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Abstract

Over the years, a variety of algorithms for finding fre-
quent sequential parterns in very large sequential databases
have been developed. The key feature in most of these al-
gorithms is that they use a constant support constraint to
control the inherently exponential complexity of the prob-
lem. In general, patterns that contain only a few items will
tend to be interesting if they have a high support, whereas
long patterns can still be interesting even If their support
is relatively small. Ideally, we desire to have an algorithm
that finds all the frequent patterns whose support decreases
as a function of their length. In this paper we present an al-
gorithm called SLPMiner, that finds all sequential patterns
that satisfy a length-decreasing support constraint. Our ex-
perimental evaluation shows that SLPMiner achieves up to
two orders of magnitude of speedup by effectively explois-
ing the length-decreasing support constraint, and that its
runtime increases gradually as the average length of the se-
quences (and the discovered frequent patterns) increases.

1 Introduction

Data mining research during the last years has led to the
development of a variety of algorithms for finding frequent
sequential patterns in very large sequential databases [7, 9,
3]. These patterns can be used to find sequential association
rules or extract prevalent patterns that exist in the sequences,
and have been effectively used in many different domains
and applications.

The key feature in most of these algorithms is that they
control the inherently exponential complexity of the prob-
lem by finding only the patierns that occur in a sufficiently
targe fraction of the sequences, called the support. A limita-
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tion of this paradigm for generating frequent patterns is that
it uses a constant support value, irrespective of the length
of the discovered patterns. In general, patterns that con-
tain only a few items will tend to be interesting if they have
a high support, whereas long patterns can still be interest-
ing even if their support is relatively small. Unfortunately,
if constant-support-based frequent pattern discovery algo-
rithms are used to find some of the longer but infrequent
patterns, they will end up generating an exponentially large
number of short patterns. Ideally, we desire to have an al-
gorithm that finds all the frequent patterns whose support
decreases as a function of their length. Developing such an
algorithm is particularly challenging because the downward
closure property of the constant support constraint cannot
be used te prune short infrequent patterns.

Recently [6], we introduced the problem of finding fre-
quent itemsets whose support satisfies a non-increasing
function of their length. An itemset is frequent only if its
support is greater than or equal to the minimum support
value determined by the length of the itemset. We found a
property that an itemset must have in order to support longer
itemsets given a length-decreasing support constraint. This
property, that we call the smallest valid extension or SVE
for short, enabled us to prune many short itemsets that are
irrelevant to finding longer itemsets. We developed an al-
gorithm called LPMiner that efficiently finds frequent item-
sets given a length-decreasing support constraint by pruning
large portion of search space.

In this paper, we extend the problem of finding pat-
terns that satisty a length-decreasing support constraint to
the much more challenging problem of finding sequen-
tial patterns. We developed an algorithm called SLPMiner
that finds all frequent sequential patterns that satisfy a
length-decreasing support constraint. SLPMiner follows
the database-projection-based approach for frequent pattern
generation, that was shown 1o lead to efficient algorithms,
and serves as a platform to evaluate our new three prun-
ing methods based on the SVE property. These pruning
methods exploit different aspects of the sequential pattern
discovery process and prune either entire sequences, items



within certain sequences, or entire projected databases. Our
experimental evaluation shows that SLPMiner achieves up
to two orders of magnitude of speedup by effectively ex-
ploiting the SVE property, and that its runtime increases
gradually as the average length of the sequences (and the
discovered patterns) increases.

The rest of this paper is organized as follows. Section 2
provides some background information. Section 3 describes
the basic pattern discovery algorithm of SLPMiner and how
the length-decreasing support constraint can be exploited to
prune the search space of frequent patterns. The experimen-
tal results of our algorithm are shown in Section 4, followed
by a conclusion in Section 5.

2 Background
2.1 Sequence Model and Notation

The basic sequence model that we will use was introduced
by Srikant et al [7] and ts defined as follows. Let I =
{#1,%2,...,in} be the set of all items. An izemset is a sub-
set of items. A sequence s = (t1, ¢z, ..., 1) is an ordered
list of itemsets, where ¢; C T for1 £ j < [. A sequential
database D) is a set of sequences. The length of a sequence
s is defined to be the number of items in s and denoted as
|s|. Similarly, given an itemset £, let |¢| denote the number
of items in ¢. Given a sequential database D, | D} denotes
the number of sequences in D. This model can describe a
wide range of real data. For example, at a retail shop, cus-
tomer transactions can be modeled by this sequence model
such that an itemset represents a set of goods {or items) pur-
chased by a customer at a visit and a sequence represents an
ordered purchased itemsets history of a customer.

