
SLPMiner: An Algorithm for Finding Frequent Sequential Patterns

Using Length-Decreasing Support Constraint�

Masakazu Seno and George Karypis

Department of Computer Science and Engineering, Army HPC Research Center

University of Minnesota

4-192 EE/CS Building, 200 Union Street SE, Minneapolis, MN 55455

Fax: (612) 625-0572

�seno, karypis�@cs.umn.edu

Technical Report #02-023

Abstract

Over the years, a variety of algorithms for finding frequent sequential patterns in very large sequential databases

have been developed. The key feature in most of these algorithms is that they use a constant support constraint to

control the inherently exponential complexity of the problem. In general, patterns that contain only a few items will

tend to be interesting if they have a high support, whereas long patterns can still be interesting even if their support is

relatively small. Ideally, we desire to have an algorithm that finds all the frequent patterns whose support decreases as

a function of their length. In this paper we present an algorithm called SLPMiner, that finds all sequential patterns that

satisfy a length-decreasing support constraint. SLPMiner combines an efficient database-projection-based approach

for sequential pattern discovery with three effective database pruning methods that dramatically reduce the search

space. Our experimental evaluation shows that SLPMiner, by effectively exploiting the length-decreasing support

constraint, is up to two orders of magnitude faster, and its runtime increases gradually as the average length of the

sequences (and the discovered frequent patterns) increases.

1 Introduction

Data mining research during the last eight years has led to the development of a variety of algorithms for finding

frequent sequential patterns in very large sequential databases [10, 12, 8]. These patterns can be used to find sequential

association rules or extract prevalent patterns that exist in the sequences, and have been effectively used in many

different domains and applications.

The key feature in most of these algorithms is that they control the inherently exponential complexity of the problem

by finding only the patterns that occur in a sufficiently large fraction of the sequences, called the support. A limitation

of this paradigm for generating frequent patterns is that it uses a constant support value, irrespective of the length

of the discovered patterns. In general, patterns that contain only a few items will tend to be interesting if they have
�This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, ACI-0133464, by Army Research Office contract

DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performance Computing Research Center contract number DAAH04-95-

C-0008. Access to computing facilities was provided by the Minnesota Supercomputing Institute.

a high support, whereas long patterns can still be interesting even if their support is relatively small. Unfortunately,

if constant-support-based frequent pattern discovery algorithms are used to find some of the longer but infrequent

patterns, they will end up generating an exponentially large number of short patterns. Ideally, we desire to have an

algorithm that finds all the frequent patterns whose support decreases as a function of their length. Developing such an

algorithm is particularly challenging because the downward closure property of the constant support constraint cannot

be used to prune short infrequent patterns.

Recently [9], we introduced the problem of finding frequent itemsets whose support satisfies a non-increasing

function of their length. An itemset is frequent only if its support is greater than or equal to the minimum support

value determined by the length of the itemset. We identified a property that an itemset must have in order to support

longer itemsets given a length-decreasing support constraint. This property, called the smallest valid extension or SVE

for short, enabled us to prune large portions of the input database that are irrelevant for finding frequent itemsets that

satisfy a length-decreasing support constraint.

In this paper, we extend the problem of finding patterns that satisfy a length-decreasing support constraint to the

much more challenging problem of finding sequential patterns. We developed an algorithm called SLPMiner that finds

all frequent sequential patterns that satisfy a length-decreasing support constraint. SLPMiner follows the database-

projection-based approach for frequent pattern generation, that was shown to lead to efficient algorithms, and serves

as a platform to evaluate three new pruning methods based on the SVE property. These pruning methods exploit

different aspects of the sequential pattern discovery process and prune either entire sequences, items within certain

sequences, or entire projected databases. Our experimental evaluation shows that SLPMiner achieves up to two orders

of magnitude of speedup by effectively exploiting the SVE property, and that its runtime increases gradually as the

average length of the sequences (and the discovered patterns) increases.

The rest of this paper is organized as follows. Section 2 provides some background information and related research

work. Section 3 describes the basic pattern discovery algorithm of SLPMiner and how the length-decreasing support

constraint can be exploited to prune the search space of frequent patterns. The experimental evaluation of SLPMiner

is shown in Section 4, followed by a conclusion in Section 5.

2 Background

2.1 Sequence Model and Notation

The basic sequence model that we will use was introduced by Srikant et al [10] and is defined as follows. Let

� � ���� ��� � � � � ��� be the set of all items. An itemset is a subset of items. A sequence � � ���� ��� � � � � ��� is an

ordered list of itemsets, where �� � � for � � � � �. A sequential database � is a set of sequences. The length of a

sequence � is defined to be the number of items in � and denoted as ���. Similarly, given an itemset �, let ��� denote the

number of items in �. Given a sequential database �, ��� denotes the number of sequences in �.

