Finding Frequent Patterns in a Large Sparse Graph

Michihiro Kuramochi and George Karypis

Department of Computer Science & Engineering/
Digital Technology Center/Army HPC Research Center
University of Minnesota

4-192 EE/CS Building, 200 Union St SE
Minneapolis, MN 55455

{kuram, karypis@cs.umn.edu

Technical Report #03-039

Last updated on September 25, 2003 at 2:11 PM

Abstract cation domains including network intrusion [47, 41], seman-

This paper presents two algorithms based on the horizonﬂ? Web (4], behgvioral modeling [67, 55], VLSI reverse en-
tal and vertical pattern discovery paradigms that find thedineering [70], link analysis [34, 40, 39, 58], and chemical
connected subgraphs that have a sufficient number of edgéompound classification [14, 43, 22, 16]. Moreover, they can
disjoint embeddings in a single large undirected labeledPe used to effectively model the structural and relational char-
sparse graph. These algorithms use three different methodsteristics of a variety of datasets arising in other areas such
to determine the number of the edge-disjoint embeddings of & Physical sciences (e.g., chemistry, fluid dynamics, astron-
subgraph that are based on approximate and exact maximu@iny: structural mechanics, and ecosystem modeling), life sci-
independent set computations and use it to prune infrequeSCeS (€.9., genomics, proteomics, pharmacogenomics, and
subgraphs. Experimental evaluation on real datasets frofjealth informatics), and home-land defense (e.g., informa-
various domains show that both algorithms achieve good pefion assurance, network intrusion, infrastructure protection,
formance, scale well to sparse input graphs with more thagnd terrorist-threat prediction/identification). _

100,000 vertices and around 200,000 edges, and significantly The focus of this paper is on developing algorithms for a

occurring patterns in graph datasets. Frequent patterns play

Keywords pattern discovery, frequent subgraph, graph min-, cyitical role in many data mining tasks as they can be used

Ing. among other to derive association rules [1], act as composite
) features for classification algorithms [14, 56, 63, 51, 22, 50,
1 Introduction 15], cluster the (graph) transactions [1, 48, 35, 36, 49, 24],

Data mining is the process of automatically extracting newand help in determining the similarity between graphs [54,
and useful knowledge hidden in large datasets. This emergings, 42, 59, 9, 49, 13, 60, 66]. Within the context of graphs, the
discipline is becoming increasingly important as advances imost widely used definition of a pattern is that of a connected
data collection have led to the explosive growth in the amoungubgraph [8, 68, 32, 29, 69, 30, 44] and is the definition
of available data. that we will use in this paper. However, different pattern
In recent years, there has been an increased interest gefinitions have been proposed as well [32].
developing data mining algorithms that operate on graphs. There are two distinct problem formulations for frequent
Such graphs arise naturally in a number of different applipattern mining in graph datasets that are referred to as the
graph-transaction settingind thesingle-graph setting In

~ *This work was supported in part by NSF CCR-9972519, EIA-9986042,J[he g_raph-_transactlon sett_lng, the input to the pattern mining
ACI-9982274, ACI-0133464, and ACI-0312828; the Digital Technology &190rthm is a set of relatively small graphs (called transac-
Center at the University of Minnesota; and by the Army High Performancetions), whereas in the single-graph setting the input data is
Computing Research Center (AHPCRC) under the auspices of the Deparé single large graph. The difference affects the way the fre-
ment of the Army, Army Research Laboratory (ARL) under Cooperative guency of the various patterns is determined. For the graph-
Agreement number DAAD19-01-2-0014. The content of which does noty.»nqaction setting, the frequency of a pattern is determined
necessarily reflect the position or the policy of the government, and no of- . .
ficial endorsement should be inferred. Access to research and computirﬂy the nu_mber of graph transactlons thatthe patter_n OCCUI’S_ n,
facilities was provided by the Digital Technology Center and the Minnesotalffespective of how many times a pattern occurs in a partic-
Supercomputing Institute.

ular transaction, whereas in the single-graph setting, the fre2 Definitions and Notation
guency of a pattern is based on the number of its OCCUITeNces graph G = (V, E) is made of two sets, the set of vertices
(i.e., embeddings) in the single graph. Due to the inheren{; ang the set of edgeE. Each edge itself is a pair of
differences of the characteristics of the underlying dataset anﬂartices, and throughout this paper we assume that the graph
the problem formulation, algorithms developed for the graphys yndirected, i.e., each edge is an unordered pair of vertices.
transaction setting cannot be used to solve the single-granghrthermore, we will assume that the grapleiseled That
setting, whereas the latter algorithms can be easily adapted {9 each vertex and edge has a label associated with it that is
solve the former problem. N drawn from a predefined set of vertex labells/} and edge
_ In recent years, a number of e_ff|C|ent and s_calable algorpels Le). Each vertex (or edge) of the graph is not required
rithms have been developed to find patterns in the graphy have a unique label and the same label can be assigned to
transaction setting [8, 68, 32, 29, 69, 30, 44]. These algomany vertices (or edges) in the same graph. If all the vertices
rithms are complete in the sense that they are guaranteed jg,q edges of the graph have the same vertex and edge label
discover all frequent subgraphs and were shown to scale Bssigned to them, we will call this grapinlabeled
very large graph datasets. However, developing algorithms Gjven a grapiG = (V, E), a graphGs = (Vs, Eg) is a
that are capable of finding patterns in the single-graph Sekupbgraphof G if and only if Vs € V andEs € E. A graph is
ting has received much less attention, despite the fact thalonnectedif there is a path between every pair of vertices in
this problem setting is more generic and applicable to a widefhe graph. Two graptG; = (V1, E1) andG, = (Vs, Ey) are
range of datasets and application domains than the othegomorphic if they are topologically identical to each other,
Moreover, existing algorithms that are guaranteed to find allpat js, there is a mapping frol to V» such that each edge
frequent patterns [21, 65] or algorithms that are heuristicjn E; is mapped to a single edge By and vice versa. In
such as GBI [71] and SUBDUE [28] which tend to miss athe case of labeled graphs, this mapping must also preserve
large number of frequent patterns, are computationally eXthe |abels on the vertices and edges. anomorphism is
pensive and do not scale to large datasets. an isomorphism mapping whe@, = G,. Given two graphs
Developing algorithms that find the complete set of fre—G1 = (W4, Ey) andG; = (V,, Ep), the problem osubgraph
quent patterns in the single-graph setting is the focus Ofsomorphism is to find an isomorphism betwed®, and a
this paper. We present two computationally efficient a|9°'subgraph of34, i.e., determine whether or nG is included
rithms that can find subgraphs which are frequently embedpy, G1.
ded within a large sparse graph. The first algorithm, called Gjyen a subgrapiBs and a graptg, two embeddings of
HSIGRAM, follows ahorizontal approactand finds the fre- G in g are calleddentical if they use the same set of edges
quent subgraphs in a breadth-first fashion, whereas the secogfl g and they are calleddge-disjointif they do not have
algorithm, called/SIGRAM, follows avertical approactand any edges of; in common. Given a set of all embeddings
finds the frequent subgraphs in a depth-first fashion. These akt 5 particular subgrapBs in a graphg, theoverlap graph
gorithms incorporate efficient algorithms for candidate genyf G is a graph obtained by creating a vertex for each non-
eration and frequency counting that allow them to scale tqgentical embedding and creating an edge for each pair of
graphs containing over 100,000 vertices and find patterngon-edge-disjoint embeddings. An example of a subgraph
with relatively low occurrence frequency. Our experimen-anq its overlap graph are shown in Figure 2.

tal evaluation on six real graphs shows that beB1IGRAM The notation that we will be using throughout the paper is
andvSIGRAM achieve reasonably good performance, scalenown in Table 1.

to large graphs, and substantially outperform previously de-
veloped approaches for solving similar or simpler versions ob 1 canonical Labeling

the problem. . .
The rest of this paper is organized as follows. Section 2 de©n€ ©of the key operations required by any frequent sub-

fines the graph model that we use, reviews some graph-relat&jarh discovery algorithm is a mechanism by which to check

definitions, and introduces the notation that is used in the pa¥néther two subgraphs are identical or not. One way of per-

per. Section 3 surveys related research in this area. Sectionf@'Ming this check is to perform a graph isomorphism op-
formally defines the problem of frequent subgraph discovenf'ation. However, in cases in which many such checks are
and discusses the challenges associated with finding them fduired among the same set of subgraphs, a better way of
a computationally efficient manner. Section 5 describes in deg2€rforming this task is to assign to each graph a unapee

tail the HSIGRAM andv SIGRAM algorithms that we devel- (-6, @ sequence of bits, a string, or a sequence of numbers)
oped for solving the problem of frequent subgraph discover);hat is invariant on the or.denng of the vertices _and edges in
from a single large sparse graph. Section 6 provides a detaild]® 9raph. Such a code is referred to asdagonical label
experimental evaluation of theSIGRAM andv SIGRAM al- of a graphG = (V, E) [61, 18], and we will denote it by

gorithms on various real datasets and compares them agairfafG)- BY using canonical labels, we can check whether or
existing algorithms. Finally, Section 7 provides some con-n°t WO graphs are identical by checking to see whether they
cluding remarks. have identical canonical labels. Moreover, by comparing the

