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Abstract—The scale of data used in graph analytics grows at
an unprecedented rate. More than ever, domain experts require
efficient and parallel algorithms for tasks in graph analytics.
One such task is the truss decomposition, which is a hierarchical
decomposition of the edges of a graph and is closely related to
the task of triangle enumeration. As evidenced by the recent
GraphChallenge, existing algorithms and implementations for
truss decomposition are insufficient for the scale of modern
datasets. In this work, we propose a parallel algorithm for
computing the truss decomposition of massive graphs on a
shared-memory system. Our algorithm breaks a computation-
efficient serial algorithm into several bulk-synchronous paral-
lel steps which do not rely on atomics or other fine-grained
synchronization. We evaluate our algorithm across a variety of
synthetic and real-world datasets on a 56-core Intel Xeon system.
Our serial implementation achieves over 1400 speedup over
the provided GraphChallenge serial benchmark implementation
and is up to 28 x faster than the state-of-the-art shared-memory
parallel algorithm.

I. INTRODUCTION

Truss decomposition is a powerful tool for discovering
community structure and can provide insights during graph
analytics. The ability to efficiently compute truss decompo-
sition is critical as graphs become increasingly large and
sparse. Appropriately, the recent GraphChallenge [1] calls for
researchers to develop novel hardware and software to enable
truss decomposition on modern datasets.

Most algorithms for computing truss decomposition are
based on the concept of peeling edges [2], [3]. At each
stage, edges are eliminated from the graph and their incident
edges are updated. The resulting algorithm is computationally
efficient, but is challenging to parallelize due the unstructured
nature of the computation and the dynamic nature of the graph.

Several works have explored the optimization of truss
decomposition on distributed systems such as MapReduce [2],
[4] and Pregel [4], [5]. However, these methods are not
designed for high-performance computing systems and do
not consider implementation details which are critical for
achieving high throughput on modern architectures.

Recently, Sariyuce et al. [6] presented the asynchronous
nucleus decomposition algorithm (AND), which is the state-
of-the-art parallel algorithm for truss and other related graph
decomposition on shared-memory systems. Nucleus decompo-
sition is a generic framework for graph decompositions that is
capable of utilizing higher-order structures such as cliques [7]
and generalizes the k-core and truss approaches to discover

dense subgraphs. Instead of the traditional peeling process,
AND iteratively traverses the graph structure and updates the
truss decomposition based on the H-index values computed
recursively from the local neighborhoods of edges [8]. The
localized nature of AND allows for lock-free parallel execution
at the cost of more computation than the traditional peeling
algorithm. As a result, AND is not guaranteed to outperform
a serial peeling implementation despite its high scalability.

In this work, we propose a shared-memory parallel al-
gorithm that is based on peeling. We break the peeling
process into multiple bulk-synchronous stages, and thus call
the algorithm multi-stage peeling (MSP). In summary, our
contributions include:

1) We describe an optimized serial implementation of the
peeling algorithm for truss decomposition. Our serial
implementation outperforms the GraphChallenge bench-
mark implementation by over 1400x and is able to
decompose graphs with over 100 million edges in only
a few minutes time.

2) We propose MSP, a parallel algorithm for truss de-
composition on shared-memory systems. MSP uses the
efficient serial peeling algorithm as a basis, and like
AND, is lock- and atomic-free. MSP is demonstrated
to outperform AND by up to 28x.

3) We perform an extensive evaluation of our algorithms
on a diverse set of graphs using a modern hardware
platform. We compute the full truss decomposition of a
graph with 1.2 billion edges on a single shared-memory
system. To the best of our knowledge, this is the largest
truss decomposition performed on any graph in the
literature.

II. BACKGROUND AND NOTATION

Let G = (V, E) be an undirected, unweighted, and simple
graph with no self-loops, where V' and E are the vertex and
edge set respectively. Thus, |V] is the number of vertices, and
|E| is the number of edges. We use A(v) to denote the set
of neighbors of vertex v € V, and so deg(v) = |A(v)| is the
degree of v. We assume vertices and edges are unique in order
to identify them by their indices.

