (a) having 6 vertices whose vertex
ID’s are assigned from v0 to v5. There are 4 distinct automorphisms in total, from φ0 to φ3

as shown figure 6(b) (the mapping φ0 is the trivial one). For instance, looking at the fourth
row of the table in figure 6(b), denoted by “φ2”, we see the automorphism φ2 maps v0 to v0,
v1 to v3, v2 to v2, v3 to v1, v4 to v4, and v5 to v5 . Next, looking at the fifth column, denoted
by “v3”, we see that cvid(v3) = v1 and hence φ∗

v3
= φ2, because φ2 is the mapping with the

smallest suffix, “2”, that gives v1 = φi(v3). Finally, we can canonicalize every stem s = (x,
y, u, v, e) based on the canonical automorphism. In the canonical stem s′ = (x, y, u′, v′, e)
for s, u′ and v′ are defined as:

u′ ≡ cvid(u), v′ ≡ φ∗
u (v) if cvid(u) ≤ cvid(v)

u′ ≡ φ∗
v (u), v′ ≡ cvid(v) otherwise.

Note that s′ is an automorphism invariant representation of s and is used by VSIGRAM to
properly determine the frequency of size-(k + 1) extended subgraphs. For example, suppose
there exists a stem s = (x, y, v2, v3, e). From the table in Figure 6(b), we can see that cvid(v2)
= v2, cvid(v3) = v1 and cvid(v2) > cvid(v3) by which we have v2

′ = φ∗
v3

(v2) = φ2(v2) = v2

and v3
′ = cvid(v3) = v1. Therefore, the canonical stem for s is eventually represented as s′

= (x, y, v2, v1, e).

5.2.2.1. Additional optimization: Keeping track of edge creation status. Each frequent
subgraph maintains a three-dimensional table, called a connection table. Each element in
the table is denoted by ct(u′, v′, e) which shows if it is possible to form an edge between the
vertices u′ and v′ whose edge label is e. Every time a stem (x, y, u′, v′, e) is discarded, the
corresponding element in the connection table is updated to show that it is now impossible
to create an edge with a label e between u′ and v′. If ct(u′, v′, e) is deactivated for a frequent
subgraph of size k, then for any l > k, there can not be any frequent subgraph that has an
edge between u′ and v′ with the edge label e. We can reduce the number of stems to be
generated by looking up the connection table during the stem enumeration phase.

5.2.3. Frequency counting. VSIGRAM’s frequency counting is similar to HSIGRAM-
COUNT, except for the computation of fp (see Line 15 in Algorithm 3). Recall from the
discussion in Section 5.1.2.2, fp is an estimate of the maximum frequency of a size-(k + 1)
pattern p that is determined by looking at the minimum frequency of all of its connected
size-k subgraphs. This estimate takes advantage of the downward closure property of the
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Table 2. Datasets used in the experiments.

Connected component

Size Total number of Total number of labels

Dataset Number Min Max Avg Vertices Edges Vertex Edge

Aviation 2, 606 21 55 38 101, 088 98, 482 6, 171 51

Credit 700 20 20 20 14, 700 14, 000 59 20

Citation 613 1 19, 545 34 12, 628 21, 032 50 12

Contact Map 170 79 1, 995 660 33, 443 112, 244 21 2

DTP 2, 080 1 110 21 40, 879 43, 070 52 3

PPI 3, 225 1 1, 850 5 19, 228 17, 142 11, 103 7

VLSI 947 1 7, 768 12 11, 066 11, 542 23 1

Web 25, 374 1 21, 860 4 120, 166 98, 137 2, 299 1

Size (Min, Max, Avg) of connected component: the number of edges in the connected component of the minimum,
maximum and average size, respectively.

minimum frequency constraint, and in the case of the upper-bound problem formulation
(i.e., according to Definition 3), it can lead to a frequency upper bound that is smaller than
that obtained from MIS.

However, VSIGRAM cannot use this approach to obtain such bounds as it does not hold
all size-k frequent subgraphs at the time a size-(k + 1) subgraph is created. As a result,
VSIGRAM uses the frequency of the size-k generating parent as the best estimate for fp. As
the experiments presented in Section 6 will show, the fp estimates obtained by VSIGRAM are
not as tight as the corresponding estimates obtained by HSIGRAM, which in turns increases
the former’s execution time as it will tend to find more subgraphs (note that these subgraphs
will not be frequent according to Definition 1).