canonical labels we can obtain a complete ordering of a set
of graphs in a unique and deterministic way, regardless of the

vo v1 V2 vl vo v2

Table 1: Notation used throughout the paper aaa a a8 s
vg a z X vy a zy
Notation Descripti(_)n v alz y v alz X
k-subgraph A connected subgraph withedges
(also written as a sizk-subgraph) vagx y valy X
Gk, HK Graphs of sizé code= aaa zxy code= aaa zyx
E(G) Edges of a grapl®s 3
V(G) Vertices of a grapl® @G () ©
cI_(G) C_anonical label of a grap@
o) - gfgrzgter of a graple Figure 1: Simple examples of codes and canonical adjacency
wo Vertices matrices
d(v) Degree of a vertex
o Lol of an edce labels for fast processing and various vertex invariants to
H=G-e H is a graph obtained by the deletion of reduce the complexity of determining the canonical label of
g f"ndpgu‘iegfaiée) a graph [45, 46]. Our algorithm can compute the canonical
G G’s connected component) label of graphs containing up to 50 vertices extremely fast and
1 i 1 . . .
S@GH Set of all connected sizesubgraphs o6 will be the algorithm used to compute the canonical labels of
M(G) ={m;} | Allembeddings of a subgraphin G . . .
A(G)=1{g} | Allanchoredges of a subgraghin G the different subgraphs in this paper.
C Candidate subgraph
ck Set of candidates witk edges .
c Set of all candidates 9 2.2 Maximum Independent Set
F Frequent subgraph
FK Set of frequenk-subgraphs As discussed later in Section 4, our frequent subgraph dis-
7 Set of all frequent subgraphs covery algorithm focuses on finding subgraphs whose embed-
k Size of the largest frequent subgraphgn . L " . . .
Le Set of all edge labels i§ dings are edge-disjoint. A critical step in obtaining this set of
Lv Set of all vertex labels ig/ edge-disjoint embeddings for a particular subgraph is to find

.) the maximum independent set of its overlap graph. Given a
original vertex and edge ordering. graphG = (V, E), a subset of vertices ¢ V is calledin-

A simple way of defining the canonical label of a graph is yenendentif no two vertices inl are connected by an edge
as the string obtained by concatenating the upper triangulgy, £ ap independent selt is calledmaximal independent

entries of the graph’s adjacency matrix when this matrix hag; o, every vertexv in | if there is an edge ifE that con-

been symmetrically permuted so that this string becomes the, s, to a vertex inV \ I. A maximal independent sét

lexicographically largest (or smallest) over the strings thatis calledmaximum independent set(MIS) if | contains as
can be obtained from all such permutations. This is iIIustrateqnany vertices ok as possible.

in Figure 1 that shows a gragh® and the permutation of its
adjacency matrixthat leads to its canonical labeidazyXx. the first problems proved to be in NP-complete [19], and re-

In this code, aaa’ was obtained by concatenating the vertex- j,»ing 5o even for bounded degree graphs. Moreover, it has
labels in the order that they appear in the adjacency matrifeen shown that the size of MIS cannot be approximated even
and ‘zyx’ was obtained _by concatenating the columns of, i 2 factor ofnl—°@ in polynomial time [17]. However,
the upper triangular p3?rt'°n_ of the matrix. Note that any e jmportance of the problem and its applicability to a wide-
other permutation of3™s adjacency matrix will lead t0-a ;6 of domains has attracted a considerable amount of re-
code that is lexicographically smaller (or equal) &@@azyX. geareh This research has been focused on developing both
It a graph hagV| vertices, the complexity of ?eterm_mmg faster exact algorithms as well as approximate algorithms.
its canonical label using this scheme is@|V|!) making rg faster exact algorithm to date is the algorithm by Rob-
it impractical even for. moderate S|ze_graphs. Note tha%on [62] that solves the MIS problem in tin@(1.211"),
the problem of determining the canonical label of a graphy,,ying it possible to solve in reasonable amount of time
is equwal_ent to determmm_g |somorph|s'_n between graph!;promem instances containing up to around 100 vertices. In
because if two graphs are isomorphic with each other, the'fhis study, we used a fast implementation of the exagx-
canonical labels must be identical. Both canonical Iabelinqmum clique (MC) problem solvemclique [57] instead of
and determining graph isomorphism are not known 1o bgp,qe fast exact MIS algorithms. Because the MIS problem
either in P'or n NP—compIe'te [18],' , , . onagraplhG is equivalent to the MC problem onG&s com-

In practice, the complexity of flnd!ng a ce_momcal Igbe_lmg plement grapl€, we can usevclique as a fast exact MIS al-
of a graph can be reduced by using various heuristics @ ithm EMIS). Heuristic algorithms focus on finding max-

narrow down the search space or by using alternate canonicgl,»| independent sets whose size is bounded in terms of the
label definitions that take advantage of special properties th%tize of the optimal solution, and a number of such methods

may exist in a particular set of graphs [53, 52, 18]. As pa_‘”have been developed [27, 6, 38, 25].

of our earller_ research we have developed such canonical One of the most widely used heuristic is tiggeedy

labeling algorithm that fully makes use of edge- and Vertex'algorithm (GMIS) which selects a vertex of the minimum
degree, deletes that vertex and all of its neighbors from

~ IThe symboly; in the figure is a vertex ID, not a vertex label, and the graph, and repeats this process until the graph becomes

blank elements in the adjacency matrix means there is no edge between t . . .
corresponding pair of vertices. E‘?npty. A recent detailed analysis of t8#MIS algorithm has

The problem of finding the MIS of a graph was among

shown that it produces reasonably good approximations of the
MIS for bounded- and low-degree graphs [25]. In particular,
for a graphG with a maximum degreé\ and an average
degred, the size|| | of the MIS satisfies the following:

(a) Size-12 graply (b) Size-7 subgrap’ (c) Size-6 subgrapts®
A+2

3

2.1) |1 < min< IGMIS(G), d—;r2|GM|S(G)|>

Figure 3: Patterns with the non-monotonic frequency

where|GMIS(G)]| is the size of the approximate MIS found and no special attention is paid for frequency counting.
by theGMIS algorithm.

4 Discovering Frequent Patterns in a Single Graph:
3 Related Work Problem Definition

The previous research on finding frequent subgraphs in graph fundamental issue that needs to be considered by any fre-
datasets falls under two categories. The first category corfiuent subgraph discovery problem formulation similar to the
tains algorithms for finding subgraphs that occur multiplesingle-graph setting is the counting method of the occurrence
times in a single input graph [71, 28, 21, 65] and are directlyfrequency. In general, there are two possible methods of the
related to the algorithms presented in this paper, whereas tieequency counting. According to the first method, two em-
second category contains algorithms that find subgraphs thaeddings of a subgraph are considered different, as long as
occur frequently across a database of small graphs [14, 31hey differ by at least one edge (i.e., non-identical). As a re-
43, 45, 33, 8, 68, 32, 29, 30, 44]. Between these two classedyllt, arbitrary overlaps of embeddings of the same subgraph
of algorithms, those developed for the latter problem are irare allowed. On the other hand, by the second method, two
general more mature as they have moderate computation@mbeddings are considered different, only if they do not share
requirements and scale to large datasets. edges (i.e., they are edge-disjoint). These two methods are
In the rest of this section, we will describe on the relatedillustrated in Figure 2. In this example, there are three pos-
research for the single-graph setting as it is directly related tsible embeddings of the subgraph shown in Figure 2(1) in
the topic of the paper. the input graph of Figure 2(2). Two of these embeddings
The most well-known algorithm for finding recurring sub- (Figures 2(3) and (5)) do not share any edges, whereas the
graphs in a single large graph is the SUBDUE system, origthird embedding (Figure 2(4)) shares edges with the other
inally developed in 1994, and improved over the years [28fwo. Thus, if we allow overlaps, the frequency of the sub-
10, 12, 11]. SUBDUE is an approximate algorithm andgraphis 3, and if we do notitis 2.
finds patterns that can compress the original input graph by These two ways of counting the frequency of a subgraph
substituting those patterns with a single vertex. In evalulead to problems with dramatically different characteristics.
ating the extent to which a particular pattern can compresH we allow arbitrary overlaps between non-identical embed-
the original graph it uses the minimum description lengthdings, then the resulting frequency is not any longer down-
(MDL) principle, and employs a heuristic beam search toward closed (i.e., the frequency of a subgraph does not mono-
narrow the search-space. These approximations improve itgnically decrease as a function of its length). This is il-
computational efficiency but at the same time it prevents ifustrated in Figure 3. Botl&’ and G® are subgraphs of
from finding subgraphs that are indeed frequent. GBI [71]G. Although the smaller subgrapB® has only one non-
is another greedy heuristics based algorithm similar to SUBIdentical embedding, the larg&” has six non-identical em-
DUE. Ghazizadeh and Chawathe [21] developed an algorithrheddings. On the other hand, if we determine the frequency of
called SEuS that uses a data structure calledmaryto con- €ach subgraph by counting the maximum number of its edge-
struct a lossy compressed representation of the input grapHisjoint embeddings, then the resulting frequency is down-
This summary is obtained by collapsing together all the verward closed [65].
tices of the input graph that have the same label and is used Being able to take advantage of a frequency counting
to quickly prune infrequent candidates. As the authors inmethod that is downward closed is essential for the compu-
dicate, this summary data-structure is useful only when théational tractability of most frequent pattern discovery algo-
input graph contains a relatively small number of frequentrithms. For this reason, our problem formulations uses edge-
subgraphs with high frequency, and is not effective if theredisjoint embeddings. Given this, one way of formulating the
are a large number of frequent subgraphs with low frequencyrequent subgraph discovery problem for the single-graph set-
Finally, Vanetik, Gudes and Shimony [65] presented an alting as follows [65]:
gorithm for finding all frequently occurring subgraphs from
a single labeled undirected graph using the maximum numpefinition 1 (Exact Discovery Problem) Given an input
ber of edge-disjoint embeddings of a graph as a measure gfaph G which is undirected and labeled, and a parameter

its frequency. Each subgraph is represented by its minimung, find all connected undirected labeled subgraphs that have
number of edge-disjoint pathpgth numbey, and use a level- at leastf edge-disjoint embeddings éh

by-level approach to grow the patterns based on their path-
number. Their emphasis is on efficient candidate generatiobinfortunately quite often this problem can be intractable. By