A triangle in G is a cycle/clique of three vertices. Let
{u,v,w} C V, {u,v,w} is a triangle if and only if all three
edges exist in G (i.e., (u,v), (u,w), (v,w) € E). We use the
general notation A to denote the set of all triangles in the



Fig. 1: The truss decomposition of a graph. Each edge e is
labeled with its truss number, I'(e).

graph G, and so |A| denotes the number of triangles in G.
Similarly, we use A, to denote the set of all triangles incident
to edge e € .

Using the definition of triangles, we define the support of an
edge e = (u,v) € E, denoted by sup(e), as sup(e) = [A(u)N
A(v)| = |A¢|- Thus, the support of an edge e = (u,v) € E is
the number of triangles incident to e.

We now define the notion of k-truss, which was first
introduced by Cohen (see [9] for details). The k-truss of a
graph G, denoted by Gy, is the largest subgraph of G, such
that for every edge e € Eg,, sup(e) > (k —2), where k > 2.
Clearly, the 2-truss of G is equivalent to the graph itself.
Further, we define the truss number of an edge e in G, denoted
by I'(e), as the maximum value % such that e € Gy. Thus, if
T'(e) =k, then e € Gy, but e ¢ Gy 1. Finally, we use kyax to
denote the maximum truss number of any edge in the graph
G.

In this work, we present serial and parallel algorithmic opti-
mizations for truss decomposition on shared-memory systems.
Given a graph G, we compute the full k-truss decomposition
of G for all 2 < k < kpux. An example truss decomposition
is illustrated in Figure 1.

Table I provides a summary of the graphs and their main
properties including the number of triangles and the maximum
truss number.

III. OPTIMIZED SERIAL PEELING ALGORITHM

We now detail the serial peeling algorithm that provides a
basis for our parallel algorithm. We work from the algorithm
by Wang and Cheng [2], presented in Algorithm 1, and
discuss the design decisions which were made to achieve high
performance.

1) Tracking supports: The peeling process begins with the
generation of a frontier (Line 4). The frontier F} is the set
of edges at iteration k whose support values are smaller than
k — 2. In order to efficiently generate the frontier, we follow a
similar strategy as existing works that track edges in support
buckets [2], [10]. For each unique support value 7, a bucket is
allocated to store edges whose support values are equal to 7.
We implement support buckets as doubly-linked lists so that
deletions and insertions can be done in O(1) time. As support
value sup(e) is decremented, edge e will be moved into bucket
max{sup(e), k—3}. This selection of bucket allows the peeling
process to proceed by only examining a single bucket during

Algorithm 1: Serial Peeling

1 Compute initial supports and store in sup;
2 k<« 3;
3 while |E| > 0 do

4 | Fr+{e€E:suple) <k-—2}
5 while | F;| > 0 do

6 foreach ¢ € F;. do

7 foreach ¢/ € A, do

8 | sup(e’) + sup(e') —1;
9 end

10 E <+ E\{e};

11 I'le) «~k—1;

12 end

13 Fi < {e€ E:sup(e) < k—2};
14 end

15 k+ k+1;
16 end

the next iteration (i.e., edges in the frontier can be extracted
in the next iteration by only accessing bucket k—3).

2) Triangle enumeration: Triangle enumeration (Line 7)
is a major cost during the peeling process. Given an edge
e = (u,v) € Fi, we need to enumerate the triangles incident
to e, which is equivalent to computing the intersection of
A(u) and A(v). We implement the set intersection as a
linear merge of the two adjacency lists [11]. Since we know
how many triangles will be found by simply examining the
current support value of e, the merge exits as soon as sup(e)
triangles are found, instead of performing the complete merge
operation. Moreover, we follow the practice of reordering
vertices by degree [11], [12] and perform the merge starting
from the end of the adjacency lists. Intuitively, a degree-based
ordering results in intersections occurring more frequently at
the end of the adjacency lists, thus allowing an early exit from
the merge operation.

