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Abstract

Solving a system of equations of the form Tx = y,
where T is a sparse triangular matrix, is required after

the factorization phase in the direct methods of solving

systems of linear equations. A few parallel formula-

tions have been proposed recently. The common belief

in parallelizing this problem is that the parallel formu-

lation utilizing a two dimensional distribution of T is

unscalable. In this paper, we propose the �rst known

e�cient scalable parallel algorithm which uses a two

dimensional block cyclic distribution of T . The algo-

rithm is shown to be applicable to dense as well as

sparse triangular solvers. Since most of the known

highly scalable algorithms employed in the factoriza-

tion phase yield a two dimensional distribution of T ,
our algorithm avoids the redistribution cost incurred by

the one dimensional algorithms. We present the paral-

lel runtime and scalability analyses of the proposed two

dimensional algorithm. The dense triangular solver is

shown to be scalable. The sparse triangular solver is

shown to be at least as scalable as the dense solver.

We also show that it is optimal for one class of sparse

systems. The experimental results of the sparse tri-

angular solver show that it has good speedup charac-

teristics and yields high performance for a variety of

sparse systems.

1 Introduction

Many direct and indirect methods of solving large
sparse linear systems, need to compute the solution
to the systems of the form Tx = y, where T is a
sparse triangular matrix. The most frequent applica-
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tion is found in the domain of direct methods, which
are based on the factorization of a matrix into trian-
gular factors using a scheme like LU , LLT (Cholesky)
or LDLT . Most of the research in the domain of direct
methods has been concentrated on developing fast and
scalable algorithms for factorization, since it is compu-
tationally the most expensive phase of a direct solver.
Recently some very highly scalable parallel algorithms
have been proposed for sparse matrix factorizations
[1], which require the matrix to be distributed among
processors using a two dimensional mapping. This
results in a two dimensional distribution of the trian-
gular factor matrices used by the triangular solvers to
get the �nal solution.

With the emergence of powerful parallel comput-
ers and the need of solving very large problems, com-
pletely parallel direct solvers are rapidly emerging
[2, 4]. There is a need to �nd e�cient and scalable
parallel algorithms for triangular solvers, so that they
do not form a performance bottleneck when the direct
solver is used to solve large problems on large num-
ber of processors. A few attempts have been made
recently to formulate such algorithms [3, 4, 6]. Most
of the attempts until now, rely on redistributing the
factor matrix from a two dimensional mapping to a
one dimensional mapping. This is because it was be-
lieved till now, that the parallel formulations based on
two dimensional mapping are unscalable [3]. But, as
we show in this paper, even a simple two dimensional
block cyclic mapping of data can be utilized by our
parallel algorithm to achieve as much scalability as
achieved by the algorithms based on one dimensional
mapping.

The challenge in formulating a scalable parallel al-
gorithm lies in the sequential data dependency of the
computation and relatively small amount of compu-
tation to be distributed among processors. We show
that, the data dependency in fact exhibits concurrency
in both the dimensions and an appropriate two dimen-
sional mapping of the processors can achieve a scalable
formulation. We elucidate this further in Section 2
where we describe our two dimensional parallel algo-
rithm for a dense trapezoidal solver.



Scalable and e�cient formulation of the parallel al-
gorithms for solving large sparse triangular systems is
more challenging than the dense case. This is mainly
because of the inherently unstructured computations.
We present, in section 3, an e�cient parallel mul-
tifrontal algorithm for solving sparse triangular sys-
tems. It traverses the elimination tree of the given
system and employs the dense trapezoidal algorithm
at various levels of the elimination tree.

In Section 4, we analyze the proposed parallel algo-
rithms for their parallel runtime and scalability. We
�rst show that the parallel dense trapezoidal solver is
scalable. Analyzing a general sparse triangular solver
is a di�cult problem. Hence we present the analysis
for two di�erent classes of sparse systems. For these
classes, we show that the sparse triangular solver is
at least as scalable as the dense triangular solver. Al-
though it is not as scalable as the best factorization
algorithm based on the same data mapping, its paral-
lel runtime is asymptotically of lower order than that
of the factorization phase. This makes a strong case
for the utilization of our algorithm in a parallel direct
solver.

We have implemented a sparse triangular solver
based on the proposed algorithm and it is a part of
the recently announced high performance direct solver
[2]. The experimental results presented in the sec-
tion 5 show the good speedup characteristics and a
high performance on a variety of sparse matrices. Our
algorithm for sparse backward substitution achieves a
performance of 4.575 GFLOPS on 128 processors of
an IBM SP2 for solving a system with multiple num-
ber of right hand sides (nrhs = 16), for which the
single processor algorithm performed at around 200
MFLOPS. For nrhs = 1, it achieved 1630 MFLOPS
on 128 processors, whereas the single processor algo-
rithm performed at around 70 MFLOPS. To the best
of our knowledge, these are the best performance and
speedup numbers reported till now, for solving sparse
triangular systems.