Sequence � � ���� ��� � � � � ��� is called a sub-sequence of sequence �� � ���
�
� ��
�
� � � � � ���� �� � 	� if there exist �

integers ��� ��� � � � �� such that � � ��
 ��
 � � �
 �� � 	 and �� � ���� �� � �� �� � � � � ��. If � is a sub-sequence

of ��, then we write � � �� and say sequence �� supports �. The support of a sequence � in a sequential database �,

denoted as �����, is defined to be ��������, where �� � ����� � �� � �� 	 ��. From the definition, it always holds

that � � ����� � �. We use the term sequential pattern to refer to a sequence when we want to emphasize that the

sequence is supported by many sequences in a sequential database.

We assume that the items in � can be arranged in a lexicographic order, and we will use consecutive integers starting

from one to represent the items according to that ordering. Finally, we will use the traditional method for writing out

sequences, in which each itemset is represented as a list of items ordered according to their lexicographical order and

enclosed within matched parentheses ��, and the sequence of these itemsets is written one-after-the-other enclosed

within matched angled parentheses ��.

2

To illustrate the above definitions consider the set of items � � ��� �� ��. This set can generate seven possible

itemsets and each of them is represented as ���,���,���,��� ��, ��� ��,��� ��,��� �� ��. Let �� � ��� ��, �� � ��� �� ��, and

�� � ���, be three itemsets of sizes two, three, and one, respectively. Sequence � � ���� ��� ��� � ���� ��� ��� �� ��� ����

has three itemsets and has length ��� � � � � � � � �. Sequence �� � ���� ��� ��� �� ��� ��� �� ��� ���� ��� ��� supports

�, or in other words � is a sub-sequence of ��.

2.2 Sequential Pattern Mining with Constant Support

The problem of finding frequent sequential patterns given a constant minimum support constraint [10] is formally

defined as follows:

Definition 1 (Sequential Pattern Mining with Constant Support) Given a sequential database � and a minimum

support � (� � � � �), find all sequences each of which is supported by at least
����� sequences in �.

Such sub-sequences are called frequent sequential patterns. Note that if every sequence consists of exactly one itemset,

the problem of finding frequent sequential patterns degenerates to the problem of finding frequent itemsets in an itemset

database [3].

Efficient algorithms for finding frequent itemsets or sequences in very large itemset or sequence databases have

been one of the key success stories of data mining research. One of the early computationally efficient algorithm was

Apriori [3], which finds frequent itemsets of length � based on previously generated �� � ��-length frequent itemsets.

The GSP [11] algorithm extended the Apriori-like level-wise mining method to find frequent patterns in sequential

databases. Recently, a set of database-projection-based methods has been developed that significantly reduce the

complexity of finding frequent patterns [1, 6, 5, 8]. The key idea behind these methods is to find the patterns by

growing them one item at a time, and simultaneously partitioning (i.e., projecting) the original database into pattern-

specific sub-databases (which in general overlap). The process of pattern-growth and database-projection is repeated

recursively until all frequent patterns are discovered. Prototypical examples of such algorithms are the tree-projection

algorithm [1] that constructs a lexicographical tree and projects a large database into a set of reduced, item-based sub-

databases based on the frequent patterns mined so far. The original algorithm was developed for finding non-sequential

patterns, but it has been extended by our group to find sequential patterns as well [5]. Another similar algorithm is

the FP-growth algorithm [6] that combines projection with the use of the FP-tree data structure to compactly store in

memory the itemsets of the original database. The basic ideas in this algorithm were recently used to develop a similar

algorithm for finding sequential patterns [8]. Still another approach was introduced in SPADE [13]. SPADE explores

the lattice of frequent sequential patterns and uses a specially preprocessed database called the vertical id-list database

format, which transforms each sequence into a set of (item, time stamp) pairs.

The key feature in these algorithms is that they control the inherently exponential complexity of the problem by

using the downward closure property [10]. This property states that in order for a pattern of length � to be frequent,

all of its sub-sequences must be frequent as well. As a result, once we find that a sequence of length � is infrequent,

we know that any longer sequences that include this particular sequence cannot be frequent, and thus eliminate such

sequences from further consideration.

2.3 Finding Patterns with Length-Decreasing Support

A limitation of the above paradigm for generating frequent patterns is that it uses a constant value of support, irre-

spective of the length of the discovered patterns. In general, patterns that contain only a few items will tend to be

interesting if they have a high support, whereas long patterns can still be interesting even if their support is relatively

small. Unfortunately, if constant-support-based frequent pattern discovery algorithms are used to find some of the

longer but infrequent patterns, they will end up generating an exponentially large number of short patterns. In the

context of the frequent itemset mining, maximal frequent itemset discovery algorithms [4, 7, 2, 13] can potentially

3

be used to find some of these longer itemsets, but these algorithms can still generate a very large number of short

infrequent itemsets if these itemsets are maximal. As for the frequent sequential pattern mining, even the problem of

finding maximal patterns has not been addressed mainly due to the high complexity of the problem.