3) Edge deletion: We facilitate edge deletions (Line 10) by
storing each vertex’s adjacency list as an array-based doubly-
linked list. The array-based doubly-linked list provides edge
deletion in O(1) time while still providing random access to
edge data, which is used in other algorithmic stages.

IV. PARALLEL MULTI-STAGE PEELING

A natural approach when parallelizing the edge-centric
Algorithm 1 is to peel the edges in JFj concurrently. This
approach brings a number of challenges to consider:

o Line 6: if two edges belonging to the same triangle are
peeled concurrently, the remaining edge will have its
support decremented twice for the same triangle.

o Line 8: the support of an edge may be decremented
concurrently by multiple threads.

o Line 10: race conditions can occur if multiple threads
concurrently remove edges from the same adjacency list.
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Fig. 2: One iteration of Multi-Stage Peeling (MSP). Edges are labeled with support values (not to be confused with truss
numbers). The initial graph is the same as Figure 1 after reordering vertices by degree and removing edges with zero support.

o Line 10: there may be threads searching the graph for
triangles while edges are removed, leaving the graph
traversal in an inconsistent state.

We propose to split the computation into several bulk-
synchronous substeps. By separating the various steps of the
peeling process and using a static decomposition of vertices
and edges, we are able to parallelize the peeling process with-
out relying on fine-grained synchronizations such as mutexes
and atomics. We call this algorithm multi-stage peeling (MSP).

MSP relies on communication between threads, imple-
mented in the form of message queues. We denote a set of
message queues for p threads Q@ = {qi,...,q)q}, where
|Q| > p. We additionally require two functions which
map vertices and edges to queues, denoted ¥ : V — ) and
d: F — @, respectively. We use a cyclic distribution in this
work, ie., U(v) =v (mod |Q|) and ®(e) =e (mod |Q)).
The MSP algorithm relies on two sets of queues, denoted QE
and Q7 , respectively.

Message queues are implemented such that each thread
maintains a local portion of each ¢; € ), and thus any thread
can send messages to any queue without synchronization. The
thread-local queues can then be aggregated into a single set
of incoming messages after a thread barrier.

A. Frontier Generation

We distribute edges among a set of |@Q)| support buckets in
order to parallelize the frontier generation. It is advantageous
to use |@Q| buckets and to assign edge e to bucket ®(e)
so that threads can update support buckets in a lock-free
manner later in the computation. Since edges are not peeled
uniformly throughout the graph, load imbalance could occur
if we used the static partitioning provided by ® for the more
expensive substep of triangle enumeration. We therefore use
the distributed support buckets to fill Fj, which is a single
thread-global work array that can be processed in a load
balanced manner via a dynamically-scheduled for-loop.

For each edge e € F, we enumerate A, using the optimized
routines from Section III. Importantly, we must be careful to
delete each triangle only once. Otherwise, incident edges will
incorrectly have their supports decremented multiple times.
To address this challenge, we introduce an ordering of the

edges in a triangle. Suppose we have a triangle {u, v, w}, with
u < v < w. We define the ordering of the edges as (u,v) <
(u, w) < (v, w). Note that this ordering naturally occurs when
the graph is stored as an adjacency list. We select the triangle
for deletion if and only if e is the lowest ordered edge in the
triangle also found in F.

For each triangle selected for deletion, we insert the two
edges incident to e into queues QF. The destination queue
is chosen based on the lower-numbered vertex of the edge.
For example, suppose peeled edge (u,v) is part of triangle
{u,v,w}. Then the thread inserts messages (u,w) and (v, w)
into queues qg(u) and qg(v), respectively. Finally, the edge e
is placed into a second queue qqf,(u). We note that a simple
optimization is to only communicate edges if they are not
already in Fy, i.e., they are not already being removed from
the graph.