Sequence 8 = (t1,82,..., 1) is called a sub-sequence
of sequence ' = (t},t},...,8,) (I < m) if there exist I
integers 71,4z,...4 suchthat 1 <4, <iz < ... < <m
andt; C t:‘,- ( =1,2,...,0). If sis a sub-sequence of &',
then we write s C s' and say sequence s’ supports s. The
support of a sequence s in a sequential database I, denoted
as op(s), is defined to be | D,|/|D|, where D, = {si|s C
si A s; € D}. From the definition, it always holds that
0 < op(s) < 1. We use the term sequential pattern to refer
to a sequence when we want to emphasize that the sequence
is supported by many sequences in a sequential database.

We assume that we can give a lexicographic ordering on
the items in J. Although an itemset is just a set of items
without the notion of ordering, it is essential to be able to de-
fine an ordering among the items for our algorithm. When
we represent the items in an itemset, we order the items ac-
cording to the lexicographic ordering and put those ordered
items within matched parentheses (). When we represent
the itemns in a sequence, we represent each itemset in this
way and arrange these itemsets according to the ordering in
the sequenrce within matched angled parentheses (}.
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2.2 Sequential Pattern Mining with Constant
Support

The problem of finding frequent sequential patterns given
a constant minimum support constraint [7] is formally de-
fined as follows:

Definition 1 (Sequential Pattern Mining with Constant
Support) Given a sequential database D and a minimum
support o (0 < o < 1), find all sequences each of which is
supported by at least [a|D|] sequences in D.

Efficient algorithms for finding frequent itemsets or se-
quences [2, §, 1, 4, 3, 5, 10] in very large itemset or se-
quence databases have been one of the key success stories
of data mining research. The key feature in these algorithms
is that they control the inherently exponential complexity of
the problem by using the downward closure property [7].
This property states that in order for a pattern of length [
to be frequent, all of its sub-sequences must be frequent as
well. As a result, once we find that a sequence of length !
is infrequent, we know that any longer sequences that in-
clude this particular sequence cannot be frequent, and thus
eliminate such sequences from further consideration.

2.3 Finding Patterns with Length-Decreasing
Support

Recently, we introduced the idea of length-decreasing sup-
port constraint [6] that helps us to find long itemsets with
low support as well as short itemsets with high support.
A length-decreasing support constraint is given as a func-
tion of the itemset length (I} such that f(l,) > f(ls) for
any l,, !y satisfying [, < I3. The idea of introducing this
kind of support constraint is that by using a support func-
tion that decreases as the length of the itemset increases,
we may be able to find long itemsets that may be of in-
terest without generating an exponentially large number of
shorter itemsets. We can naturally extend this idea to the
sequence model by using the length of the sequence instead
of the length of the itemset. Figure 1 shows a typical length-
decreasing support constraint. In this example, the support
constraint decreases linearly to the minimum value and then
stays the same for sequential patterns of longer length. For-
mally, the problem of finding this type of patterns is stated
as follows:

Definition 2 (Sequential Pattern Mining with Length-
Decreasing Support) Given a sequential database D and
a length-decreasing support constraint f(I), where f(I) is
a non-increasing function defmed over all the positive in-
tegers and always 0 < f(l) < 1, find all the sequential
patterns each s of which satisfies o (s) > f(|s]).