Recently, we introduced the idea of length-decreasing support constraint [9] that helps us to find long itemsets with

low support as well as short itemsets with high support. A length-decreasing support constraint is given as a function

of the itemset length ��� such that ���� ���� for any ��� �� satisfying ��
 ��. The idea of introducing this kind of

support constraint is that by using a support function that decreases as the length of the itemset increases, we may be

able to find long itemsets that may be of interest without generating an exponentially large number of shorter itemsets.

We can naturally extend this constraint to the sequence model by using the length of a sequence instead of the length

of an itemset as follows:

Definition 2 (Length-Decreasing Support Constraint) Given a sequential database � and a function ��� that sat-

isfies � ��� �� � �� � for any positive integer �, a sequence � is frequent if and only if ����� �����.

Given a length-decreasing support constraint ���, we can define the inverse function of ��� as follows:

Definition 3 (The Inverse Function of Length-Decreasing Support Constraint) Given a length-decreasing support

constraint ���, its inverse function is defined as ����� � 	
�������� � ��� for � � � � �.

Figure 1 shows a typical length-decreasing support constraint. In this example, the support constraint decreases linearly

to the minimum value and then stays the same for sequential patterns of longer length. Formally, the problem of finding

this type of patterns is stated as follows:

Definition 4 (Sequential Pattern Mining with Length-Decreasing Support) Given a sequential database � and a

length-decreasing support constraint ���, find all sequential patterns � such that ����� �����.

101
Length of sequence

0.001

0.0001

Su
pp

or
t

Length-decreasing support constraint ���

Figure 1. A typical length-decreasing support constraint

A simple way of finding such sequential patterns is to use any of the traditional constant-support frequent sequential

pattern discovery algorithms, in which the support is set to 	
���� ���, and then discard the sequential patterns that do

not satisfy the length-decreasing support constraint. This approach, however, does not reduce the number of infrequent

sequential patterns being discovered, and as our experiments will show, requires a large amount of time.

Finding the complete set of frequent sequential patterns that satisfy a length-decreasing support constraint is particu-

larly challenging since we cannot rely solely on the downward closure property of the constant support pattern mining.

Notice that, under a length-decreasing support constraint, a sequence can be frequent even if its sub-sequences are in-

frequent since the minimum support value decreases as the length of a sequence increases. We must use 	
���� ���

as the minimum support value to apply the downward closure property, which will result in finding an exponentially

large number of uninteresting infrequent short patterns.

4

�

Length of sequence

�� : SVE of �Su
pp

or
t Length-decreasing support constraint ���

Figure 2. Smallest valid extension (SVE)

A key property regarding sequences whose support decreases as a function of their length is the following. Given

a sequential database � and a particular sequence � 	 �, if the sequence � is currently infrequent (�����
 �����),

then ��������� is the minimum length that a sequence �� � � must have before it can potentially become frequent.

Figure 2 illustrates this relation graphically. The length of �� is nothing more than the point at which a line parallel

to the �-axis at � � ����� intersects the support curve; here, we essentially assume that the best case in which ��

exists and it is supported by the same set of sequences as its sub-sequence �. This property is called the smallest

valid extension property or SVE property for short and was initially introduced for the problem of finding itemsets that

satisfy a length-decreasing support constraint [9].

3 SLPMiner Algorithm

We developed an algorithm called SLPMiner that finds all the frequent sequential patterns that satisfy a given length-

decreasing support constraint. SLPMiner serves as a platform to develop and evaluate various pruning methods for

reducing the complexity of finding this type of patterns. Our design goals for SLPMiner were to make it both efficient

and at the same time sufficiently generic so that any conclusions drawn from our experiments can carry through other

database-projection-based sequential pattern mining algorithms [5, 8].

This section consists of two main parts. First, we explain how SLPMiner finds frequent sequential patterns in the

case in which the support of the desired sequential patterns remains constant. Second, we explain various pruning

methods that we have developed and incorporated in SLPMiner. These pruning methods substantially reduce the

complexity of SLPMiner when it is used to find frequent sequential patterns that satisfy a length-decreasing support

constraint.

3.1 Sequential Database-Projection-based Algorithm

SLPMiner finds frequent sequential patterns using a database-projection-based approach that was derived from the

sequential version [5] of the tree-projection algorithm of Agarwal et al [1] for finding frequent itemsets. Note that the

algorithm in [5] shares the same overall structure with the PrefixSpan [8] algorithm that was independently developed

at the same time frame.

Key to this algorithm is the use of a tree to both organize the process of sequential pattern discovery and to represent

the patterns that have been discovered thus far. Each node in the tree represents a frequent sequential pattern. The

relation between the sequential pattern represented at a particular node at level � and that of its parent at level � � �,

is that they share the same � � � prefix. That is, the child’s pattern is obtained from that of the parent by adding one

item at the end. For example, if a node represents a pattern ����� ��� ���, its parent node represents ����� ����. The root

node of the tree represents the null sequence with no itemset. From the above definition it is easy to see that given a

particular node corresponding to pattern �, all the patterns represented in the nodes of the subtree rooted at that node

will have � as a prefix. For this reason, we will refer to this tree as the prefix tree.