After all edges in F, have been processed and their triangles
queued for support updates, the threads reach a barrier and we
begin the next stage in frontier generation. Each ¢© € Q7 is
assigned to a thread. The thread extracts each edge (u,v) € ¢7
and deletes it from A(w). The modification of A(u) can be
done without locks because all edges present in A(u) will be

assigned to q£ (u)? which in turn is assigned to a single thread.

B. Support Updates

By this stage in MSP, all edges in Fj, have been removed
from the graph structure and the remaining edges of each
deleted triangle have been queued for support updates. The
support update stage occurs in two substeps: decrementing
support values and updating support buckets.

Each ¢ € QF is assigned to a thread for support
decrements. After decreasing the support value of edge e, a
support bucket is updated to reflect the new support value
of e. Atomics are again unnecessary, as the partitioning of
buckets among threads ensures that an edge will only ever be
decremented by a single thread, and likewise a support bucket
will only be updated by a single thread.

C. Load Balancing Message Queues

MSP relies on a static assignment of edges and vertices
to message queues for lock-free computation. However, the
irregular nature of the peeling process means that a static



TABLE I: Summary of datasets.

Graph V| |E| Al Emax
soc—-Slashdot0811 [14] 77.3K 469.2K 551.7K 35
cit-HepTh [14] 277K  352.2K 1.5M 30
soc—Epinionsl [14] 75.8K  405.7K 1.6M 33
loc-gowalla [15] 196.6K  950.3K 2.3M 29
cit-Patents [14] 3.8M 16.5M 7.5M 36
soc-Orkut [15] 3.0M 106.3M  524.6M 75
twitter [16] 41.7M 1.2B 348B 1998
rmat22 [1] 2.4M 64.1M 2.1B 485
rmat23 [1] 45M  129.3M 4.5B 625
rmat24 [1] 89M  260.3M 9.9B 791
rmat25 [1] 17.0M  523.5M 21.6B 996

K, M, and B denote thousands, millions, and billions, respectively. The first group
of graphs is taken from real-world datasets, and the second group is synthetic.

partitioning of the data is likely to result in load imbalance. To
address this challenge, we overdecompose by assigning |Q| to
a multiple of p, and dynamically assign queues to threads. We
empirically found |Q| = 2p to give the best performance in
our evaluation.

V. EXPERIMENTS & RESULTS
A. Experimental Setup

1) Hardware and Software Configuration: Our experimen-
tal test-bed is a dual-socket server with Intel Xeon Platinum
8180 processors running at 1.7 GHz. Each processor has 28
cores and is equipped with 192 GB of DDR4 memory. The
system can deliver a total of 3046 GFLOP/s peak double
precision performance and 210 GB/s STREAM Triad band-
width [13]. Our experimental runs were limited to two hours
due to system configuration.

Our k-truss implementations were written in C and com-
piled with Intel C++ Compiler 17.0. The provided serial
baseline code was implemented in Matlab and run with GNU
Octave 4.2.1. The Octave binary was built from source code
with Intel C++ Compiler 17.0 and Math Kernel Library 2017.

2) Datasets: We evaluate our work with eleven graphs that
span both synthetic and real-world datasets. Summarized in
Table I, the graphs come from sources such as the Network
Data Repository [15], SNAP [14], and pre-generated synthetic
datasets provided by the GraphChallenge specification [1]. All
graphs are stored initially using an adjacency list representa-
tion (i.e., CSR).

3) MSP Evaluation: We first examine the relative costs of
the various substeps during the k-truss computation. Figure 3a
shows the breakdown of times for serial computation. The ini-
tial support computation (i.e., triangle counting) is consistently
the most inexpensive step, followed by support updates and
lastly, frontier generation. As we move to parallel execution
(Figure 3b), the support updates dominate the runtime in eight
of eleven datasets. This is attributed to lower scalability of
the support update stage. Scaling of the support update stage
is reliant on thread-to-thread communication, which can be
challenging in multi-socket NUMA systems such as the one
used in our evaluation. Additionally, if updates are clustered

TABLE II: Speedup over the provided serial baseline code.