6. Experimental evaluation

In this section, we study the performance of the proposed algorithms with various param-
eters and real datasets. All experiments were done on an AMD Athlon MP 1800+ (1.53
GHz) machines with 2 GBytes main memory, running the Linux operating system. All the
runtimes reported are in seconds.

6.1. Datasets

We used eight different datasets, each obtained from a different domain, to evaluate and
compare the performance of HSIGRAM and VSIGRAM. The basic characteristics of these
datasets are shown in Table 2. Note that even though these graphs consist of multiple
connected components, the HSIGRAM and VSIGRAM algorithm treat them as one large
graph and discover the frequent patterns according to Definitions 1–3 described in Section 4.
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The Aviation and Credit datasets are obtained from the SUBDUE web site.3 The Aviation
dataset is originally from the Aviation Safety Reporting System Database and the Credit
dataset is from the UCI machine learning repository (Blake and Merz, 1998). The directed
edges in the original graph data were converted into undirected ones. For the Aviation
dataset, we removed undirected edges to show “near to” relation between two vertices
because those edges form cliques which makes this graph difficult to mine.

The Citation dataset was created from the citation graph used in KDD Cup 2003.4 Each
vertex in this graph corresponds to a document and each edge corresponds to a citation.
Because our algorithms are for undirected graphs, the direction of these citations was
ignored. Since the original dataset does not have any meaningful label for vertices, we
generated vertex labels as follows. We first used a clustering algorithm to form clusters of
the document abstracts into 50 thematically coherent topics, and then assigned the cluster
ID as the label to the corresponding vertices. For the edges, we used as labels the difference
in the publication year of the two papers. For example, if two papers were published in
1997 and 2002, an edge is created between those two document vertices with the label “5”.
Finally, because some of the vertices in the resulting graph had a very high degree (i.e.,
authorities and hubs), we kept only the vertices whose degree was less or equal to 15.

The Contact Map dataset is made of 170 proteins from the Protein Data Bank (Berman
et al., 2000) with pairwise sequence identity lower than 25%. The vertices in these graphs
correspond to the different amino acids and the edges connect two amino acids if they are
either at consecutive sequence positions or they are in contact in their 3D structure. Two
amino acids are considered to be in contact if the distance between their Cα atoms is less
than 8 Å. Furthermore, while creating the graphs we only considered non-local contacts
that are defined as the contacts between amino acids whose sequence separation is at least
six amino acids.

The DTP dataset is a collection of 2,319 chemical compounds randomly selected from
the dataset of 223,644 chemical compounds provided by the Developmental Therapeutics
Program (DTP) at National Cancer Institute.5 Note that each chemical compound forms
a connected component and there are 2,319 such components in this dataset. Each vertex
corresponds to an atom and its label represents the atom type. An edge is formed between
two vertices if the corresponding two atoms are connected by a bond. The type of a bond
is used as an edge label, and there are three distinct edge labels.

The PPI dataset is created from Database of Interacting Proteins (DIP).6 A vertex is
either a particular protein sequence, or a property of a protein sequence. A property of
a protein sequence is the information about the classification of a protein sequence. For
example, if there is an entry about a particular protein sequence in PDB (RCSB Protein Data
Bank), a vertex is created which corresponds to this entry in PDB. Likewise, if there is an
entry about a particular protein sequence in SCOP (Structural Classification of Proteins),
a vertex is created to represent this entry in SCOP. An edge is used to show either the
possession of those properties, or the interaction between protein sequences. An edge used
to show the possession of a property has an label to represent the type of the property. For
example, if there is an entry about a protein sequence in PDB, there is an edge connecting
the protein sequence vertex and the PDB entry vertex, with the edge label “PDB”. All the
other edges representing interactions between protein sequences have the same edge label
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“link”. Out of the total 19,228 vertices, 8,126 vertices correspond to protein sequences (i.e.,
the remaining 11102 vertices correspond to properties), and out of the total 17,142 edges,
there are 3,988 edges having the “link” label.