SLPMiner finds the frequent sequential patterns by growing this tree as follows. It starts from the root node and

5

expands it to create the children nodes that correspond to the frequent items. Then it recursively visits each child

node in a depth-first order and expands it into children nodes that represent frequent sequential patterns. SLPMiner

grows each pattern in two different ways, namely, itemset extension and sequence extension. Itemset extension grows

a pattern by adding an item to the last itemset of the pattern, where the added item must be lexicographically larger

than any item in the last itemset of the original pattern. For example, ����� ���� is extended to ����� ��� ��� by itemset

extension, but cannot be extended to ����� ��� ��� or ����� ��� ���. Sequence extension grows a pattern by adding an

item as a new itemset next to the last itemset of the pattern. For example, ����� ���� is extended to ����� ���� ���� by

sequence extension.

Input Sequential Database �

���� ��� ��� �����

����� ��� �����

�� ����� ����

����� ��� �����

��� ��� ��

��� ��

��� �� ��� ��� ��

��� ��� ��� ��

SE SE

SE = Sequence Extension
IE = Itemset Extension

IE

IE

SE SE

��� ��� �� ��� ��� ��� ��

����

����� �����

����� ���� ����� ���� ���� ���

����� ��� ���

��� ��� ��

SE

�����

Prefix Tree

Figure 3. The prefix tree of a sequential database

Figure 3 shows a sequential database � and its prefix tree that contains all the frequent sequential patterns given

minimum support 0.5. Since � contains a total of four sequences, a pattern is frequent if and only if at least two

sequences in � support the pattern. The root of the tree represents the null sequence. At each node of the tree in

the figure, its pattern and its supporting sequences in � are depicted together with symbol SE or IE on each edge

representing itemset extension or sequence extension respectively.

The key computational step in SLPMiner is that of counting the frequency of the various itemset and sequence

extensions at each node of the tree. In principle, these frequencies can be computed by scanning the original database

for each one of the nodes; however, this is not cost-effective, especially when the support for each of those extensions

is very small. For this reason, SLPMiner creates a projected database for each node of the tree, and uses this projected

database (which is usually much smaller) to determine its frequent extensions. The projected database of a sequential

pattern � has only those sequences in � that support �. For example, at the node ���� ��� in Figure 3, its projected

database needs to contain only ��� ��� �� since �� does not support this pattern. Furthermore, we can eliminate pre-

ceding items in each sequence that will never be used to extend the current pattern. For example, at the node ����� in

Figure 3, we can store sequence ��� � ���� ��� instead of �� itself in its projected database. Also note that items that

do not contribute to a frequent sequence or itemset extension get pruned from all projected databases under that node

of the tree. Overall, database projection reduces the amount of sequences that need to be processed at each node and

promotes efficient pattern discovery.

3.2 Performance Optimizations for Disk I/O

Expanding each node of the tree, SLPMiner performs the following two steps. First, it calculates the support of each

item that can be used for itemset extension and each item that can be used for sequence extension by scanning the

projected database �� once. Second, SLPMiner projects �� into a projected database for each frequent extension

found in the previous step.

Since we want SLPMiner to be able to run against large input sequential databases, the access to the input database

6

and all projected databases is disk-based. To facilitate this, SLPMiner uses two kinds of buffers: a read-buffer and a

write-buffer. The read-buffer is used to load a projected database from disk. If the size of a projected database does

not fit in the read-buffer, SLPMiner reads part of the database from disk several times. The write-buffer is used to tem-

porally store several projected databases that are generated at a node by scanning the current projected database once

using the read-buffer. There are two conflicting requirements concerning how many projected databases we should

generate at a time. In order to reduce the number of database scans, we want to generate as many projected databases as

possible in one scan. On the other hand, if we keep small buffers for many projected databases simultaneously within

the write-buffer, it will reduce the size of the buffer assigned to each projected database, leading to expensive frequent

I/O between the write-buffer and disk. In order to balance these two conflicting requirements, SLPMiner calculates

the size of each projected database when calculating the support of every item in the current projected database before

it actually generates new projected databases. Then, SLPMiner performs a number of database scan, and in each scan,

it generates as many projected databases as they can fit in the write-buffer and then writes the entire buffer to the disk.

The number of scans depends on the database size and the size of the write buffer. This method also facilitates storing

each projected database in a contiguous segment on the disk, allowing us to use fast sequential disk operations which

dramatically improve the efficiency of disk I/O.

3.3 Pruning Methods

In this subsection, we introduce three pruning methods that use the SVE property to substantially reduce the size of

the projected databases and allow SLPMiner to efficiently find all sequential patterns that satisfy a length-decreasing

support constraint.