Graph | Octave | Peeling  Speedup
soc-Slashdot0811 169.23 0.22 769.1x
cit-HepTh 448.23 040 1120.6x
soc-Epinionsl 675.03 0.46 1467.4x
loc—-gowalla 787.95 0.79 997.4x
cit-Patents 972.66 4.03 241.4x

Values are runtime in seconds. Octave is the serial Octave benchmark
provided by the GraphChallenge specification [1]. Peeling is the pro-
posed implementation of Algorithm 1. Speedup is measured relative to
Octave.

TABLE III: Speedup over the serial peeling algorithm.

Graph | Peeling | AND | MSP
cit-Patents 2.89 0.23 12.6x 0.58 5.0x
soc-Orkut 228.06 64.31 3.5% 11.30 20.2x
twitter - - - | 1566.72

rmat22 403.59 398.46 1.0x 42.22 9.6 %
rmat23 980.68 | 1083.66 0.9%x 85.14 11.5x
rmat24 2370.54 | 4945.70 0.5% 175.29 13.5%x
rmat25 5580.47 - - 35237 15.8%

Values are runtimes, in seconds, of the truss decomposition. The time for initial
support computation is omitted, as the same kernel is used for all datasets [19]. Peeling
denotes the runtime achieved with Algorithm 1. AND [6] denotes the runtime of the
asynchronous nucleus decomposition algorithm on 56 cores. MSP denotes the runtime
of the parallel multi-stage peeling algorithm on 56 cores. All speedups are measured
relative to Peeling. A dash indicates that the run was unable to be completed within
the two hour time limit. The fastest result for each graph is bolded.

around a few vertices, then the cyclic distribution used in MSP
may not provide load balance.

We present strong scaling results of the MSP algorithm in
Figure 4. We include all graphs that require at least one second
to complete serially. As seen in the figure, the curves start to
flatten from 28 cores. This is attributed to a combination of
communication across sockets and NUMA effects.

Figure 5 presents the time required for MSP to compute
each k-truss. The figure shows that the computations on the
low values of k£ dominate the runtime. This is expected because
social network graphs obey power-law degree distributions and
the edges connected to low degree vertices are likely to have
lower support values. Notably, rmat 25 has a pronounced out-
lier in the middle of the computation. The outlier corresponds
to a large number of edges peeled at once. All of the evaluated
synthetic graphs exhibited the same outlier in the middle of
the peeling process.

4) Evaluation against the state-of-the-art: Table I com-
pares the runtimes of the serial baseline code provided by
the GraphChallenge specification [1] and the serial peeling
implementation developed in this work (Section III). The serial
baseline code is a linear algebraic formulation of the k-truss
problem [17], [18] written in Matlab and was chosen because
it has the highest performance of the supplied benchmarks. We
only compare against our serial implementation for fairness.
Our peeling implementation achieves up to 1467.4x speedup
over the provided serial baseline code.

Lastly, in Table III we compare MSP to our serial peel-
ing implementation and asynchronous nucleus decomposition
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(AND), a state-of-the-art shared-memory algorithm for truss
and other related graph decompositions [6]. We implemented
AND with the same triangle enumeration primitives as MSP
for a fair comparison. We again selected only the datasets
which required at least one second of serial computation. AND
outperforms the competing algorithms on cit-Patents, but

as the graphs grow in size MSP eventually outperforms AND
by 28 on rmat24. Larger graphs could not be completed
by AND within the two hour time limit.

VI. CONCLUSION

Computing the truss decomposition of a graph is an essential
step in many data analytics workloads. As evidenced by the
GraphChallenge [1], the performance of existing algorithms
for truss decompositions are insufficient for modern graph
datasets on current and future hardware architectures. We
presented MSP, a parallel algorithm for computing truss de-
composition on shared-memory systems. MSP maintains the
computational efficiency of the best serial algorithms while
avoiding fine-grained synchronization. Resultingly, MSP is up
to 28 faster than the state-of-the-art parallel algorithm. MSP
is able to decompose a graph with 1.2 billion edges on a single
compute node.
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