The VLSI dataset was obtained from the International Symposium on Physical Design
’98 (ISPD98) benchmark suite7 and corresponds to the netlist of a real circuit. The netlist
was converted into a graph by first removing any nets that are longer than four and then
using a star-based approach to replace each net (i.e., hyperedge) by a set of edges. Note
that for this dataset we limited the size of the largest discovered pattern to five edges.
This is because for the values of the frequency threshold used in our experiments, the only
frequent patterns that contained more than five edges were paths, and because of the highly
connected nature of the underlying graph, there were a very large number of such paths,
making it hard to find these longer path patterns in reasonable amount of time.

The Web dataset was obtained from the 2002 Google Programming Contest.8 The original
dataset contains various web pages and links from various “edu” domain. We converted
the dataset into an undirected graph in which each vertex corresponds to a web page and
an edge to a hyperlink between web pages. In creating this graph, we kept only links
between “edu” domains that connected sites from different subdomains. Every edge has an
identical label (i.e., unlabeled), whereas each vertex was assigned a label corresponding to
the subdomain of a web server.

Note that for both the PPI and the Web datasets we removed vertices whose degree is
greater than 10 and all edges incident to such vertices in order to make the entire graph
sparse and to allow our algorithms finish the computation in a reasonable amount of time.

Compared to the other datasets, DTP and Contact Map datasets are both originally a
collection of graphs (chemical compounds and protein sequences respectively). Hence, it
is possible to use those two datasets in the graph-transaction setting where the task is to
discover frequent patterns in terms of the number of supporting transactions. On the other
hand, in this study, we used those two datasets in the single-graph setting in order to find
frequent occurring patterns for which multiple embeddings in each connected component
are counted.

6.2. Results

Table 3 shows the results obtained by the HSIGRAM and VSIGRAM algorithms for the
different datasets, for a wide range of the minimum frequency threshold values f, and
the three different MIS-based problem definitions. For each experiment, Table 3 shows
the amount of time (in seconds) required by the particular algorithm, the total number of
patterns that were discovered, and size of the largest pattern. Entries in the table marked with
“—” represents experiments that were aborted because of high computational requirements.

From these results we can see that as expected, for all datasets and algorithms, as the
value of f decreases, the runtime for finding the frequent patterns increases as well. The rate
of increase in runtime follows the corresponding rate of increase in the number of patterns
that are being discovered. Besides that, the results in this table help illustrate the relation
between the two key variables in these experiments, which are the type of the particular
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algorithm (HSIGRAM vs VSIGRAM) and the type of frequency calculation (approximate
MIS, exact MIS, or upper-bound MIS).

6.2.1. Comparison between hSiGraM and vSiGraM. In general, the amount of time
required by VSIGRAM is smaller than that required by HSIGRAM. In fact, as the value of
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the frequency threshold decreases, VSIGRAM is up to five times faster than HSIGRAM. This
is true across all datasets for the approximate and exact MIS problem formulation, and
for those datasets for which the upper-bound MIS formulation leads to the same number
of frequent patterns for both algorithms. As discussed in Section 5.2, the reason for that
performance advantage is the fact that by keeping track the embeddings of the frequent
subgraphs along the depth-first path, VSIGRAM spends significantly less time in subgraph
isomorphism related computations than HSIGRAM does.

However, for certain datasets, when the upper-bound MIS formulation is used, VSIGRAM
ends up generating significantly more patterns than those generated by HSIGRAM. For
example, in the case of the DTP dataset and f = 20, VSIGRAM generates almost 16 times
more patterns than HSIGRAM. In such cases, the amount of time required by VSIGRAM
is substantially greater than that required by HSIGRAM (32.4 times greater in the DTP
example). The reason for that is the fact that because of its depth-first nature, VSIGRAM
cannot take advantage of the frequent subgraph lattice to get a tight upper bound on the
frequency of a subgraph based on the frequency of all of its subgraphs, and it bases its
upper bound only on the frequency of the generating parent. On the other hand, because of
its level-by-level nature, HSIGRAM can use the information from all its sub-patterns, and
obtains better upper bounds (see discussion in Section 5.1.2.2).