2 Two Dimensional Scalable Formula-

tion
In this section, we build a framework for the two di-

mensional scalable formulation by analyzing the data
dependency and describing the algorithm to extract
concurrency.

Consider a system of linear equations of the form
Tx = b, where T = [T1 T2]

T ; x = [x1 x2]
T ; b = [b1 b2]

T ;
and T1 is a lower triangular matrix. We de�ne the pro-
cess of computing the solution vector x1 that satis�es
T1x1 = b1 followed by the computation of the update
vector x2 using x2 = b2 � T2x, as a dense trapezoidal
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Figure 1: (a). Data Dependency in Dense Trape-
zoidal Forward Elimination. (b). Data Dependency
in Dense Trapezoidal Backward Substitution. (c).
Two Dimensional Parallel Dense Trapezoidal Forward
Elimination.

forward elimination. We refer to b1 as a right hand

side vector. The data dependency structure of this
process is shown in Figure 1(a). When T = [T T

1
T T
2
],

we call the process of computing the update vector

z = b1 � T T
2
x2 followed by the solution of T T

1
x1 = z

a dense trapezoidal backward substitution. The data
dependency structure of this process is shown in Fig-
ure 1(b). As can be seen from Figures 1(a) and 1(b),
the data dependency structures of two processes are
identical. Henceforth, we describe the design and anal-
ysis only for the dense trapezoidal forward elimination.
Also, we assume that the system has single right hand
side, but the discussion is easily extensible to multiple
right hand sides.

Examine the data dependency structure of Fig-
ure 1(a). It can be observed that after the solution is
computed for the diagonal element, the computations
of updates due to the elements in that column can
proceed independently. Similarly the computations of
the updates due to the elements in a given row can
proceed independently before all of them are applied
at the diagonal element and then the solution can be
computed for that row. Thus, the available concur-
rency is identical in both the dimensions. The com-
putation in each of the dimensions can be pipelined
to propagate updates horizontally and the computed
solutions vertically.

For the parallel formulation, consider the two di-
mensional block and cyclic approaches of mapping
processors to the elements. The two dimensional block
mapping will not give a scalable formulation as the
processors owning the blocks towards the lower right



hand corner of the matrix will be idle for more time as
the size of the matrix increases. But, the two dimen-
sional cyclic mapping solves this problem by localizing
the pipeline to a �xed portion of the matrix indepen-
dent of the size of the matrix. This is a very desirable
property for achieving scalability. The unit grain of
computation for each processor in a cyclic mapping
is too small to get good performance out of most of
today's multiprocessor parallel computers. Hence the
cyclic mapping can be extended to a block-cyclic map-
ping to increase the grain of computation.

We now describe the parallel algorithm for dense
trapezoidal forward elimination. Consider a block ver-
sion of the equations. Let T be as shown in Fig-
ure 1(c). We distribute T in the block cyclic fash-
ion using a two dimensional grid of processors. The
blocks of b1 reside on the processors owning the diag-
onal blocks of T . Each processor traverses the blocks
assigned to it in a predetermined order. The Figure
shows the time step in which each block is processed
for the column major order. The Figure also shows
the shaded region, where the vertical and horizontal
pipelines are operated to propagate computed solu-
tions and accumulated updates. The height and the
width of this region are de�ned by the processor grid
dimensions. The processing applied to a block is deter-
mined by its location in the matrix. For the triangular
blocks on the diagonal (except for those in the �rst col-
umn), the processor receives the accumulated updates
in that block-row, from its left neighbor and applies
them to the right hand side vector. Then it computes
the solution vector and sends it to its neighbor below.
The processor accumulates the update contributions
due to those blocks in a block-row which are not in
the shaded region. For the rectangular blocks in the
shaded region, the processor receives the solution vec-
tor from the top neighbor. It also receives the update
vector from the left neighbor except when the block
lies on the boundary of the shaded region. Then it
adds the update contribution due to the block being
processed and sends the accumulated update vector
to its right neighbor. In the end, the solution vector
is distributed among the diagonal processors and the
update vector is distributed among the last column
processors.

3 Parallel Algorithm for Sparse Trian-

gular Solver
Solving a triangular system Tx = y e�ciently in

parallel is challenging when T is sparse. In this sec-
tion, we propose a parallel multifrontal algorithm for
solving such systems.