Embedding 1

M m I—o Embedding 3
Embedding 2

(1) Subgraph (2) Input graph (3) Embedding 1 (4) Embedding 2 (5) Embedding 3 (6) Overlaps

Figure 2: Overlapped embeddings

this definition, in order to determine if a subgraph is frequents Algorithms for Finding Frequent Subgraphs in a
or not, we need to find whether the overlap graph of its non- Large Graph
identical embeddings contain an independent set whose sizge developed two algorithms, calletSiGRAM 2 andv Si-
is atleastf . When a subgraph is relatively frequent comparedgraM, which find all frequent subgraphs according to Def-
to the frequency threshold, by using approximate MIS jnitions 1-3 described in Section 4. In both algorithms, the
algorithms we can quickly tell that such a subgraph is actuallyrequent patterns are conceptually organized in a form of a
frequent. However, in the cases in which the approximaigattice that is referred to as thattice of frequent subgraphs
MIS algorithm does not find a sufficiently large independentthe kih level of this lattice contains all frequent subgraphs
set, the exact MIS needs to be computed before a pattern wilj;itn k edges (i.e., siz&-subgraphs), and a node at level
be kept or discarded. Depending on the resulting size of th?epresenting a subgraf@K is connected to at mogtnodes
maximum independent set, the subgraph will be identifiedyt jevelk — 1, each corresponding to a distinct (i.e., non-
as frequent or infrequent. Also, if we need not only to find isomorphic) connected sizé— 1) subgraph of5X. The goal
frequent subgraphs, but also to find their exact frequencyyf hoth HSIGRAM andvSIGRAM is to identify the various
then the exact MIS needs to be computed on the overlap gragthdes of this lattice and the frequency of the associated sub-
of every pattern. In both cases, because solving the exagfraphs.
MIS problem is in NP-complete (see Section 2.2), the above The difference between the two algorithms is the method
definition of the frequent subgraph discovery problem cannofney yse to discover (i.e., generate) the nodes of the lattice.
be tractable, even for a relatively simple input graph. HSIGRAM follows a horizontal approach and discovers the
To make the problem more practical, we propose tWonodes in a breadth-first fashion, wherez@GRAM follows
alternative formulations that can find frequent subgraphs, yvertical approach and discovers the nodes in a depth-first
without solving the exact MIS problem. fashion. Both horizontal and vertical approaches have been
previously used to find frequent subgraphs in the graph-
transaction setting [33, 44, 68, 8] and have their origins
Definition 2 (Approximate Discovery Problem) Given an on algorithms developed for finding frequent itemsets and
input graphG which is undirected and labeled, and a pa- sequences [2, 3, 26, 72].
rameter f, find connected undirected labeled subgraphs that A detailed description 0HSIGRAM and VSIGRAM s
have at leastf edge-disjoint embeddings i as much as provided in the rest of this section.

possible.
5.1 Horizontal Algorithm: HSIGRAM

The general structure 6fSIGRAM is shown in Algorithm 1
Definition 3 (Upper Bound Discovery Problem) Given an (the notation used in the pseudo-code is shown in Table 1).
input graphG which is undirected and labeled, and a pa- HSIGRAM takes as input the grap$i, the minimum fre-
rameter f, find all connected undirected labeled subgraphsquency thresholdf, and the parameteM IS type that spec-
such that an upper bound on the number of its edge-disjoinifies the particular problem definition (as discussed in Sec-
embeddings is above the threshdld tion 4). It starts by enumerating all frequent single- and
double-edge subgraphsdh and then enters its main compu-
, . tational loop (Lines 7—-10). During each iteratiet§ GRAM
Essentially the solutions for those two problems becomg; . generates all candidate subgraphs of kizd by joining
a subset and a superset of the solution for Definition 1< of sizek frequent subgraphs (Line 8) and then computes
respectively. The first formulation, Definition 2, which asks {,q;, frequency iSIGRAM-COUNT in Line 11). The candi-

for a supset of the solution of Definition 1, requires that thedate subgraphs whose frequency is lower than the minimum
embeddings of each subgraph form an overlap graph that Ng§resholdf are discarded and the remaining are kept for the
an approximate MISwhose size is greater than or equal 0 ey jevel of the algorithm. The computation terminates when
f. The second formulation, Definition 3, which asks for \, frequent subgraphs are generated during a particular itera-
a superset of the solution of Definition 1, requires that any,,

upper bound on the size of the exact MIS of this overlap The two key components of theSIGRAM algorithm that

graph i,s greater than or equal fo Note that as discu;sed significantly affect its overall computational complexity are
in Section 2.2, such upper bounds can be easily obtained for

both theGMIS algorithm as well as for other approximate
algorithms. ZSiGraM stands for Sigle Graoh Miner.

Algorithm 1 HSIGRAM(G, MIS type f) Algorithm 2 HSIGRAM-GEN(FK-1, FK f)
. > f is the minimum frequency threshold. 1okl
. > MIS_typeis either approximate, exact or upper bound. 2: for each F in 71 do

:]:16 2 . 3: foreachpairFj, Fj in F.childrendo
. F+ < all frequent size-1 subgraphséh . C < join F; andF; based orF
i i

1
2
3
4
L :
2' F< « all frequent size-2 subgraphsgh I test if the downward closure property holds.
7
8

4
o 5:
: w;l]e k g do 6: S(C) « all connected siz&-subgraphs o€
: 7: P(C two primary subgraphs of size
: Kl HSIGRAM-GEN(FK-1 EX f) g sk(ip)e(_false P y subgrap
. k+1 .
9 FTh <9 el 9: for each Sin S(C) do
10: for each candidateC in C¥*1 do 10: if Sfreq< f then
11: C.freq < HSIGRAM-COUNT(C, MIS_type) 11 si(ip < true
12: if C.freq> f then 12: break
. k+1 '
13: addC tokfl 13: if skip # true then
14: F «— FUF 14: addC to Ck+l
:112 k<« k+1 15: > P(C) = {H1, Ha}
 return 16: addC to Hy.children and taH,.children

17: return ck+1
the methods used to perform candidate generation and o
compute the frequency of the candidate subgraphs. In thgigorithm 3 HSIGRAM-COUNT(CK+1, MIS_type)
rest of_this section we provide additiqnal det_ails on h_ov_v th_esel: (M(CK+1), ACk+L)) — HSIGRAM-EMBED(C. G)
operations are performed and describe various optimizations: G < build an overlap graph fromA(Ck+1)

that are designed to reduce their runtime. 3: {G1, Gy, ..., Gm} < decompos&
4: fmis < 0

5: foreach Gj in {Gq, G, ..., Gm} do

6: if Gj is easy to handléthen

7

8

5.1.1 Candidate Generation

fuis < fmis + [EMIS(G))|
else ifMIS_type= approximatehen
fmis < fmis + IGMIS(Gj)|

HSIGRAM generates candidate subgraphs of &ize 1 by
joining two frequent sizée subgraphs. In order for two such

. .. L 9
frequent sizek subgraphs to be eligible for joining each of the 10: else ifMIS.type— exactthen

two must contain the same sizke— 1) connected subgraph. 1;. fais < fuis -+ [EMIS(G))|
The simplest way to generate the complete set of candidate: else ifMIS.type= upper boundhen -
subgraphs is to join all pairs of sizefrequent subgraphs 13: fmis < fmis + IGMIS(G;)I min((A + 2)/3, (d +2)/2)

that have a common sizé&-— 1) subgraph. Unfortunately, Ef TS(CthI) isas;’t ofall CO””ECtedéE?f“bgraphs“Ck“
the problem with this approach is that a particular size- ;> P~ tm?nfmfzt fre?“ency amomyC™)
subgraph may have up todifferent size¢k — 1) subgraphs ' P

and as a result, if we consider all such possible subgraphs _
and perform the resulting join operations, we will end upallvalld candidate subgraphs is presented in [44]. This candi-

generating the same candidate pattern multiple times, angjate generation approach dramatically reduces the number of
gdundant and non-downward closed patterns that are gener-

generating a large number of candidate patterns that ark d and lead ianifi ; ;
not downward closed. Such an algorithm would spend Ated and leads to significant performance improvements over

significant amount of time identifying unique candidates anoIhe naive approach [45].

eliminating non-downward closed candidates (both of which .

operations are non-trivial as they require to determine thé'l‘2 Frequency Counting

canonical label of the generated subgraphs). HSIGRAM-COUNT in Algorithm 3 computes the frequency
HSIGRAM addresses both of these problems by only join-of a candidate subgraghby first identifying all of its embed-

ing two frequent subgraphs if and only if they share a certaindings, constructing the overlap graph of these embeddings,

properly selected, sizé — 1) subgraph. Algorithm 2 shows and then, based on thdIS_type parameter, finding an ap-

the pseudo-code for the candidate generation, where the proproximate or exact MIS of this overlap graph. The outline

erly selected sizék — 1) subgraph is denoted by. For each of this process is shown in Algorithms 4 and 3. In the rest

frequent sizek subgraphF;, let P(F) = {H; 1, Hi 2} be the of this section we first describe how the various embeddings

two size{k — 1) connected subgraphs Bf such thatH; 1 has are identified followed by a description of the method used to

the smallest canonical label aktl » has the second smallest efficiently compute the desired maximal independent sets.

canonical label among the various connected gizel) sub-

graphs off . We will refer to these subgraphs as grémary

subgraphsf F;. Note that if every sizék — 1) subgraph of

F; is isomorphic to each otheld; 1 = Hj 2 and|P(F)| = 1.