Finding the complete set of frequent sequential patterns
that satisfy a length-decreasing support constraint is par-
ticularly challenging since we cannot rely solely on the
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Figure 1. An example of typical length-decreasing
support constraint

downward closure property of the constant support pat-
tern mining. Notice that, under a length-decreasing sup-
port constraint, a sequence can be frequent even if its sub-
sequences are infrequent since the minimum support value
decreases as the length of a sequence increases, We must
use ming>; f(I) as the minimum support value to apply
the downward closure property, which will result in finding
an exponentially large number of uninteresting infrequent
short patterns.
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y
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Figure 2. Smallest valid extension (SVE)

A key property regarding sequences whose support de-
creases as a function of their length is the following. Given
a sequeniial database I and a particular sequence s € D,
if the sequence s is currently infrequent {op(s) < f(|s|))
then f~'(op(s)) = min{{l|f(!} < op(s)}) is the mini-
mum length that a sequence s’ such that §' O s must have
before it can potentially become frequent. Figure 2 illus-
trates this relation graphically. The length of ' is nothing
more than the peint at which a line parallel to the z-axis
at ¥ = op(s) intersects the support curve; here, we essen-
tially assume that the best case in which s’ exists and it is
supported by the same set of sequences as its sub-sequence
5. This property is called the smallest valid extension prop-
erty or SVE property for short and was initially introduced
for the problem of finding itemsets that satisfy a length-
decreasing support constraint [6].

3 SLPMiner Algorithm

We developed an algorithm called SLPMiner that finds all
the frequent sequential patterns that satisfy a given length-
decreasing support constraint. SLPMiner serves as a plat-
form to develop and evaluate pruning methods for reduc-
ing the complexity of finding this type of patterns. Our de-
sign goals for SLPMiner was to make it generic enough so
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that any conclusions drawn from our experiments can carry
through other database-projection-based sequential pattern
mining algorithms [3, 51.

This section consists of two main parts. First, we will
¢xplain how SLPMiner finds frequent sequential patterns.
Second, we will explain how SLPMiner prunes unnecessary
data by using three different pruning methods that exploit
the SVE property.

3.1 Sequential Database-Projection-based Algo-
rithm
SLPMiner finds frequent sequential patterns using the
database-projection-based approach. First, we describe the
general idea of the the database-projection-based approach
and then discuss about details specific to SLPMiner, The
description of the database-projection-based approach is
based on [3].

SLPMiner grows sequential patterns by adding an item
at a time. It uses a prefix tree that determines which items
are to be added to grow each pattern. Each node in the tree
represents a frequent sequential pattern with one item added
to the end of the sequential pattern that its parent node rep-
resents. As a result, if a node represents a sequential pattern
p, its parent node represents the length-(|p| — 1) prefix of p.
For example, if a node represents a pattern ((1), (2, 3)}, its
parent node represents {(1), (2)}.

SLPMiner starts from the root node that represents the
null sequence to find all the frequent items in the input
database and expands the reot node into the child nodes cor-
responding to the frequent items. Then it recursively moves
to each child node and expands it into child nodes that rep-
resent frequent sequential patterns.

SLPMiner grows each pattern in two different ways,
namely, itemser extension and sequence extension. Item-
set extension grows a pattern by adding an item to the
last itemset of the pattern, where the added item must be
larger than any item in the last itemset of the original pat-
tern. For example, {(1), (2)) is extended to {(1), (2, 3)) by
iternset extension, but cannot be extended to {(1), (2, 1}} or
{(1), (2, 2)). Sequence extension grows a pattern by adding
an item as a new itemset next to the last itemset of the pat-
tern. For example, ((1}, (2}} is extended 1o ((1),{2),{(2))
by sequence extension.

Figure 3 shows a sequential database D and its prefix
tree that contains all the frequent sequential patterns given
minimum support 0.5. Since D contains a total of four se-
quences, a pattern is frequent if and only if at least two
sequences in D' support the pattern. The root of the tree
represents the null sequence. At each node of the tree in
the figure, its pattern and its supporting sequences in D are
depicted together with symbol SE or IE on each edge rep-
resenting itemset extension or sequence extension respec-
tively.
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Figure 3. The prefix tree of a sequential database

At each node we need to know the support of each pos-
sible extension to see whether it is frequent or not. In prin-
ciple, we can count the number of supporting sequences
at each node by scanning the input sequential database D).
However, if only a small number of sequences in I} support
the pattern, scanning the whole database costs too much
for a pattern. We can avoid this overhead by scanning
a database called projected database, which is generally
much smaller than the original sequential database D). The
projected database of a sequential pattern p has only those
sequences in I} that support p. For example, at the node
({(2,3)) in Figure 3, its projected database needs 10 con-
tain only s1, 52, 54 since 83 does not support this pattern.
Furthermore, we can eliminate preceding items in each se-
quence that will never be used to extend the current pattern.
For example, at the node {((2)) in Figure 3, we can store
sequence s1’ = {(2, 3)) instead of s1 itself in its projected
database. Overall, database projection reduces the amount
of sequences that need to be processed at each node and
enhances efficient pattern discovery.