3.3.1 Sequence Pruning, SP

The first pruning method is used to eliminate certain sequences from the projected databases. Recall that SLPMiner

generates a projected database at every node. Let us assume that we have a projected database � � at a node � that

represents a sequential pattern �. Each sequence in �� has � as its prefix. If � is infrequent, we know from the

SVE property that in order for this pattern to grow to something indeed frequent, it must have a length of at least

���������. Now consider a sequence � that is in the projected database at node � , i.e., � 	 � �. The largest

sequential pattern that � can support is of length ���� ���. Now if ���� ���
 ���������, then � is too short to support

any frequent patterns that have � as prefix. Consequently, � does not need to be considered any further and can be

pruned. We will refer to this pruning method as the sequence pruning method or SP for short and is formally defined

as follows:

Definition 5 (Sequence Pruning) Given a length-decreasing support constraint ��� and a projected database �� at

a node representing a sequential pattern �, a sequence � 	 �� can be pruned from �� if

����� ���� � ������

SLPMiner checks if a sequence needs to be inserted to a projected database just before inserting it onto the write-

buffer. We evaluated the complexity of this method in comparison with the complexity of inserting a sequence to a

projected database. There are three parameters we need to know to prune a sequence: ���, ���, and �����. As the

length of each sequence is part of the sequence data structure in SLPMiner, it takes a constant time to calculate ���

and ���. As for �����, we know this value when we generated the projected database for the pattern �. Evaluating

function takes a constant time because SLPMiner has a lookup table that contains all possible ��� ���� pairs. Thus,

the complexity of this method is just a constant time per inserting a sequence.

7

3.3.2 Item Pruning, IP

The second pruning method eliminates certain items from each sequence in each projected database. Let us assume

that we have a projected database �� at a node � that represents sequential pattern � and consider an item � in a

sequence � 	 ��. From the SVE property we know that the item � will contribute to a valid frequent sequential pattern

only if

���� ��� ���������� (1)

where ������ is the support of item � in ��. This is because of the following. The longest sequential pattern that �

can participate in is ��� � ���, and we know that, in the subtree rooted at � , sequential patterns that extend � with

item � have support at most ������. Now, from the SVE property, such sequential patterns must have length at least

���������� in order to be frequent. As a result, if equation (1) does not hold, item � can be pruned from the sequence

�. Once item � is pruned, then ������ and ��� decrease, possibly allowing further pruning. Essentially, this pruning

method eliminates some of the infrequent items from the short sequences. We will refer to this method as the item

pruning method, or IP for short and is formally defined as follows:

Definition 6 (Item Pruning) Given a length-decreasing support constraint ��� and a projected database �� at a

node representing a sequential pattern �, an item � in a sequence � 	 �� can be pruned from � if

���� ���
 �����������

A simple way to implement this pruning method is as follows: for each projected database ��, repeat scanning ��

to collect support values of items and scanning �� again to prune items from each sequence until no more items can be

pruned. After that, we can project the database into a projected database for each frequent item in the pruned projected

database. This algorithm, however, requires multiple scans of the projected database and hence will be too costly as a

pruning method.

Instead, we can scan a projected database once to collect support values and use those support values for pruning

items as well as for projecting each sequence. Notice that we are using approximate support values that might be higher

than the real values since the support values of some items might decrease during the pruning process. SLPMiner

applies IP before generating a projected sequence �� of � and after generating �� just before inserting �� into the write-

buffer. By applying IP before projecting the sequences, we can reduce the computation of sequence projection. By

applying IP once again for the projected sequence ��, we can exploit the reduction of length ��� � ���� to further prune

items in ��. Pruning items from each sequence is repeated until no more items can be pruned or the sequence becomes

short enough to be pruned by SP.

IP can potentially prune a larger portion of the projected database than SP since it always holds that ����� ������

and hence ��������� � ����������. However, the pruning overhead of IP is much larger than that of SP. Given a

sequence �, in the worst case, only one item will be pruned during each iteration over the items in �. Since this can be

repeated as many as the number of items in the sequence, the worst case complexity for one sequence is ����� where

� is the number of items in the sequence. Later in the paper, we will see how this overhead affects the total runtime of

SLPMiner through our experimental results.

3.3.3 Structure-based Pruning

Given two sequences ��� �� of the same length �, these two sequences are treated equally under SP and IP. In fact,

the two sequences can be quite different from each other. For example, ���� �� �� ��� and ����� ���� ���� ���� support

the same 1-sequence �����, �����, �����, and ����� but never support the same �-sequences for � �. From this

observation, we considered ways to split a projected database into smaller equivalent classes. By having smaller

8

databases instead of one large database, we may be able to reduce the depth of a certain path from the root to a leaf

node of the tree.

As a structure-based pruning, we developed the min-max pruning method. Let � be a sequential pattern at a

particular node, �� be its projected database, and assume that � is infrequent (i.e., �����
 �����). From the SVE

property, in order for � to become frequent, we need to grow � by adding at least ��������� � ��� items. Now,

consider the following two values that are defined for each sequence � 	 ��.

1. ���� � the smallest number of itemsets in � that need to be used to grow � by ���������� ��� items.