HSIGRAM will only join two frequent subgraphg; andF;,

if and only if P(F) NP(Fj) # ¢, and the join operation

will be done with respect to the common side— 1) sub-

graph(s). The proof that this approach will correctly generat

Embedding Identification In order to identify all the em-
beddings of a candidate, HSIGRAM-EMBED shown in Al-
gorithm 4 needs to solve the subgraph isomorphism prob-
lem. Performing the subgraph isomorphism for every can-
didate from scratch may be expensive, especially when an
input graph is large HSIGRAM-EMBED reduces this com-
é)utational requirement by usirgnchor edges An anchor
edge is a partial embedding of a candid@tend works as

Algorithm 4 HSIGRAM-EMBED(C, G)

. > A: aset of all anchor edges Gf

. A <« intersection of anchor edges acr¢i<C)
. > collect all uniqgue embeddings @f into M
M <0

: for eachanchor edge in A do

Me <« all embeddings o€ that includes the edge
M <~ MU Me

: > collect all unique anchor edges @finto A
TA <P

10: for eachembeddingnin M do

11: e <« choose one edge from arbitrarily
12: addeto A

13: return (M, A)

©

dia(G)

Figure 4: Distance estimation between two edges

Finally, after removing unnecessary anchor edges, for each
of the remaining anchor edges, all the subgraph isomorphisms
of C are repeatedly identified and the set of embeddihgs
is built (Line 6).

Computing the Frequency The frequency of each subgraph

a constraint of the subgraph isomorphism problem in which-k+1ig computed by thetSIGRAM-COUNT function shown
narrows down_ t_he search space only around the anchor edgg, Algorithm 3. In particularHSIGRAM-COUNT computes
More specifically, HSIGRAM-EMBED creates and uses y gifferent frequencies. The first, denoted bys, is
anchor edges as follows. First, the list of anchor edgegqmpyted based on the size of the MIS of the overlap graph
are created right after frequency counting for sike- 1) created from the embeddings @F+1. The second, denoted
frequent subgraph, by converting the list of its non—identicalby fo, is the least frequency of all the connected size-
embeddings. These edges will be used later for counting §ubgraphs ofck+! (Line 15), which represents an upper
candidate of siz&. Let Fi denote a frequent subgraph of ,4,nq onck+l's frequency derived entirely from the lattice

sizek — 1 and supposé&; hasN non-identical embeddings
in total. After the frequency countinds; has a list of all its
embeddingsM(F) = {my, ..., my}. An anchor edge of
an embeddingn; of F is an edge irE(G) that is also a part of
m;. For everym;, HSIGRAM-EMBED arbitrarily chooses an
edge and adds it tal(F;) (Line 11 in Algorithm 4). Because

of frequent subgraphs. In the case in whighs is computed
using Definition 3, the frequency bound provided By
may actually be tighter, and thus may lead to more effective
pruning. For this reason, the overall frequencyQft?! is
obtained by taking the minimum diys and fp.

The frequencyfys is computed as follows (Lines 2—

of overlapped embeddings, some embeddings may lead t0 th&) - Gjyen a pattern and all of its non-identical embeddings,

same anchor edge.

Now, in the next iteration, supposekecandidateC con-
tains a frequenik — 1)-subgraphF;. Because there are
k edges inE(C), C may have up td distinct such fre-
guent subgraphs of size— 1, and each holds the an-
chor edge list. Before starting the frequency countin@of
first HSIGRAM-EMBED selects one of whose frequency
is the lowest amongF; }. For eache, € A(F;), HSIGRAM-
EMBED checks if there is an edg®, € A(F;) forall j # i
such that the shortest path length betweeandey,, denoted
by d, is within the diameter o€, denoted by dieC). If there
is such an edgen, from every A(Fj) for j # i, e, may be
a part of an embedding &, because ifC is a frequent sub-

HSIGRAM-COUNT generates its overlap gragh. Then,
HSIGRAM-COUNT decomposes$s into its connected com-
ponentsGy, G, ..., Gy (M > 1). Next, for each connected
componeng;, it checks the maximum degree of its vertices
and if it is less that or equal to two (a cycle or a path), it com-
putes its maximum independent set directly by EMIS al-
gorithm because it is trivial to compute the exact MIS for this
class of graphs (Line 7). If the maximum degree is greater
than two, HSIGRAM-COUNT uses either the result of the
GMIS algorithm (Line 9), the result of thEMIS algorithm
(Line 11), or the upper bound on the size of the exact MIS
(Equation 2.1). The summation of those MIS sizes for the
components is the final value df;s. Note that the decom-

graph of sizex, there must be a set of frequent subgraphs of,ition of the overlap graph into its connected components

sizek — 1 inside the same embedding®©f To compute the
exact path length between edggsandey, in G; requires all

allow us to take advantage of the properties of the special
graphs and also obtain tighter bounds for each component as

pairs shortest paths, which may be computationally expensivige maximum degree for some of them will be lower than the

when|E(G;)| is large.HSIGRAM-EMBED bounds this length
d by the difference between two lengthd; — dm|, whered,

anddy, are the shortest path lengths from an arbitrarily cho

sen vertexw € V(Gi) to e, andey, respectively. Ife, anden
are in the same embedding Gf, alwaysd < dia(C) holds
anddn < dpn+d. Thus, if|d, —dm| < dia(C) is true, there,
andey may belong to the same embedding®f otherwise

maximum degree of the entire overlap graph.
In addition, every edge is marked if it is included in any

‘'embedding of a frequent subgraph. Unmarked edges are

removed before proceeding to the next iteration.

5.2 Vertical Algorithm: vSIGRAM

en andey cannot be in the same embedding (see Figure 4)I e most computationally expensive step in & GRAM
If e cannot find sucley, from every A(Fj) for j # i, &n is algorithm is frequgncy counting as it negds to repeatedly
removed fromA(F;) (Line 2). Because the subgraph isomor- Perform subgraph isomorphism computations. The overall

phism will be performed for each, this pruning procedure time can be greatly reduced if instead of storing only the
can effectively reduce the run-time. anchor-edges we store the complete set of embeddings across

successive levels of the algorithm. Becausei8fGRAM’s Algorithm 5 vSIGRAM
level-by-level structure, these complete embeddings needsiGRAM(G, MIStype f)
to be stored for the entire set of frequent and candidatel: 7 < ¢
patterns of each successive pair of levels. This substantially: 7 < all frequent size-1 subgraphséh
increases the memory requirements of this approach, makin fforﬂiacg‘l': '”j”E i% ddings of 1
itimpractical for the most of interesting datasets. On the others, ¢, ea(ch ,):f_maff doe 0
hand, within the context of a vertical algorithm, storing the 6. F — 7 UvSIGRAM-ExTEND(FL, G,)
complete set of embeddings is feasible since we need to da: return 7
that only for the subgraphs a_long the path from the c_urren:c/slGRAM_EXTEND(FK‘ G. MiS.type 1)
node to the root. Thus, a vertical algorithm has potentially a,. g
computational advantage over a horizontal algorithm, which. tor eachembeddingnin M(F) do
motivated the development &fSIGRAM. 3. ck+l — ck+lyall (k + 1)-subgraphs of containingm}

However, before developing efficient algorithms that gen- 4: for each k1 in ck*1 do
erate the lattice of frequent subgraphs in a depth-first fashiorp: if F* is notthe generating pareraf C** then

. - . 6: continue

two critical steps need to be addressed. The first step is thg: computeCk+1 freq from M(CK+L)
method that is used to ensure that the same node of the lak. it ck+1 freq < f then
tice and the depth-first subtree rooted at that node should nog: continue
be discovered and explored multiple times. This is impor-10: addCk+1to 7
tant because each node at lekeill be connected to up to 11: retum 7
k different nodes at levak — 1). As a result, if there are no])]]
mechanisms by which to prevent the repeated generation @€nerating parent (Lines 5-6) or are infrequent (Lines 7-8).
the same node, a depth-first algorithm will end-up perform-The subgraphs remaining i+ are the frequent subgraphs
ing redundant computations (i.e., generating the same nod@f Sizé{k + 1) obtained by an one-edg_e-extensmchKfand _
multiple times), adversely impacting the overall performance®® used as input for the next recursive call. The recursion
of the algorithmyv SIGRAM eliminates these redundant com- terminates whe@*** = ¢, and the depth-first search back-
putations by assigning each node at lev@torresponding to racks. _ . _ - _
a subgraptFK) to a unique parent node at level- 1 (corre- In the regt of this segtlon we provide additional detglls on
sponding to a subgragf—1, such that onlyF¥~ is allowed how the various operations are performed and describe var-

to createFX. The subgraptFk—1 is calledthe generating ious optimizations that are designed to redu@GRAM'’s
parentof FX. Details on how this is achieved is provided in "un-time.
Section 5.2.1.) .