There are various database-projection-based algorithms
for both finding frequent itemsets and finding frequent se-
quential patterns [1, 3, 4, 5]. SLPMiner builds the tree in
depth first order and generates a projected database at ev-
ery node explicitly to maximize opportunities for applying
the various pruning methods. As a result, its overall ap-
proach is similar to that used by PrefixSpan [5]. However,
the main difference between them is that SLPMiner gener-
ates several projected databases at a time before exploring
those generated child nodes, whereas PrefixSpan generates
and explores one projected database at a time.

3.2 Performance Optimizations

Expanding each node of the tree, SLPMiner performs the
following two steps. First, it calculates the support of each
item that can be used for itemset extension and each item
that can be used for sequence extension by scanning the
projected database I once. Second, SLPMiner projects D’
into a projected database for each frequent extension found
in the previous step.

Since we want SLLPMiner to be able to run against large
input sequential databases, the access to the input database
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and all projected databases is disk-based. To facilitate this,
SLPMiner uses two kinds of buffers: a read-buffer and a
write-buffer. The read-buffer is used to load a projected
database from disk. If the size of a projected database
does not fit in the read-buffer, SLPMiner reads part of the
database from disk several times. The write-buffer is used
to temporally store several projected databases that are gen-
erated at a node by scanning the current projected database
once using the read-buffer. There are two conflicting re-
quirements concerning how many projected databases we
should generate at a time. In order to reduce the number
of database scans, we wani to generate as many projected
databases as possible in one scan. On the other hand, if we
keep small buffers for many projected databases simultane-
ously within the write-buffer, it will reduce the size of the
buffer assigned to each projected database, leading to ex-
pensive frequent I/Q between the write-buffer and disk. In
order to balance these two conflicting requirements, SLP-
Miner calculates the size of each projected database when
calculating the support of every item in the current pro-
jected database before it aciually generates new projected
databases. Then SLPMiner generates projected databases
as many as they fit in the write-buffer by one database scan,
writes those projected databases on the write-buffer to the
disk, and traverses only those generated child nodes in depth
first order. This method also facilitates storing each pro-
jected database in a chunk rather than fragmented small
pieces, which improves and stabilizes disk I/O efficiency
dramatically.

Even though the disk I/O of SLPMiner is quite efficient,
it is still a bottle-neck of the total performance. In order to
reduce the size of projected database, SLPMiner prunes all
items from a projected database if the support is less than
ming») f{I) since such items will never contribute to any
frequent sequential patterns.

3.3 Pruning Methods

Given a length-decreasing support constraint, SLPMiner
follows the sequential database-projection-based approach
explained so far using miny>1 f(!) as the constant minimum
support constraint. Then SLLPMiner outputs sequential pat-
terns if their support satisfies the given length-decreasing
support consiraint. But this algorithm itself does not reduce
the number of discovered patterns and will be very ineffi-
cient as our experimental results will show. In this subsec-
tion, we introduce three pruning methods that exploit the
length-decreasing support constraint using the SVE prop-
erty.

3.3.1 Sequence Pruning, SP

The first pruning method is used to eliminate certain se-
quences from the projected databases. Recall from Section
3 that SLPMiner generates a projected database at every



node. Let us assume that we have a projected database DY
at anode N that represents a sequential pattern p. Each se-
quence in D’ has p as its prefix. If p is infrequent, we know
from the SVE property that in order for this pattern to grow
to something indeed frequent, it must have a length of at
least f~(op(p)). Now consider a sequence s that is in the
projected database at node IV, i.e., s € D’. The largest se-
quential paitern that s can support is of length |s]+|p|. Now
if [s| +|p| < f~'{op(p}). then 5 is too short to support any
frequent patterns that have p as prefix. Consequently, s does
not need to be considered any further and can be pruned.
We will refer to this pruning method as the sequence prun-
ing methed or SP for shert, which is formally defined as
follows:

Definition 3 (Sequence Pruning) Given a length-
decreasing support constraint f(I} and a projected
database D' at a node representing a sequential pat-
tern p, a sequence s € D' can be pruned from D’ if
fst+1pl) > ap{p).