6.2.2. Comparison between the different problem formulations. The results in Table 3
show that the approximate MIS-based formulation is able to effectively mine all datasets
and tends to lead to the fastest execution times for both HSIGRAM and VSIGRAM. This result
was expected, and was the key motivation behind developing this formulation. However, a
somewhat surprising but positive outcome is that when comparing the number of patterns
found by the approximate and the exact MIS-based formulations we can see that, in general,
the approximate algorithm finds most of the patterns discovered by the exact algorithm and
it only fails to discover a very small number of patterns.

On the other hand, both the exact and the upper-bound based MIS formulations are not
as robust. Specifically, the exact formulation can mine only five out of the eight datasets,
whereas the upper-bound formulation can mine only four. Even though these formulations
tend to fail on approximately the same set of datasets (PPI and Web), the specific reasons
for these failures are different. The exact formulation fails when the resulting overlap graph
becomes highly interconnected, in which cases the time associated with finding the exact
MIS is prohibitively expensive (i.e., the computations were aborted because they were not
expected to finish within a reasonable amount of time). The upper-bound formulation fails
when the bounds on the number of frequent patterns are not very tight, in which case the
algorithm generates a very large number of patterns that exhaust the available memory.
Note that in general, the extent to which we can obtain a tight upper-bound on the number
of frequent patterns using the methodology described in Section 5.1.2.2, depends on the
maximum and average degree of the overlap graph. Thus, when the overlap graph is not
very sparse, then both the exact and the upper-bound formulations will tend to fail (this
is the reason why both schemes fail for the PPI and the Web datasets). However, this
correspondence is not perfect. For example, only the exact MIS-based formulation was
able to finish for the Citation dataset, whereas only the upper-bound formulation was able
to finish for the VLSI dataset.
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Figure 7 Examples of patterns discovered by SIGRAM.

6.2.3. Example subgraphs. To illustrate the types of subgraphs that SIGRAM can discover,
we analyzed the subgraphs that were identified in the Web dataset. Recall from Section 6.1
that each vertex in this graph corresponds to an actual web-page, each edge to a hyperlink
between two web-pages, and the vertex-labels to the subdomain of the server that hosts
the web-page. Moreover, this graph was constructed by removing any hyperlinks between
web-pages that have the same subdomain. As a result, a frequently occurring subgraph will
represent a particular cross-linking structure among a specific set of institutions that occurs
often, and it can identify common cross-university collaborations, interdisciplinary teams,
or topic-specific communities.

Figure 7 shows two representative examples of the frequent subgraphs discovered by
SIGRAM with the approximate MIS when the minimum frequency threshold is set to
20. The first subgraph (figure 7(a)) has a star topology and shows that there are links
from a web page of the University of Illinois to web pages located at sites of all the three
campuses, Chicago, Urbana-Champaign and Springfield, in the university system. SIGRAM
identified 28 non-identical embeddings of this subgraph in the Web dataset, and 22 out of
28 embeddings are edge-disjoint.

The second subgraph (figure 7(b)) has a square-shaped topology consisted of web sites at
Harvard, National Radio Astronomy Observatory (nrao.edu), and Space Telescope Science
Institute (stsci.edu). An analysis of the complete uniform resource locators (URLs) of the
embeddings of this subgraph showed that all the web pages had to do with astronomy and
astrophysics. There are 64 non-identical embeddings of this substructure in total, and the
number of edge-disjoint embeddings is 28.

6.3. Performance comparison with existing algorithms

6.3.1. Comparison with SUBDUE. We ran SUBDUE (Holder et al., 1994) version 5.0.69

on the same datasets described in Section 6.1 and measured the runtime, the number of
discovered patterns, their size, and their frequency. These results are shown in Table 4. These
results were obtained by using SUBDUE’s default settings for all but the VLSI dataset. For
the VLSI dataset, we run SUBDUE so that to find subgraphs that contain at most five edges,
as was done in the case of HSIGRAM and VSIGRAM. Note that SUBDUE’s default settings
returns at most three subgraphs that were determined to be the most important. Also note
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Table 4. SUBDUE Results.

Dataset
Runtime

[sec]
Number of

patterns Pattern size Frequency of found patterns

Aviation – – – – – – – –

Citation 8812 3 27 26 27 1 1 1

Contact map 5043 3 224 223 223 1 1 1

Credit 517 3 6 5 5 341 395 387

DTP 1525 3 2 2 6 4957 4807 1950

PPI 2928 3 1 1 1 1 1 1

VLSI 16 3 1 1 1 773 773 244

Web – – – – – – – –

that for the Aviation and Web datasets we had to abort SUBDUE as it did not finish after
three days.