The second step is the method that is used to create succes?-1 Generating Parent Identification

sor nodes in the course of the traversal. In the caseSof The scheme thatSIGRAM uses to determine the generating

GRAM, this corresponds to the candidate generation phas@arent of a particular subgraph is as follows. Suppose a size-

and is performed by joining the frequent subgraphs of the pre¢k + 1) frequent subgrapfF*+t1 is just created by extension

vious level. However, since the lattice is explored in a depthfrom a sizek frequent subgrakak. By the canonical

first fashion, such joining-based approach will not work, asjabeling, the order of edges and verticesifi™ is uniquely

the algorithm may not have yet discovered the required fredetermined.vSIGRAM removes the last edge that does not

quent subgraphs. To address this proble®8IGRAM creates disconnecF**1 and obtains another sizesubgraph-.

the successor nodes (i.e., extended subgraphs) by analyzing|f F is isomorphic toFk then FK becomes the generating

all the embeddings of the current subgréph and identify- parent ofF**1, andv SIGRAM keeps the further exploration

ing the distinct one-edge extensions to these embeddings thgggm F&+1. Similar type of approaches have been used earlier

are sufficiently frequent. The frequent extensions for whichin the context of vertical algorithms for the graph-transaction

FK is the generating parent are then used as the successgtting [65, 68]. All of these share the same idea, which

nodes during the depth-first traversal. avoids redundant frequent pattern generation and traverses
The general structure of SIGRAM is shown in Algo- the lattice of patterns as if it was a tree.

rithm 5. vSIGRAM starts by determining all frequent size-1

patterns and then uses each one of them as the starting point®p .2 Efficient Subgraph Extension

a recursive depth-first extension§ GRAM-EXTEND func-

tion). VSIGRAM-EXTEND takes as input a siZefrequent

subgraerk and all of its embeddingM(F") in G and pro-

ceeds as follows. For each sikembeddingn e M(FK), it

identifies and stores every possible siket+ 1) subgraph in

g that containsn. From this set of subgraphs, it extracts all

size{k+1) subgraphs which are notisomorphic to each othe

and stores them ig**t1. Then,vSIGRAM-EXTEND elimi-

nates fronC*+1 all the subgraphs that do not hal& as their

Starting from a frequent sizesubgraphy SIGRAM obtains

the extended subgraphs of skee- 1 by adding an additional
edge (while preserving connectivity) to all of its possible em-
beddings. Specifically, for each embeddmgof a frequent
k-subgraphF, vSIGRAM enumerates all the edges that can
Pe added tan to form a sizetk + 1) extended subgraph.
Each of those edges is represented by a tuple of 5 elements
s = (X, Y, Uu,v,e), called astem wherex andy are the vertex

$0 | vo v1 v2 v3 V4
#1 | vo v1 v2 v3 vs

vp V3 U5 ¢2 | vo v3 V2 V1 Vg

i #3 | vo v3 v2 v1 Vs

cvid| vg vy vy v g

vy vz ug " | 90 ¢0 d0 ¢2 41
(a) GraphG (b) Canonical vertex ID

and automorphsm

Figure 5: Size-6 grap&, canonical vertex IDs, and canonical

automorphism

IDs of the edge irG, u andv, u < v, are the corresponding
vertex IDs inF, ande is the label of the edge. Farandv,

if there is no corresponding vertex i, —1 is used to show
that it is outside the subgraph

corresponding element in the connection table is updated to
show that it is now impossible to create an edge with a label
e betweenu’ andv’. If ct(U’, v/, e) is deactivated for a fre-
quent subgraph of side then for anyt > k, there should not

be any frequent subgraph that has an edge betweandv’

with the edge labet. We can reduce the number of stems to
be generated by looking up the connection table during the
stem enumeration phase.

5.2.3 Frequency Counting

In the vertical algorithm, when a siz&-+ 1) extension is
processed, there is only one sizérequent subgraph visible,
the generating parentvSIGRAM'’s frequency counting is
similar to HSIGRAM-COUNT, except for the computation

However, because of the automorphism of the subgrapRf fp (see Line 15 in Algorithm 3). HSIGRAM enforces
F, we cannot use this stem representation directly. Fofhe downward closure property on the frequency of a size-

a particular embeddingn of a frequent subgraplfr in G,

(k + 1) candidate, by using the least frequency of all dize-

there may be more than one vertex mapping of the subgraptbgraphs of the candidateSIGRAM cannot take the same
onto the embedding. If we simply used a pair of vertexStep becauseSIGRAM does not hold all siz&-frequent
IDs of the subgraph to represent a stem, depending on th&ibgraphs at the time a sizke—+ 1) extended subgraph is
mapping, the same edge addition might be considered greated. InsteadSIGRAM simply uses the frequency of the
different stem, which would result in the wrong frequency Sizek generating parent from which the current sike+ 1)

of the subgraph. To avoid this problem, every time a stenfXtension is obtained. As a restSIGRAM'’s pruning is
is generated, its representation is normalized as follows looser than that ofiSIGRAM.

VSIGRAM enumerates all possible automorphisms Fof
denoted by{¢; }. By an appropriate; we obtain the canonical
vertex ID for every vertex € V (F). Thecanonical IDof a
vertexv, denoted by cvitb), is defined as

cvid(v) = miin @i (v).

6 Experimental Evaluation

In this section, we study the performance of the proposed
algorithms with various parameters and real datasets. All
experiments were done on dual AMD Athlon MP 1800+

(1.53 GHz) machines with 2 GBytes main memory, running
the Linux operating system. All the run-times reported are in

The automorphism with the least subscript that gives thgeconds.

canonical ID forv is called thecanonical automorphism
denoted byp;.

¢F = arg rginqbi W), i<jifgi(v)=0¢j@)

For example, given the size-6 gra@hshown in Figure 5(a),
cvid(vz) = v1 and¢y, = ¢2. Figure 5(b) shows cvid ang*
for every vertex inG. Note that althougl®s(vs) is alsovs,
becausep, has the smaller subscript, &;, is ¢». Now for
each stens = (x, y, u, v, &), ¢*(u, v) = (U, v') are defined
as follows.

u' = cvid(u), v = ¢ (v)

u =¢i(u), v =-cvid)
Then, stensis rewritten agx, y, u’, v/, €), which is automor-
phism invariant representation ®and is used by SIGRAM

to properly determine the frequency of side+ 1) extended
subgraphs.

if cvid(u) < cvid(v)
otherwise

Additional Optimization: Keeping Track of Edge Cre-

6.1 Datasets

We used six different datasets, each obtained from a different
domain, to evaluate and compare the performance3#
GRAM and VSIGRAM. The basic characteristics of these
datasets are shown in Table 2. Note that even though some
of these graphs consist of multiple connected components,
the HSIGRAM andVvSIGRAM algorithm treat them as one
large graph and discover the frequent patterns according to
Definitions 1-3 described in Section 4.

The Aviation and Credit datasets are obtained from [64].
The Aviation dataset is originally from the Aviation Safety
Reporting System Database and the Credit dataset is from the
UCI machine learning repository [7]. The directed edges in
the original graph data were converted into undirected ones.
For the Aviation dataset, we removed undirected edges to
show “nearto” relation between two vertices because those
edges form cliqgues which makes this graph difficult to mine.