SLPMiner checks if a sequence can be pruned before
inserting it onto the write-buffer. We evaiuated the com-
piexity of this method in comparison with the complexity
of inserting a sequence to a projected database. There are
three parameters required to prune a sequence: |si, |p|, and
op(p). As the length of each sequence is parnt of sequence
data structure in SLPMiner, it takes a constant time to cal-
culate |s| and [p|. As for op(p), we know this value when
we generated the projected database for the pattern p. Eval-
uating function f takes a constant time because SLPMiner
has a lookup table that contains all possible (I, f(I)) pairs.
Thus, the complexity of this method is just a constant time
per inserting a sequence.

33.2 Item Pruning, IP

The second pruning method eliminates some items of each
sequence in projected databases. Let us assume that we
have a projected database D’ at a node NV that represents
sequential pattern p and consider an item ¢ in a sequence
s € D', From the SVE property we know that the item 1
will contribute to a valid frequent sequential pattern only if

sl +Ipl > f~ o pr (4)) m

where op (i) is the support of item 7 in I. This is be-
cause of the following. The longest sequential pattern that
s can participate in is |s| + |p|, and we know that, in the
subtree rooted at N, sequential patterns that extend p with
item i have support at most gp{i). Now, from the SVE
property, such sequential patterns must have length at least
F~Hop (i) in order to be frequent. As a result, if equation
(1) does not hold, item ¢ can be pruned from the sequence
3. Once item 1 is pruned, then oy (7) and |¢| decrease,
possibly allowing further pruning. Essentially, this pruning
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method eliminates some of the infrequent items from the
short sequences. We will refer to this method as the item
pruning method, or IP for short, which is formally defined
as follows:

Definition 4 (Item Pruning) Given a length-decreasing
support constraint f(l) and a projected database D' at a
node representing a sequential pattern p, an item i in a
sequence s € D' can be pruned from s if |s| + |p| <
F oo (i).

We can implement this pruning method simply as fol-
lows: for each projected database I, repeat scanning I
to collect support values of items and scanning D’ again to
prune items from each sequence until nc more items can
be pruned. Then, we can project the database into a pro-
jected database for each frequent item in the pruned pro-
jected database. This algorithm, however, requires multiple
scans of the projected database and hence will be too costly.

Instead, we can scan a projecied database once to col-
lect support values and use those support values for prun-
ing items as well as for projecting each sequence. Notice
that we are using approximate support values that might be
higher than the real values since the support values of some
items might decrease during the pruning process. SLP-
Miner applies IP before generating a projected sequence s
of s as well as after generating s' just before inserting s
onto the write-buffer. By applying IP before projecting se-
quences, we can reduce the computation of projecting se-
quences, By applying IP once again for projected sequence
&', we can exploit the reduction of length |s| — |s'| to prune
ttems in s’ furthermore. Pruning items from each sequence
is repeated until no more item can be pruned or the seguence
becomes short enough to be pruned by SP.

IP can potentially prune larger portion of projected
database than SP since it always holds that o p(p) > op+ (i)
and hence f~'{op(p)) < Ff!(op (¢)). However, the
pruning overhead of IP is much larger than that of SP. Let us
consider the complexity of pruning items from a sequence
s. The worst case is that only one item is pruned in ev-
ery iteration over the items in s. Since this can be repeated
as many as the number of items in the sequence, the worst
case complexity for one sequence is O(n?} where n is the
number of items in the sequence.

3.3.3 Structure-based Pruning

Given two sequences s, s of the same length k, these two
sequences are treated equally under SP and TP. In fact, the
two sequences can be quite different from each other. For
example, {(1,2,3,4)} and {(1),(2),(3), (4)) suppost the
same 1-sequence {(1}}, ((2)). {{3)}, and {(4)} but never
support the same k-sequences for k > 2. From this obser-
vation, we considered ways to split a projected database into
smaller equivalent classes. By having smaller databases in-



stead of one large database, we may be able to reduce the
depth of a certain path from the root to a leaf node of the
tree.