2. ���� � the number of itemsets in �.

These two values define an interval ����� �����, that we call the min-max interval of sequence �. If two sequences

�� �� 	 �� satisfy ����� ����� � ������ ������ � �, then � and �� cannot support any common sequential pattern since

their min-max intervals are disjoint. The basic idea of the min-max pruning is motivated by the above observation and

its goal is to split the projected database �� into two databases ��
�

and ��
�

such that they contribute to two disjoint

sets of frequent sequential patterns.

If there exists ��
�

and ��
�

that satisfy �����

�
����� ����� � �����

�
����� ����� � �, then ��

�
and ��

�
support distinct

sets of frequent sequential patterns. In general, however, this is impossible. Instead, �� will be split into three sets

����� of sequences as shown in Figure 4. More precisely, these three sets are defined for some positive integer � as

follows.

���� � ���� 	 �� � ����
 ��

���� � ���� 	 �� � ���� ��

���� � �� � �� ���

���� and ���� support distinct sets of frequent sequential patterns, whereas ���� and ���� as well as ���� and ����

support overlapping sets of frequent sequential patterns. From these three sets, we form ��
�
� ���� � ���� and

��
�
� ���� � ����. If we mine frequent sequential patterns of length up to � � � from ��

�
and patterns of length no

less than � from ��
�
, we will obtain the same patterns as we would from original ��.

1 � Min-max interval

�

�

�

Figure 4. Min-max intervals of a set of sequences

Throughout our experiments, we observed that ��� is usually close to ����; thus, mining ��
�

and ��
�

separately

will cost more than mining the original database ��. We can, however, prune the entire �� if both ���
�
� and ���

�
�

are smaller than the 	
���� ���. Furthermore, we can increase this minimum support by the fact that any sequential

patterns that the current pattern � can extend to is of length at most 	����������� � ���. Now, from the SVE property,

we know that if both ���
�
� and ���

�
� are smaller than ���	����������� � �������, then we can eliminate the entire

��. Essentially, this means that if we can split a projected database into two subsets each of which is too small to be

able to support any frequent sequential pattern, then we can eliminate the entire original projected database. We will

refer to this method as the min-max pruning method or MP for short, and is formally defined as follows:

9

Definition 7 (Min-Max Pruning) Given a length-decreasing support constraint ��� and a projected database �� at

a node representing a sequential pattern �, the entire �� can be pruned if there exists a positive integer � such that

���
�
� � ������� ������
 �	��

����

����� � ������� , and

���
�
� � ������� ������
 �	��

����

����� � ������� .

We apply MP just after a new projected database �� is generated if the entire sequences in �� is still kept in the

write-buffer and if ���� � ����	����������� � �������. The first condition is necessary to avoid costly disk I/O

and the second condition is necessary to increase the probability of successfully eliminating the projected database.

The algorithm for MP consists of two parts. The first part calculates the distribution of the number of sequences over

possible min-max intervals. The second part finds a positive integer � that satisfies the above two equations. The first

part requires scanning �� once and finding the min-max interval for each sequence. For each sequence �, SLPMiner

determines ���� as the smallest number of the largest itemsets whose sizes add up to at least ���������� ���. The

other value ���� is simply the number of itemsets in �. This part requires ��	� where 	 is the total number of itemsets

in ��. The second part uses an ��� upper triangular matrix � � ����� where ��� � �������� � ������ � ��� 	 ����

and � is the maximum number of itemsets in a sequence in ��. Matrix � is generated during the database scan of the

first part. Given matrix �, we have

������� ������ �
	���

���

��

���

���

������� ������ �
��

��	

��

���

���

Using the relations

����� � ���� ���� � ����� �������� ������� �
��

��	

�	�

����� � ���� ���� � ����� �������� ������� � �
	�

���

��	

we can calculate ������� ������ and ������� ������ incrementally for all � in �����. So the overall complexity of

the min-max pruning for one projected database is ��	 � ���. In some cases, this complexity may be much larger

than the runtime reduction achieved by eliminating the projected database. However, our experimental results show

that the min-max pruning method alone can substantially reduce the total runtime.

4 Experimental Results

We experimentally evaluated the performance of SLPMiner using a variety of datasets generated by the synthetic

sequence generator that is provided by the IBM Quest group and was used in evaluating the AprioriAll algorithm

[10]. All of our experiments were performed on Linux workstations with AMD Athlon at 1.5GHz and 3GB of main

memory. All the reported runtime values are in seconds.