The Citation dataset was created from the citation graph

ation Status Each frequent subgraph maintains a three-Used in KDD Cup 2003 [37]. Each vertex in this graph

dimensional table, called@nnection tableEach elementin
the table is denoted by(t, v’, €) which shows if it is possi-
ble to form an edge between the vertickandv’ whose edge
label ise. Every time a stengx, y, U’, v/, e) is discarded, the

corresponds to a document and each edge corresponds to a
citation. Because our algorithms are for undirected graphs,
the direction of these citations was ignored. Since the original
dataset does not have any meaningful label for vertices, we

generated vertex labels as follows. We first used a clustering

algorithm to form clusters of the document abstracts into 50 Table 2: Datasets used in the experiments

thematically coherent topics, and then assigned the cluster ID Dataset | Connected Vertices Edges ___Labels _
. . Components Vertex Edge

as the label to the c_orresponfjlng vertlc_es. _For the edges, We —zyiation 5703 101185 196964 6173 51
used as labels the difference in the publication year of the two Credit 700 14700 28000 59 20
. . . Citation 16999 29014 42064 50 12

papers. For example, if two papers were published in 1997 Coqiact map 170 33443 224488 21 5
and 2002, an edge is created between those two document DTP 2319 41190 86140 58 3

. . s . VLSI 2633 12752 23084 23 1
vertices with the label “5”. Finally, because some of the

vertices in the resulting graph had a very high degree (i.e

horiti d hub K v th . h g é?%uired by the particular algorithm, the total number of pat-
authorities and hubs), we kept only the vertices whose degr rns that were discovered, and size of the largest pattern.
was less or equal to 15.

he C d . de of 170 ins f Entries in the table marked with “—" represents experiments
The Contact Mapdataset is made of 170 proteins from .. \vere aborted because of high computational require-

the Protein Data Bank [5] with pairwise sequence identityments
lower than 25%. The vertices in these graphs correspond to Froh these results we can see that as expected, for all

th? dn‘_ferent amino acids and the e_dges connect two amingasets and algorithms, as the valud afecreases, the run-
acids if they are either at consecutive sequence positions @fe for finding the frequent patterns increases as well. The
they %re w:jcon;aq in their 3',? itrugture. Tobamlno aC|ds_ a'%ate of increase in runtime follows the corresponding rate of
consi ?rle toh emn Contﬁm' the 'ﬁ.tlance 'etwer(]en m':} increase in the number of patterns that are being discovered.
atoms is less t ana. Furthermore, while creating t € 9rapns pesiges that, the results in this table help illustrate the relation
we only considered non-local contacts that are defined as t tween the two key variables in these experiments, which

contacts between amino acids whose sequence separationai[% the type of the particular algorithr$IGRAM vs v Si-

at IeﬁSt six a(rj‘nino acids. llecti ‘9 hemical GRAM) and the type of frequency calculation (approximate
The DTP dataset is a collection of 2,319 chemica COM- 1S exact MIS, or upper bound MIS).

pounds randomly selected from the dataset of 223,644 chem-
ical compounds provided by the Developmental TherapeUtiC§maller than that required bYSIGRAM. In fact, as the value
Progrgm (DTP) at National Cancer Instittité&lote that each of the frequency threshold decreaseS|GRAM is up to five
chemical compound forms a connected component and thefﬁnes faster thamiSIGRAM. This is true across all datasets

are 2,319 such compongnts in this dataset. Each vertex COMES; the approximate and exact MIS problem formulation, and
sponds to an atom and its label reprgsents the atom type. ABr those datasets for which the upper bound MIS formulation
edge is formed between two vertices if the correspon_dmg tWOrads to the same number of frequent patterns for both
aioms are connected by a bond. Th? type of abond is used ﬁfsgorithms. As discussed in Section 5.2, the reason for that
an e.dg(ﬁ Iabr(]al, and tgere are threebd|§t|n(c:jt ?dge Isbels. performance advantage is the fact that by keeping track the
, F|r|1a y, the VLSl ataset_walls obtained from the Intt)ernar; embeddings of the frequent subgraphs along the depth-first
tional Symposium on Physical Design '98 (ISPD98) bench-, i, \ 5,GraM spends significantly less time in subgraph

mark su_lté and correspon_ds to the netlist _of a real qrcun. isomorphism related computations thasi GRAM does.
The netlist was converted into a graph by first removing any However, for certain datasets, when the upper bound MIS

nets that are longer than fou_r and then using a star-based 3rmulation is usedySIGRAM ends up generating signifi-
proach to replace each net (i.e., hyperedge) by a set of edgec%ntly more patterns than those generated B\GRAM. For
Note that for this dataset we limited the size of the 'argeStdiséxample in the case of the DTP dataset dnek 20. vSi-

covered pattern to five edges. This is because for the ValueéRAM generates almost 16 times more patterns thSn
of the frequency threshold used in our experiments, the onI)GRAM In such cases, the amount of time requiredvisy-

frequent patterns that contained more than five edges WeIERAM is substantially greater than that required tgi-

paths_, and because of the highly connected nature of the URs A M (32.4 times greater in the DTP example). The rea-
derlying graph, there were a very large number of such pathsson for that is the fact that because of its depth-first nature,

making it hard to find these longer path patterns in reasonabl\gslGRANI cannot take advantage of the frequent subgraph

amount of time. lattice to get a tight upper bound on the frequency of a sub-
graph based on the frequency of all of its subgraphs, and it
6.2 Results bases its upper bound only on the frequency of the generat-
Table 3 shows the results obtained by th8IGRAM and ing parent. On the other hand, because of its level-by-level
vSIGRAM algorithms for the different datasets, for a wide nature,HSIGRAM can use the information from all its sub-
range of the minimum frequency threshold valdfesand the patterns, and obtains better upper bounds (see discussion in
three different MIS-based problem definitions. For each exSection 5.1.2).
periment, Table 3 shows the amount of time (in seconds) re- Comparing the different MIS-based problem formulations,
we can see that the one based on the approximate MIS usu-
~ 3DTP 2D and 3D Structural Information. http://dtp.nci.nih.gov/docs/ ally leads to the fastest execution time for both algorithms.
3d database/structutiformation/structuratiata. htm Moreover, for datasets for which the various overlap graphs
4http://visicad.cs.ucla.edwutheese/ispd98.html

In general, the amount of time required %% GRAM is

Table 3: Run-time in seconds and the number of found frequent patterns for the different datasets. this is that and that is this
and it is what and what is it.

Aviation Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H \% H \% H \% H \% H \% H \% H V H V| H \%

2000 | 308 130[306 130 320 130 833 833 833 833 833 833 8 8| 8 8| 8 8

1750 | 779 342| 787 342| 789 341| 2249 2249 2249 2249 2249 22490 9 9| 9 9| 9 9

1500 | 1603 743| 1674 745| 1584 739| 5207 5207 5207 5207| 5207 5207 10 10| 10 10| 10 10

1250 | 2726 1461| 2720 1496| 2781 1486 11087 11087 11087 11087 11087 11087 12 12| 12 12| 12 12

1000 | 5256 3667| 5158 3683| 5596 3818 30331 30331 30331 30331 30331 30331 13 13| 13 13| 13 13
Citation Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact UB Apprx. Exact uB Apprx. | Exact uB
H \% H \% H \% H \% H \% H \% H V H V| H \%

100 0.1 00 01 0.0 01 00 6 6 6 6 7 17 1 1] 1 1| 2 5

50 01 01| 01 0.1 06 — 39 39 39 39 113 —| 2 2| 2 2| 7 —

20 06 03] 09 05| 139 — 266 266 266 266| 12203 —| 3 3| 38 3|16 —

10 40 15| 42 19 — — 986 986 988 988 — — 5 5| 5 5| — —
Contact Run-time[sec] Number of Found Patterns Largest Pattern Size
Map f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H \Y% H \% H \Y H \Y% H \% H \Y H V H V| H \%

400 3 2 3 2 10 — 100 100 100 100 246 —| 2 2] 2 2| 8 —

300 10 3| 10 3| 183 — 186 186 186 186| 2358 —| 2 2| 2 2|10 —

200 44 9| 45 9| — — 505 505 505 505 — —| 3 3| 3 3| — —

100 | 362 63| 356 71| — — 3183 3183 3186 3186 — —| 5 5| 5 5| — —

50 | 3505 607| 3532 632 — — | 29237 29237 29298 29298 — — 6 6| 6 6| — —
Credit Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H \% H \Y H \Y H \Y% H \% H \Y H V H V| H \Y%

500 0 0 0 0 0 0 24 24 24 24 24 24 3 3] 3 3| 3 3

200 10 4 10 4 9 4 1325 1325 1325 1325 1325 1325 7 7| 7 7| 7 7

100 49 20| 45 21| 45 20| 11696 11696 11696 11696 11696 1169 9 9| 9 9| 9 9

50 | 169 78| 172 80| 169 78| 73992 73992 73992 73992 73992 73997 11 11| 11 11| 11 11

20 | 2019 461| 1855 468| 1880 462| 613884 613884 613884 613884 613884 613884 13 13| 13 13| 13 13
DTP Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H \% H \Y H \Y H \% H \% H \% H V H V| H \%

500 92 20 86 21 96 30 109 109 109 109 153 226 7 7| 7 7| 12 13

200 101 23| 100 24| 115 38 414 414 415 415 641 916 9 9| 9 9| 15 15

100 113 27| 114 27| 169 64 1244 1244 1244 1244 2484 3788 12 12| 12 12| 16 18

50 | 145 34| 134 35| 247 103| 4028 4028 4028 4028 8295 13622 14 14| 14 14| 18 21

20 | 243 86| 249 83| 616 19998 21477 21477 21478 21478 52180 824704 16 16| 16 16| 20 81

10 813 311| 882 294| 2018 —| 112535 112535 112539 112539 232810 —| 21 21| 21 21| 21 —
VLSI Run-time[sec] Number of Found Patterns Largest Pattern Size
f Apprx. Exact uB Apprx. Exact uB Apprx. | Exact uB
H \% H \Y H \Y H \Y% H \% H \Y H V H V| H \%