As a structure-based pruning, we developed the min-max
pruring method. The basic idea of the min-max pruning
is to split a projected database D' into two D}, D} such
that D} and D} contribute to two disjoint sets of frequent
sequential patterns. In order to separate D' into such )] and

D, we consider the following two values for each sequence
se D"

1. a(s} = the minimum number of itemsets in frequent
sequential patterns that s supports

2. b(s) = the maximum number of itemsets in frequent
sequential patterns that 5 supports

These two values define an interval [a{s), b(s)], that we call
the min-max interval of sequence s. If two sequences s, s’ €
D’ satisfy [a(s), b(s)] N [a(s"),b(s")] = @, then 5 and &'
cannot support any common sequential pattern since their
min-max intervals are disjoint.

If we have D] and Dj satisfy Usep:la(s),b(s)] N
Ugeny[a(s),b(s)] = 9, then D} and D; support distinct
sets of frequent sequential patterns. However, this is not
possible in general. Instead, D' will be split into three sets
A, B, C of sequences as shown in Figure 4. More precisely,
these three sets are defined for some positive integer & as
follows.

AlkY = {s|lse D' Ab(s) <k}
Bk} = {slseD Aa(s) >k}
C(k) = D'—(AUB)

A{k)} and B(k) support distinct sets of frequent sequen-
tial patterns, whereas A(k) and C(k) as well as B(k) and
C(k) support overlapping sets of frequent sequential pat-
terns. From these three sets, we form D} = A(k) U C(k)
and Dy = B(k)UC (k). If we mine frequent sequentiat pat-
terns of length up to k — 1 from I} and patterns of length
no less than & from D), we can gain the same patterns as
we would from original D’.
ba

bs
!

Min-max interval

: B
[ ———— c

1 k

Figure 4. Min-max intervals of a set of sequences

Through our experiments, we observed |C| is so close
to |D'| that mining D] and D, defined above will cost
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more than mining the original database D'. However, we
can prune entire D' if both |D| and |Dj| are smaller
than the min;») f(I). Furthermore, we can increase this
minimum support by the fact that any sequential patterns
that the current pattern p can extend to is of length at
most maxgepr(|s]) + [p|. Now, from the SVE prop-
erty, we know that if both | D] and |DY| are smaller than
S~ Ymax,epr(js]) + Ip|). then we can eliminate entire
D’. Essentially, this means that if we can split a projected
database into two subsets each of which is too small to be
able to support any frequent sequential pattern, then we can
eliminate the entire original projected database. We call
this pruning method the min-max pruning or MP for short,
which is formally defined as follows:

Definition 5 (Min-Max Pruning) Given a length-
decreasing support constraint f(!) and a projected
database D' at a node representing a sequential pattern p,
entire D' can be pruned if there exists a positive integer k
siuch that

1Dy = 1A +1CKR)] < flmax(ls)) + 1pDID]. and
(D5 = B +(C(R)| < flmax(|s]) + (DI @)

We apply MP just after a new projected database D' is
generated if the entire sequences in D' is still kept on the
write-buffer and if [D’| < 1.2f{(max,cp(|s|)}|D|.- The
first condition is necessary to avoid costly disk I/O and the
second condition is necessary to increase the probability of
successfully eliminating the projected database. The algo-
rithm of MP consists of two parts: the first part to calculate
the distribution of the number of sequences over possible
min-max intervals and the second part to find & that satis-
fies condition (2). The first part requires scanning D' on
memory once and finding the min-max interval for each se-
quence. For each sequence s, SLPMiner generates a his-
togram of itemset size and calculates a(s) by summing up
itemset sizes from the largest one. The other value b(s) is
simply the number of itemsets in 5. This part requires O(m)
where m is the total number of itemsets in D'. The second
part uses an 1 x 7 upper triangular matrix & = (g;;) where
g:;; = |{sla(s) = 1A b(s) = j A s € D'}| and e is the max-
imum number of itemsets in a sequence in D', Matrix Q is
generated during the database scan of the first part. Given
matrix &), we have