In our experiments, we primarily used two classes of datasets DS1 and DS2, each of which contained 25K se-

quences. For each of the two classes we generated different problem instances as follows. For DS1, we varied the

average number of itemsets in a sequence from 10 to 30 in increments of two, obtaining a total of 11 different datasets,

DS1-10, DS1-12, � � �, DS1-30. For DS2, we varied the average number of items in an itemset from 2.5 to 7.0 in incre-

ments of 0.5, obtaining a total of 10 different datasets, DS2-2.5, DS2-3.0, � � �, DS2-7.0. For DS1-�, we set the average

10

size of maximal potentially frequent sequences to be ���. For DS2-�, we set the average size of maximal potentially

frequent itemsets to be ���. Thus, the dataset contains longer frequent patterns as � increases. The characteristics of

these datasets are summarized in Table 1.

parameter DS1 DS2

���: Number of sequences 25000 25000

���: Average number of itemsets per sequence � � ��� ��� � � � � �� 3 to 10

�� �: Average number of items per itemset 2.5 � � ���� ���� � � � � ���

� : Number of items 10000 10000

���: Average size of maximal potentially frequent sequences ��� 5

�	�: Average size of maximal potentially frequent itemsets 1.25 ���

Table 1. Parameters for datasets used in our tests

In addition to the above datasets, we also performed a limited number of experiments with another dataset DS3, for

which the parameters were set as follows: ��� � �����, ��� � ��, �� � � ��, � � �����, ��� � ��, and ��� � �.

This dataset contains much longer sequences than DS1 and DS2 and was used to evaluate the overheads associated

with the various pruning methods.

In all of our experiments, we used a minimum support constraint that decreases linearly with the length of the

frequent sequential pattern. In particular, the initial value of support was set to 0.001 and it was decreased linearly down

to 0.0001 for sequences of up to length ������ ����. For the rest of sequences, the support was kept fixed at 0.0001.

Figure 5 shows the shape of the support curve for DS1-20 for which ������ ���� � ���� ������ � ������ � ��.

We also ran SPADE [12] to compare runtime values with SLPMiner. When running SPADE, we used the depth

first search option, which leads to better performance than the breadth first search option on our datasets. We set the

minimum support value to be 	
���� ���.

For SLPMiner, we set the size of the read-buffer to 10MB and the write-buffer to 300MB. Similarly, we set the

available memory size to 310MB for SPADE.

1 25
Length of sequence

0.001

0.0001

Su
pp

or
t

Figure 5. Support curve for DS1-20

4.1 Results

Tables 2 and 3 show the experimental results that we obtained for the DS1 and DS2 datasets respectively. Each

row of the tables shows the results obtained for a different DS1-� or DS2-� dataset, specified on the first column.

The column labeled “SPADE” shows the amount of time taken by SPADE. The column labeled “None” shows the

amount of time taken by SLPMiner using a constant support constraint that corresponds to the smallest support of

the support curve, that is 0.0001 for all datasets. The other columns show the amount of time required by SLPMiner

11

SLPMiner

Dataset SPADE None SP IP MP SP+IP SP+IP+MP

DS1-10 10.562 20.219 11.514 11.570 12.641 12.006 11.839

DS1-12 18.245 41.420 15.316 15.430 17.804 15.358 15.935

DS1-14 46.216 98.359 21.290 21.583 24.453 21.429 21.297

DS1-16 87.289 208.187 27.342 26.635 31.230 26.186 27.383

DS1-18 273.325 592.886 39.228 39.030 43.490 38.790 40.172

DS1-20 594.777 1438.932 46.147 48.440 54.727 47.864 47.723

DS1-22 4702.697 8942.943 63.351 65.123 74.905 65.232 65.907

DS1-24 – – 82.756 85.622 94.640 82.377 83.148

DS1-26 – – 106.986 112.180 126.647 111.699 106.567

DS1-28 – – 139.369 142.760 162.062 137.955 138.411

DS1-30 – – 180.715 189.029 212.848 185.601 184.105

Table 2. Comparison of pruning methods using DS1

SLPMiner

Dataset SPADE None SP IP MP SP+IP SP+IP+MP

DS2-2.5 10.562 20.219 11.514 11.570 12.641 12.006 11.839

DS2-3.0 21.159 45.887 16.627 16.940 18.719 15.871 15.902

DS2-3.5 117.486 279.617 31.851 35.319 43.267 31.445 31.696

DS2-4.0 333.786 899.025 32.783 32.488 39.805 31.940 32.107

DS2-4.5 731.402 1784.572 35.871 37.955 43.138 38.030 36.539

DS2-5.0 6460.641 17106.370 57.677 61.654 77.835 59.115 59.096

DS2-5.5 – – 59.500 62.617 73.759 61.187 61.798

DS2-6.0 – – 77.752 78.684 96.951 77.925 75.186

DS2-6.5 – – 98.061 105.475 144.387 101.213 102.184

DS2-7.0 – – 116.986 119.907 136.513 113.443 117.602

Table 3. Comparison of pruning methods using DS2

SP IP SP+IP SP+IP+MP

Runtime 15939.386 16019.344 15103.936 15205.960

Projected Database Size (GB) 65.990 47.501 43.206 41.358

Table 4. Comparison of pruning methods using DS3

12

that uses the length-decreasing support constraint and a total of five different combinations of pruning methods. For

example, the column label “SP” corresponds to the pruning scheme that uses only sequence pruning, whereas the

column labeled “SP+IP+MP” corresponds to the scheme that uses all the three pruning methods. Note that values with

a “–” correspond to experiments that were aborted because they were taking too long time.