200 11 3 —_ — 37 8 137 137 — — 347 415 5 5| — — 5 5

150 13 4 —_ - 46 9 156 156 — — 437 503 5 5| — — 5 5

100 42 70— — 54 10 379 379 — — 519 609) 5 5| — —| 5 5

75 49 8| — — 56 10 409 409 — — 571 679 5 5| — —| 5 5

50 | 236 15 — —| 282 17 683 683 — — 946 1051 5 5| — —| 5 5

25 428 18 — —| 469 20 1452 1452 — — 1907 2131 5 5| — — 5 5

Note. Dashes indicate the computation was aborted because of the too long run-time or memory exhaustion.
f: the minimum frequency threshold, HSIGRAM, V: vSIGRAM, Approx.: with approximate MIS, Exact: with exact MIS, UB: with upper bound MIS

are reasonably small (this is true for all our datasets except

VLSI), the exact MIS-based formulation leads to small exe- Table 4: SUBDUE Results

cution time as well. Also, the upper bound MIS formulation Dataset ‘ Rtfn-ti;ne N;n:tber of Pgtern ‘ FFreqﬁmity of
. . . sec atterns ize oun atterns

tends to be slower than the other two primarily because it —&zmon — T = — = — —
generates more patterns. However, the advantage of the up- Citation 8812 3|27 26 271 1 1 1
. Contact Map 5043 3| 224 223 223 1 1 1

per bound formulation over the one bgsed on the e_'xact MIS Gredit 517 3176 5 85| 341 395 387
can be seen for the VLSI graph for which the resulting over- DTP 1525 3| 2 2 6]4957 4807 1950
VLSI 16 3 1 1 1| 773 773 244

lap graph was large, and exact MIS computations could not
finish in reasonable amount of time. Fln_ally, comparing the6_3 Performance Comparison with Existing Algorithms
number of patterns found by the approximate and the exact _ _ _
MIS-based formulations, we can see that, in general, the ag=omparison with SUBDUE We ran SUBDUE [28] version
proximate algorithm fails to discover a very small number of5-0.6 on the same datasets described in Section 6.1 and
patterns.

5Although this version is not the latest one, it runs significantly faster

than the current latest version, 5.0.8.

measured the run-time, the number of discovered patternger second).
their size, and their frequency. These results are shown in
Table 4. These results were obtained by using SUBDUE'Y Conclusions

default settings for all but the VLSI dataset. For the VLSI | this paper we addressed the problem of finding all the
dataset, we run SUBDUE so that to find subgraphs thag pgraphs that have many edge-disjoint embeddings in a
contain at most five edges, as was done in the case @frge sparse graph, a step critical to discovering patterns
HSIGRAM and VSIGRAM. Note that SUBDUE's default iy graph datasets. We studied three distinct formulations
settings returns_, at most three subgraphs that were determingg {he problem that were motivated by the complexity of
to be the most important. identifying the maximum set of edge-disjoint embeddings of
Because of the inherent differences between SUBDUE ang subgraph, and developed two frequent subgraph mining
our algorithms, it is impossible to perform a direct Compari'algorithms for solving them. These algorithms are based
son of the results that they generate. For this reason our corgy the horizontal and vertical paradigms, respectively. Our
parisons will focus mostly on highlighting some key points. experimental evaluation on many real datasets showed that
First, the amount of time required by SUBDUE s in gen- for most datasets and problem formulations both algorithms

eral, considerably higher than that required by our algorithmsgchieve good performance, with the vertical algorithm being
For example, SUBDUE did not finish the computation for theyyo-to-five times faster.

Aviation dataset after spending four entire days. Also for the

Citation and Contact Map datasets, SUBDUE could not findReferences

any meaningful patterns at all, as the patterns that it found

had a frequency of one. For the Credit dataset with the min-[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
imum frequency threshold of 50, botSIGRAM and v Si- Automatic subspace clustering of high dimensional data for
GRAM with upper bound MIS spent 169 and 78 seconds re- data mining applications. IRroc. of 1998 ACM-SIGMOD Int.
spectively to discover the same number of subgraphs, 7399 Conf. on Management of D3ta998.

] R. Agrawal and R. Srikant. Fast algorithms for mining associ-
The largest pattern has 11 edges and had a frequency of 58. | ation rules. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors,

antrast, the largest pattern_ fO_U”F’ by SUBD_UE had six dges proc. of the 20th Int. Conf. on Very Large Data Bases (VLDB)
with a frequency of 341. This indicates that if there are small pages 487-499. Morgan Kaufmann, September 1994.
subgraphs that have relatively high frequency, SUBDUE will [3] R. Agrawal and R. Srikant. Mining sequential patterns. InP. S.
focus on them and will not discover the larger patterns. We Yu and A. L. P. Chen, editordroc. of the 11th Int. Conf. on
can see the similar result for the DTP dataset. The size of Data Engineering (ICDE)pages 3-14. IEEE Press, 1995.

the patterns SUBDUE found are very small, 2-6 edges, butf4] B. Berendt, A. Hotho, and G. Stumme. Towards semantic web
their frequency is very high. On the other hand, the results ~ mining. InInternational Semantic Web Conference (ISWC)
in Table 3 show that with the minimum frequency threshold _ Pages 264-278, 2002. N

20, bothHSIGRAM andvSIGRAM under exact MIS spend [5] H.M.Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,

249 and 83 seconds respectively to find 21,478 frequent sub- :at\élvg::;g\uljcl’\el ics:é?ggﬁg\s'é;‘;%g '2;?;:;”260?9 protein
graphs, and the largest size is 16. [6] ' ' '

P. Berman and T. Fujito. On the approximation properties
Comparison with SEuS The SEuS [21] algorithm is de- of independent set problem in degree 3 graphs.Pioc. of
signed to find all frequent subgraphs in a single-graph set- Workshop on Algorithms and Data Structurpages 449-460,
ting. However, when determining the frequency of a sub- _ 1995. _ _
graph they consider all embeddings irrespective of whethed/! C: L. Blake and C. J. Merz. UCI repository of machine
they are disjoint or not. As a result, a subgraph may have high[s] learning databases, 1998,

t

f th hit h I b f edae-disioi C. Borgelt and M. R. Berthold. Mining molecular fragments:
requency even though it has small number of edge-disjoin Finding relevant substructures of molecules.Phoc. of 2002

embgddings because of overlapped.embeddi.ngs. In [21], the \ggg International Conference on Data Mining (ICDM002.
run-time of SEuS on the PTE chemical datésstreported. [9] L.P.Chew, D. Huttenlocher, K. Kedem, and J. Kleinberg. Fast
SEUS (SEuS-S1) spent more than 20 seconds to find 34 fre- detection of common geometric substructure in proteins. In
quent subgraphs, that is 1.4 frequent subgraphs per second. Proc. of the 3rd ACM RECOMB International Conference on
On the same dataset given the minimum frequency thresh- Computational Molecular Biology1999.
old of 500, vSIGRAM with upper bound MIS requires 20 [10] D. J. Cook and L. B. Holder. Substructure discovery us-
seconds to find 168 frequent subgraphs, which translates to ing minimum description length and background knowledge.
8.4 frequent subgraphs per second. Similarly, with the Credit Journal of Artificial Intelligence Researchl:231—255_, :_L994.
dataset (which is called “Credit-4” in [20]), SEuS-S1 Spent[11] D. J._Cook and L. B. Ho_Ider. Graph-based data minili=E
50 seconds to produce 48 frequent subgraphs (one frequeﬁtz] Igt%lll%%r(l)tkSyLstgmi ?éi)r'?’:r:;é’ %QOO' .

. - . ,L.B.) . Djoko. Knowledge discovery
subgraphs per second), whi&SIGRAM with upper bound

. , from structural data.Journal of Intelligent Information Sys-
MIS finds 1,325 frequent subgraphs in four seconds for the tems 5(3):229—-245, 1995.

minimum frequency threshold 200 (331 frequent subgraphg 3] |. De Raedt and S. Kramer. The level-wise version space
algorithm and its application to molecular fragment finding. In
Sftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/carcinogenesis/ Proc. of the 17th International Joint Conference on Artificial
progol/carcinogenesis.tar.Z Intelligence (IJCAI-01)2001.

[14] L. Dehaspe, H. Toivonen, and R. D. King. Finding fre- [31] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based
guent substructures in chemical compounds. In R. Agrawal, algorithm for mining frequent substructures from graph data.
P. Stolorz, and G. Piatetsky-Shapiro, editd®goc. of the 4th In Proc. of the 4th European Conference on Principles and
ACM SIGKDD International Conference on Knowledge Dis- Practice of Knowledge Discovery in Databases (PKDD;00)
covery and Data Mining (KDD-98)ages 30-36. AAAI Press, pages 13-23, Lyon, France, September 2000.
1998. [32] A. Inokuchi, T. Washio, and H. Motoda. Complete mining of
[15] M. Deshpande, M. Kuramochi, and G. Karypis. Automated frequent patterns from graphs: Mining graph datdachine
approaches for classifying structures. Mmoc. of the 2nd Learning 50(3):321-354, March 2003.
Workshop on Data Mining in Bioinformatics (BIOKDD 'Q2) [33] A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast
2002. algorithm for mining frequent connected subgraphs. Technical
[16] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent Report RT0448, IBM Research, Tokyo Research Laboratory,
sub-structure based approaches for classifying chemical com- 2002.
pounds. InProc. of 2003 IEEE International Conference on [34] D. Jensen and H. Goldberg, editofstificial Intelligence and
Data Mining (ICDM), 2003. to appear. Link Analysis Papers from the 1998 Fall SymposiuAAAl
[17] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Press, 1998.

Approximating clique is almost NP-complete. Rroc. of the

32nd IEEE Symposium on Foundations of Computer Science

(FOCS) pages 2-12, 1991.