Because of the inherent differences between SUBDUE and our algorithms, it is impos-
sible to perform a direct comparison of the results that they generate. For this reason our
comparisons will focus mostly on highlighting some key points. First, the amount of time
required by SUBDUE is in general, considerably higher than that required by our algo-
rithms. For example, SUBDUE did not finish the computation for the Aviation dataset after
spending four entire days. Also for the Citation, Contact Map and PPI datasets, SUBDUE
could not find any meaningful patterns at all, as the patterns that it found had a frequency
of one. For the Credit dataset with the minimum frequency threshold of 50, both HSIGRAM
and VSIGRAM with upper-bound MIS spent 169 and 78 seconds respectively to discover the
same number of subgraphs, 73,992. The largest pattern has 11 edges and had a frequency
of 58. In contrast, the largest pattern found by SUBDUE had six edges with a frequency
of 341. This indicates that if there are small subgraphs that have relatively high frequency,
SUBDUE will focus on them and will not discover the larger patterns. We can see the
similar result for the DTP dataset. The size of the patterns SUBDUE found are very small,
2–6 edges, but their frequency is very high. On the other hand, the results in Table 3 show
that with the minimum frequency threshold 20, both HSIGRAM and VSIGRAM under exact
MIS spend 249 and 83 seconds respectively to find 21,478 frequent subgraphs, and the
largest size is 16.

6.3.2. Comparison with SEuS. The SEuS (Ghazizadeh and Chawathe, 2002b) algorithm
is designed to find all frequent subgraphs in a single-graph setting. However, when deter-
mining the frequency of a subgraph they consider all embeddings irrespective of whether
they are disjoint or not. As a result, a subgraph may have high frequency even though
it has small number of edge-disjoint embeddings because of overlapped embeddings. In
Ghazizadeh and Chawathe (2002b), the runtime of SEuS on the PTE chemical dataset10 is
reported. SEuS (SEuS-S1) spent more than 20 seconds to find 34 frequent subgraphs, that
is 1.4 frequent subgraphs per second. On the same dataset given the minimum frequency
threshold of 500, VSIGRAM with upper-bound MIS requires 20 seconds to find 168 frequent
subgraphs, which translates to 8.4 frequent subgraphs per second. Similarly, with the Credit
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dataset (which is called “Credit-4” in Ghazizadeh and Chawathe (2002a)), SEuS-S1 spent
50 seconds to produce 48 frequent subgraphs (one frequent subgraphs per second), while
VSIGRAM with upper-bound MIS finds 1,325 frequent subgraphs in four seconds for the
minimum frequency threshold 200 (331 frequent subgraphs per second).

7. Conclusions

In this paper we addressed the problem of finding all the subgraphs that have many edge-
disjoint embeddings in a large sparse graph, a step critical to discovering patterns in graph
datasets. We studied three distinct formulations of the problem that were motivated by the
complexity of identifying the maximum set of edge-disjoint embeddings of a subgraph, and
developed two frequent subgraph mining algorithms for solving them. These algorithms are
based on the horizontal and vertical paradigms, respectively. Our experimental evaluation on
many real datasets showed that for most datasets and problem formulations both algorithms
achieve good performance, with the vertical algorithm being two-to-five times faster.

Notes

1. The symbol vi in the figure is a vertex ID, not a vertex label, and blank elements in the adjacency matrix
means there is no edge between the corresponding pair of vertices.

2. SiGraM stands for Single Graph Miner.
3. http://cygnus.uta.edu/subdue/databases/index.html
4. http://www.cs.cornell.edu/projects/kddcup/datasets.html
5. DTP 2D and 3D Structural Information. http://dtp.nci.nih.gov/docs/3d database/structural information/

structural data.html
6. http://dip.doe-mbi.ucla.edu/
7. http://vlsicad.cs.ucla.edu/∼cheese/ispd98.html
8. http://www.google.com/programming-contest/
9. Although this version is not the latest one, it runs significantly faster than the current latest version, 5.0.8.

10. ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/carcinogenesis/progol/carcinogenesis.tar.Z
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