A number of interesting observations can be made from the results in these tables. First, even though SLPMiner

without any pruning method is slower than SPADE, the ratio of runtime values is stable ranging from 1.9 to 2.7 with

average 2.3. This shows that the performance of SLPMiner is comparable to SPADE and a reasonably good platform

for evaluating our pruning methods. Second, either one of pruning methods performs better than SLPMiner without

any pruning method. In particular, SP, IP, SP+IP, and SP+IP+MP have almost the same speedup. For DS1, the speedup

by SP is about 1.76 times faster for DS1-10, 7.61 times faster for DS1-16, and 141.16 times faster for DS1-22. Similar

trends can be observed for DS2, in which the performance of SLPMiner with SP is 1.76 times faster for DS2-2.5,

8.78 times faster for DS2-3.5, and 296.59 times faster for DS2-5.0. Third, comparing the different pruning methods

in isolation, we can see that SP leads to the largest runtime reduction, IP leads to the second largest runtime reduction,

and MP achieves the smallest reduction. The problem with MP is the overhead of splitting a database into two subsets.

Even so, it seems surprising to gain such a great speedup by MP alone. This shows a large part of the runtime of

SLPMiner without any pruning method is accounted for by many small projected databases that never contribute to

any frequent patterns. As for SP and IP, SP is slightly better than IP because IP and SP prune almost the same amount

of projected databases for those datasets but IP has much larger overhead than SP. Fourth, the runtime with three

pruning methods increases gradually as the average length of the sequences (and the discovered patterns) increases,

whereas the runtime of SLPMiner without any pruning increases exponentially.

Finally, Table 4 shows the runtime and projected database size for the DS3 dataset. We tested SP, IP, SP+IP,

SP+IP+MP for DS3 since they were the best when applied to DS1 and DS2 datasets. Even though the projected

database size of IP is 1.5 times smaller than that of SP, SP and IP achieve almost the same runtime again because of

the large overhead of IP. These two methods, however, can achieve the best runtime when combined as SP+IP because

IP does not have to prune the part of projected databases for which SP can prune. Since DS3 contains much longer

sequences than DS1 and DS2 datasets, there are more opportunities for IP to prune where SP does not work.

5 Conclusion

In this paper we presented an algorithm SLPMiner that can efficiently find all frequent sequential patterns that satisfy

a length-decreasing support constraint. The key insight that enabled us to achieve high performance was the smallest

valid extension property of the length-decreasing support constraint. This allowed us to develop effective database

pruning methods that improved the performance of SLPMiner by up to two orders of magnitude.

The pruning methods are not specific to SLPMiner but almost all of them can be incorporated into other algo-

rithms for sequential pattern discovery. For example, it is straight-forward to implement all three pruning methods in

PrefixSpan [8] with disk-based projection. PrefixSpan with pseudo-projection can use the sequence pruning method.

Even SPADE [12], which has no explicit sequence representation during pattern mining, can use the sequence pruning

method by adding the length of a sequence to each record in the vertical database representation.

References

[1] R. Agarwal, C. Aggarwal, V. Prasad, and V. Crestana. A tree projection algorithm for generation of large itemsets for

association rules. IBM Research Report, RC21341, November 1998.

[2] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth first generation of long patterns. In Knowledge Discovery and

Data Mining, pages 108–118, 2000.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20th Int’l Conference on Very Large

Databases, Santiago, Chile, September 1994.

13

[4] R. J. Bayardo. Efficiently mining long patterns from databases. In ACM SIGMOD Conf. Management of Data, 1997.

[5] V. Guralnik, N. Garg, and G. Karypis. Parallel tree projection algorithm for sequence mining. In European Conference on

Parallel Processing, pages 310–320, 2001.

[6] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In Proc. 2000 ACM-SIGMOD Int. Conf.

Management of Data (SIGMOD’00), pages 1–12, Dallas, TX, May 2000.

[7] D.-I. Lin and Z. M. Kedem. Pincer search: A new algorithm for discovering the maximum frequent set. In Extending

Database Technology, pages 105–119, 1998.

[8] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Prefixspan: Mining sequential patterns by

prefix-projected growth. In ICDE, pages 215–224, 2001.

[9] M. Seno and G. Karypis. Lpminer: An algorithm for finding frequent itemsets using length-decreasing support constraint. In

1st IEEE Conference on Data Mining, 2001.

[10] R. Srikant and R. Agrawal. Mining sequential patterns. In 11th Int. Conf. Data Engineering, 1995.

[11] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improvements. In 5th Int. Conf.

Extending Database Technology, 1996.

[12] M. J. Zaki. Fast mining of sequential patterns in very large databases. Technical Report TR668, 1997.

[13] M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. Technical Report 01-1, RPI, 2001.

14