We �rst give the description of the serial multi-
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Figure 2: (a) An Example Sparse Matrix. Lower Tri-
angular part shows the �ll-ins ("o") that occur during
the factorization process. (b) Supernodal Tree for this
matrix.

frontal algorithm for forward elimination which closely
follows the algorithm described in [6]. The algorithm
is guided by the structure of elimination tree of T . We
refer to a collection of consecutive nodes in an elimi-
nation tree each with only one child, as a supernode.
The nodes in a supernode are collapsed to form the su-
pernodal tree. An example matrix and its associated
supernodal tree as shown in Figure 2. The columns
of T corresponding to the the individual nodes in a
supernode, form the supernodal matrix. It can be eas-
ily veri�ed that the supernodal matrix is dense and
trapezoidal. Given two vectors and their correspond-
ing sets of indices, an extend-add operation is de�ned
as extending each of the vectors to the union of two
index sets by �lling in zeros if needed, followed by
adding them up index-wise.

The serial multifrontal algorithm for forward elim-
ination does a postorder traversal of the supernodal
tree associated with the given triangular matrix. At
each supernode, the update vectors resulting from the
dense supernodal forward elimination of its children
nodes are collected. They are extend-added together
and the resulting vector is subtracted from the right
hand side vector corresponding to the row indices of
the supernodal matrix. Then the process of dense
trapezoidal forward elimination as de�ned in Section 2
is applied.

The parallel multifrontal algorithm was developed
keeping in mind that our sparse triangular solver is a
part of a parallel direct solver described in [2]. Our
triangular solver uses the same distribution of the fac-
tor matrix, T , as used by the highly scalable algo-
rithm employed in the numerical factorization phase
[1]. Thus, there is no cost incurred in redistributing
the data. Distribution of T is described in the next
paragraph.

We assume that the supernodal tree is binary in



the top log p levels 1, where p is the number of pro-
cessors used to solve the problem. The portions of
this binary supernodal tree are assigned to processors
using a subtree-to-subcube strategy illustrated in Fig-
ure 3, where eight processors are used to solve the
example matrix of Figure 2. The processor assigned
to a given element of a supernodal matrix is deter-
mined by the row and column indices of the element
and a bitmask determined by the depth of the supern-
ode in the supernodal tree [1]. This method achieves
a two dimensional block cyclic distribution of the su-
pernodal matrix among the logical grid of processors
in the subcube as shown in Figure 3.

In the parallel multifrontal algorithm for forward
elimination, each processor traverses the part of the
supernodal tree assigned to it in a bottom up fashion.
The subtree at the lowest level is solved using the serial
multifrontal algorithm. After that at each supernode,
a parallel extend-add operation is done followed by
the parallel dense trapezoidal forward elimination. In
the parallel extend-add operation, the processors own-
ing the �rst block-column of the distributed supern-
odal matrix at the parent supernode collect the update
vectors resulting from the trapezoidal forward elimina-
tions of its children supernodes. The bitmask based
data distribution ensures that this can be achieved
with at most two steps of point-to-point communica-
tions among pairs of processors. Then each processor
performs a serial extend-add operation on the update
vectors it receives, the result of which is used as an ini-
tial update vector in the dense algorithm described in
Section 2. The process continues until the topmost su-
pernode is reached. The entire process is illustrated in
Figure 3, where the processors communicating in the
parallel extend-add operation at each level are shown.

In the parallel multifrontal backward substitution,
each processor traverses its part of the supernodal tree
in a top down fashion. At each supernode in the top
log p levels, a parallel dense trapezoidal backward sub-
stitution algorithm is applied. The solution vector
computed at the parent supernode propagates to the
child supernodes. This is done with at most one step
of point-to-point communication among pairs of pro-
cessors from the two subcubes of the children. Each
processor adjusts the indices of the received solution
vector to correspond to the row indices of its child
supernode.

1The separator tree obtained from the recursive nested dis-
section based ordering algorithms yields such a binary tree.

4 Parallel Runtime and Scalability

Analysis

We �rst derive an expression for the runtime of the
parallel dense trapezoidal forward elimination algo-
rithm. We present a conservative analysis assuming
a naive implementation of the algorithm. We consider
the case where the processors compute the blocks in
a column major order. Same results hold true for the
row major order of computation.