k-1 =n
AR +ICHRY) = 303 gy

i=1 j=i

noJ
BEIHCER! = 303 e

=k i=1



parameter DS1 DS2

D 25000 25000

] 7 = 10,13, ..,30 710 10

T} 735 T =135,30,-,7.0
N 10000 10000

5] =/2 5

1] .35 z/2

Table 1. Parameters for datasets used in our tests

Using relations

(IAlk + 1)| + |C(k + 1)]) — (|A(K)] + |C(R))

n
i=k

Qkj

k

(1B(k + 1) +IC(k + 1)) — (|B(k)| + C(k)})

i=1

we can calculate | A(k)| + |C(k}] and | B(k}+|C(k)] incre-
mentally for all k in O{n?)}. So the total complexity of the
min-max pruning for one projected database is O(m + n?).
This complexity may be much larger than the runtime re-
duction by eliminating projected databases. However, our
experimental results show that the min-max pruning method
generally reduces the total runtime substantially when other
pruning methods are not used together.

4 Experimental Results

We experimentally evaluated the performance of SLPMiner
using a variety of datasets generated by the synthetic se-
quence generator that is provided by the IBM Quest group
and was used in evaluating the AprioriAll algorithm [7]. All
of our experiments were performed on Linux workstations
with AMD Athlon at 1.5GHz and 2GB of main memory.
All the reported runtime values are in seconds.

We used two classes of datasets DS1 and DS2, each of
which contained 25K sequences. For each class we gener-
ated different problem instances as follows. For DS1, we
varied the average number of itemsets in a sequence from
10 to 30 by interval 2, obtaining a total of 11 datasets, DS1-
10, DS1-12, - - -, DS1-30. For DS2, we varied the average
number of items in an itemset from 2.5 to 7.0 by interval
0.5, obtaining a total of 10 datasets, D§2-2.5, D§2-3.0, - - -,
DS2-7.0. For DS1-z, we set the average size of maximal
potentially frequent sequences to be z /2. For DS2-z, we set
the average size of maximal potentially frequent itemsets to
be 2 /2. Thus, the dataset contains longer frequent patterns
as r increases. The characteristics of these datasets are sum-
marized in Table 1, where | D] is the number of sequences,
|C] is the average number of itemsets per sequence, |T| is
the average number of items per itemset, N is the number
of items, | 5| is the average size of maximal potentially fre-
quent sequences, and |T| is the average size of maximal
potentially frequent itemsets.

In all of our experiments, we used a minimum support
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constraint that decreases linearly with the length of the fre-
quent sequential pattern. In particular, the initial value of
support was set to 0.001 and it was decreased linearly down
to 0.0001 for sequences of up to length | |C|T|/2).

We ran SPADE [9] to compare runtime values with SLP-
Miner. When running SPADE, we used the depth first
search option, which leads to better performance than the
breadth first search option on our datasets. We set the mini-
mum support value to be ming>; f(I).

4.1 Results

Tables 2 and 3 show the experimental results that we ob-
tained for the DS1 and DS2 datasets respectively, Each

- Zflikrow of the tables shows the results obtained for a differ-

ent DS1-xz or DS2-x dataset, specified on the first column,
The column labeled “SPADE" shows the amocunt of time
taken by SPADE, which includes the runtime of prepro-
cessing to transform the input sequential database into the
vertical format [9}. The column labeled “None” shows the
amount of time taken by SLPMiner using a constant sup-
port constraint that corresponds to the smallest support of
the support curve, that is 0.0001 for all datasets. The other
columns show the amount of time required by SLPMiner
that uses the length-decreasing support constraint and a to-
tal of five different varieties of pruning methods and their
combinations. For example, the column label “SP” corre-
sponds to the pruning scheme that uses only sequence prun-
ing, whereas the column labeled “SP+IP+MP" corresponds
to the scheme that uses all the three pruning methods. Note
that values with a “-” correspond to experiments that were
aborted because they were taking too long time.

A number of interesting observations can be made from
the results in these tables. First, even though SLPMiner
without any pruning method is slower than SPADE, the ra-
tio of runtime values is stable ranging from 1.9 to 2.7 with
average 2.3. This shows that the performance of SLPMiner
is comparable to SPADE and good enough as a platform to
evaluate our pruning methods.