[35] I. Jonyer, D. J. Cook, and L. B. Holder. Discovery and evalu-

ation of graph-based hierarchical conceptual clustdosirnal
of Machine Learning ResearcR:19-43, 2001.

[18] S. Fortin. The graph isomorphism problem. Technical Report{36] I. Jonyer, L. B. Holder, and D. J. Cook. Hierarchical concep-

TR96-20, Department of Computing Science, University of

Alberta, 1996.
[19] M. R. Garey and D. S. Johnso@omputers and Intractability:
A Guide to the Theory of NP-Completened¥. H. Freeman

tual structural clustering.International Journal on Artificial
Intelligence Tools10(1-2):107-136, 2001.

[37] KDD Cup 2003. http://www.cs.cornell.edu/projects/kddcup/

datasets.html.

and Company, New York, 1979. [38] S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani. On

[20] S. Ghazizadeh and S. Chawathe. Discovering freugent struc- syntactic versus computational views of approximability. In
tures using summaries. Technical Report CS-TR-4364, De- Proc. of IEEE Symposium on Foundations of Computer Sci-
partment of Computer Science, University of Maryland, 2002. ence pages 819-830, 1994.

[21] S. Ghazizadeh and S. Chawathe. SEuUS: Structure extractigf39] J. M. Kleinberg. Authoritative sources in a hyperlinked
using summaries. IRroc. of the 5th International Conference environment. Journal of the ACM (JACM)46(5):604—632,
on Discovery Scienc2002. 1999.

[22] J. Gonzalez, L. B. Holder, and D. J. Cook. Application [40] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and
of graph-based concept learning to the predictive toxicology A. S. Tomkins. The Web as a graph: Measurements, models
domain. InProc. of the Predictive Toxicology Challenge and methodsLecture Notes in Computer Sciend®27, 1999.
Workshop2001. [41] C. Ko. Logic induction of valid behavior specifications for

[23] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Wil- intrusion detection. INEEE Symposium on Security and
lett. Identification of tertiary structure resemblance in proteins Privacy (S&P) pages 142-155, 2000.
using a maximal common subgraph isomorphism algorithm.[42] I. Koch, T. Lengauer, and E. Wanke. An algorithm for finding
Journal of Molecular Biology229:707—-721, 1993. maximal common subtopoloties in a set of protein structures.

[24] V. Guralnik and G. Karypis. A scalabale algorithm for clus- Journal of computational biologya(2):289-306, 1996.
tering sequence datasets.Rroc. of 2001 IEEE International [43] S. Kramer, L. De Raedt, and C. Helma. Molecular feature
Conference on Data Mining (ICDMP001. mining in HIV data. InProc. of the 7th ACM SIGKDD

[25] M. M. Halldérsson and J. Radhakrishnan. Greed is good: International Conference on Knowledge Discovery and Data
Approximating independent sets in sparse and bounded-degree Mining (KDD-01), pages 136-143, 2001.
graphs.Algorithmica 18(1):145-163, 1997. [44] M. Kuramochi and G. Karypis. An efficient algorithm for dis-

[26] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without covering frequent subgraphdEEE Transactions on Knowl-
candidate generation. Proc. of ACM SIGMOD Int. Conf. on edge and Data Engineeringn press.

Management of DatdDallas, TX, May 2000. [45] M. Kuramochi and G. Karypis. Frequent subgraph discovery.

[27] D. S. Hochbaum. Efficient bounds for the stable set, vertex In Proc. of 2001 IEEE International Conference on Data
cover, and set packing problemBiscrete Applied Mathemat- Mining (ICDM), November 2001.
ics, 6:243-254, 1983. [46] M. Kuramochi and G. Karypis. An efficient algorithm for

[28] L.B.Holder, D. J. Cook, and S. Djoko. Substructure discovery discovering frequent subgraphs. Technical Report 02-026,
in the SUBDUE system. IfProc. of the AAAI Workshop on University of Minnesota, Department of Computer Science,
Knowledge Discovery in Databasemges 169-180, 1994. 2002.

[29] M. Hong, H. Zhou, W. Wang, and B. Shi. An efficient [47] W. Lee and S. Stolfo. A framework for constructing features
algorithm of frequent connected subgraph extractiorPrioc. and models for intrusion detection systerA€M Transactions
of the 7th Pacific-Asia Conference on Knowledge Discovery on Information and System Securig{4), 2000.
and Data Mining (PAKDD-03)volume 2637 of.ecture Notes [48] N. Leibowitz, Z. Y. Fligelman, R. Nussinov, and H. J. Wolf-
in Computer Scienggages 40-51. Springer-Verlag, 2003. son. Multiple structural alignment and core detection by geo-

[30] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent metric hashing. IrProc. of the 7th International Conference
subgraph in the presence of isomophism. Pioc. of 2003 on Intelligent Systems in Molecular Biolagyages 169-177,
IEEE International Conference on Data Mining (ICDM’Q3) Heidelberg, Germany, August 1999.

2003. to appear. [49] N. Leibowitz, R. Nussinov, and H. J. Wolfson. MUSTA—

a general, efficient, automated method for multiple structure

Press, 1994.

alignment and detection of common motifs: application to [68] X. Yan and J. Han. gSpan: Graph-based substructure pattern

proteins.
2001.

[50] W. Li, J. Han, and J. Pei.
classification based on multiple class-association rules. In
Proc. of 2001 IEEE International Conference on Data Mining
(ICDM), 2001.

[51] B. Liu, W. Hsu, and Y. Ma.
association rule mining. I@th Internation Conference on
Knowledge Discovery and Data Minin$j998.

[52] B. D. McKay. Nauty users guide. http://cs.anu.edu-déadm/
nauty/.

[53] B. D. McKay. Practical graph isomorphismCongressus

Numerantium30:45-87, 1981.

E. M. Mitchell, P. J. Artymiuk, D. W. Rice, and P. Willett. Use

of techniques derived from graph theory to compare secondary

structure motifs in proteins.Journal of Molecular Biology

212:151-166, 1989.

R. J. Mooney, P. Melville, L. R. Tang, J. Shavlik, I. de Cas-

tro Dutra, D. Page, and V. S. Costa. Relational data mining

with inductive logic programming for link discovery. INa-

tional Science Foundation Workshop on Next Generation Data

Mining, November 2002.

S. H. Muggleton. Scientific knowledge discovery using In-

ductive Logic Programming.Communications of the ACM

42(11):42-46, 1999.

[57] P. R. J.Ostergrd. A fast algorithm for the maximum clique
problem.Discrete Applied Mathematic420:195-205, 2002.

[58] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. ANF: A fast
and scalable tool for data mining in massive graphsProc.
of the 8th ACM SIGKDD Internal Conference on Knowlege
Discovery and Data Mining (KDD’2002)Edmonton, AB,
Canada, July 2002.

[59] X.Pennecand N. Ayache. A geometric algorithm to find small
but highly simialar 3D substructures in proteir&ioinformat-
ics, 14(6):516-522, 1998.

[60] J. W. Raymond. Heuristics for similarity searching of chem-
ical graphs using a maximum common edge subgraph algo-
rithm. J. Chem. Inf. Comput. S¢#2:305-316, 2002.

[61] R. C. Read and D. G. Corneil. The graph isomorph disease.
Journal of Graph Theoryl1:339-363, 1977.

[62] J. M. Robson. Algorithms for maximum independent sets.
Journal of Algorithms7:425-440, 1986.

[63] A. Srinivasan, R. D. King, S. H. Muggleton, and M. J. E. Stern-
berg. Carcinogenesis predictions using ILP. In Sefski
and N. Lavr&, editors,Proc. of the 7th International Work-
shop on Inductive Logic Programmingolume 1297, pages
273-287. Springer-Verlag, 1997.

[64] SUBDUE databases. http://cygnus.uta.edu/subdue/databases/
index.html.

[65] N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent
graph patterns from semistructured data. Pimc. of 2002
IEEE International Conference on Data Mining (ICDMjages
458-465, 2002.

[66] X.Wang, J.T.L.Wang, D. Shasha, B. A. Shapiro, |. Rigoutsos,
and K. Zhang. Finding patterns in three dimensional graphs:
Algorithms and applications to scientific data minintEEE
Transactions on Knowledge and Data Engineeyit¥y(4):731—

749, July/August 2002.

[67] S. Wasserman, K. Faust, and D. lacobuc8iocial Network

Analysis : Methods and Applicationsambridge University

Journal of computational biology8(2):93-121,

(54]

[55]

[56]

CMAR: Accurate and efficient [69] X. Yan and J. Han.
graph patterns. IRroc. of the 9th ACM SIGKDD International

[71] K. Yoshida, H. Motoda, and N. Indurkhya.

mining. In Proc. of 2002 IEEE International Conference on
Data Mining (ICDM), 2002.
CloseGraph: Mining closed frequent

Conference on Knowledge Discovery and Data Mining (KDD-
2003) 2003.

Integrating classification and [70] K. Yoshida and H. Motoda. CLIP: Concept learning from

inference patterngArtificial Intelligence 75(1):63-92, 1995.
Graph-based
induction as a unified learning frameworfournal of Applied
Intelligence 4:297-328, 1994.

[72] M. J. zaki and K. Gouda. Fast vertical mining using diffsets.

In Proc. of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-2002D03.