Second, either one of pruning methods performs better
than SLPMiner without any pruning method. In particu-
lar, SP, IP, SP+IP, and SP+IP+MP have almost the same
speedup. For DS1, the speedup by SP is about 1.76 times
faster for D81-10, 7.61 times faster for DS1-16, and 141.16
times faster for DS1-22. Similar trends can be observed
for DS2, in which the performance of SLPMiner with SP is
1.76 times faster for DS2-2.5, 8.78 times faster for DS2-3.5,
and 296.59 times faster for DS2-5.0.

Third, SP pruning alone can achieve almost the best per-
formance among all the other tested combinations. This was
counter-intuitive for us since we expected SP+IP would be
much better than SP or IP alone. On the other hand, this
result shows that many other sequential pattern mining al-
gorithms can exploit the SVE property by using SP since it



SLPMiner
Dataset SPADE None 3P — SP+IP | SP+IP4
DSI1-10 10.562 20219 | 11514 | 11570 | 12641 12,006 11.830
DS1-12 18.245 1420 | 15316 | 15430 | 17.804 | 15.358 15.035
DS1-14 36216 B8350 | 21.290 | 21.583 | 24453 | 21429 21297
[T81-16 | 87280 | 208187 27.342 26.635 31330 76,186 27.383
DS1-18 | 273325 | 502886 | 39.228 | 39.030 | 43490 | 38.790 30172
DST-20 | 594777 | 1438932 | 26.147 | 48340 | 54727 | 47.864 47723
D51-22 | 4702697 | B942.043 | 63.351 | 65.123 | 74905 | 65.232 65.907
D51-24 - ~ | 82756 | 85622 | 94.640 | 82377 83,148
D126 - — T 10698 | Li2.180 | 126,647 | 111699 106,367
DS1-38 - 139.365 | 142.760 | 162.062 | 137.955 138411
5130 = 180.715 | 189.029 | 212.848 | 185601 184.105
Table 2. Comparison of pruning methods using DS1
SLPMiner
Diataset SPADE None 3P P MP SP+IP | SP+IP+MF
D52-2.5 10.562 20219 | 11314 | 11570 12641 12006 11830
5230 21159 45887 | 16627 | 16.940 18719 15871 15.902
D835 117.436 270617 | 31831 | 35319 | 43.267 | 31443 31.696
D5Z-40 | 333786 §99.025 | 32.783 | 32488 | 39.805 | 31940 32107
D52-45 | 731402 | 1784.372 | 35871 | 37955 | 43138 | 38030 36.539
DS82-5.0 | 6460.641 | 17106370 | 57.677 | 61.654 | 71.835 | 59.115 55.096
D52-55 — [ 59.500 | 62617 | 73750 | 6L1%&7 61.798
DSZ60 - = 71752 | 78.68% | 956.051 77925 75.186
D865 98061 | 105475 | 144.387 | 101213 102,189
15270 116,936 | 110.907 | 136513 | 113.443 117.@

Table 3. Comparison of pruning methods using DS2

is easy to implement. For example, it is straight-forward to
implement SP in PrefixSpan [5], for both its disk-based pro-
jection and pseudo-projection. Even SPADE [9], which has
no explicit sequence representation during pattern mining,
can use SP by adding the length of sequence to each record
in the vertical database representation.

Fourth, among the three pruning methods, SP leads to
the largest runtime reduction, IP leads to the second largest
ruatime reduction, and MP achieves the smallest reduction.
The problem with MP is the overhead of splitting a database
into two subsets. Even so, it seems surprising to gain such
a great speedup by MP alone. This shows a large part of the
runtime of SLPMiner with no pruning method is accounted
for by many smatl projected databases that never contribute
to any frequent patterns, As for SP and IP, SP is slightly
better than IP because IP and SP prune almost the same
amount of projected databases for those datasets but IP has
much larger overhead than SP.

Fifth, the runtime with three pruning methods increases
gradually as the average length of the sequences (and the
discovered patterns) increases, whereas the runtime of SLP-
Miner without any pruning increases exponentially.

5 Conclusion

In this paper we presented an efficient algorithm for find-
ing all frequent sequential patterns that satisfy a length-
decreasing support constraint. The key insight that en-
abled us to achieve high performance was the smallest valid
extension property of the length-decreasing support con-

straint.
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