De�ne tc as the unit time for computation. Let tw
be the unit time for communication, assuming a model
where communication time is proportional to the size
of the data, which holds true for most of today's paral-
lel processors when a moderate size of the data is com-
municated. Consider a block trapezoidal matrix, T , of
dimensions m�n as shown in Figure 1(c). The block-
size is b. Let the problem be solved using a square grid
of q processors (h = v =

p
q). We assume that both m

and n are divisible by
p
q. For the purpose of analy-

sis, we also assume that all the processors synchronize
after each processor �nishes processing one column as-
signed to it. The actual implementation does not use
an explicit synchronization. The matrix T now con-
sists of n=b

p
q vertical strips of width

p
q. We number

these strips from left to right starting from 1. The
parallel runtime for ith vertical strip consists of two
components. The pipelined component (in the shaded
region of the strip), takes �(

p
q)�(btw + b2tc) time.

The other component is the time needed for each pro-
cessor to compute update vectors for the (m=b

p
q� i)

blocks, each of which takes �(b2tc) time. In the end,
we need to add the time required for the last vertical
strip, where (m� n)=(b

p
q) horizontal pipelines oper-

ate to propagate the updates to the processors in the
last block-column. After summing up all the terms
for all the vertical strips and simplifying, the paral-
lel runtime, Tp, can be expressed asymptotically as,
Tp = 1=p(mn� n2=2)tc +�(m+ n)tw +�(n)tc.

The overhead due to communication and pipelining
can be obtained as To = qTp � Ts, where Ts =Wtc is
the serial runtime. W is size of the problem expressed
in terms of number of computational steps needed to
solve the problem on a uniprocessor machine. For
the trapezoidal forward elimination problem, W is
(mn � n2=2). Thus, To = �((m + n)q)tw + �(nq)tc.
E�ciency of the parallel system is expressed as E =
Ts=(Ts + To). The scalability is expressed in terms of
an isoe�ciency function, which is de�ned as the rate
at which W has to increase when the number of pro-
cessors are increased in order to maintain a constant
e�ciency. The system is more scalable, when this rate
is closer to linear. If we substitute m = n in the above
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expressions, we get the expressions for the triangular
solver. The overhead To becomes �(nq) and Ts be-
comes O(n2). These expressions can be used to arrive
at the isoe�ciency function of O(q2). This shows that
the two dimensional block cyclic algorithm proposed
for the dense trapezoidal solution is scalable.

Analyzing a general sparse triangular solver is a
di�cult problem. We present the analysis for two
wide classes of sparse systems arising out of two-
dimensional and three-dimensional constant node-
degree graphs. We refer to these problems as 2-D
and 3-D problems, respectively. Let the problem of
dimension N be solved using p processors. De�ne l as
a level in the supernodal tree with l = 0 for the top-
most level. Thus, q, the number of processors assigned
to level l, is p=2l. With a nested-dissection based
ordering scheme, the number of nodes, n, at each
level is �

p
N=2l for the 2-D problems and �(N=2l)2=3

for the 3-D problems, where � is a small constant
[3]. The row dimension of a supernodal matrix, m,
can be assumed to be a constant times n, for a bal-
anced supernodal tree. The overall computation is
proportional to the number of nonzero elements in
T , which is O(N logN) and O(N4=3) for the 2-D
and 3-D problems, respectively. Assuming that the
computation is uniformly distributed among all the

processors and summing up the overheads at all the
levels, the asymptotic parallel runtime expression for
the 2-D problems is Tp = O((N logN)=p) + O(

p
N).

For the 3-D problems, the asymptotic expression is
Tp = O(N4=3=p) + O(N2=3). An analysis similar to
that of dense case, shows that the the isoe�ciency
function for the 2-D problems is O(p2= log p) and for
the 3-D problems, it is O(p2). Refer to [5] for the
detailed derivation of the expressions above.

The parallel formulation is thus, more scalable than
the corresponding dense formulation for the class of
2-D problems and it is as scalable as the dense formu-
lation for the class of 3-D problems. In the 3-D prob-
lems, the asymptotic complexity of sparse formulation
is the same as that of the dense solver operating on the
topmost supernode of dimension N2=3 � N2=3. This
shows that our sparse formulation is optimally scal-
able for the class of 3-D problems. The comparison
of the isoe�ciency expressions to those of the solver
described in [3] shows that our two dimensional par-
allel formulation is as scalable as the one dimensional
formulation.

5 Performance Results and Discussion

We have implemented our sparse triangular solver
as part of a direct solver. We use MPI for communi-



cation to make it portable to a wide variety of parallel
computers. The BLAS are used to achieve high com-
putational performance, especially on the platforms
having vendor-tuned BLAS libraries. We tested the
performance on an IBM SP2 using IBM's ESSL for
the sparse matrices taken from various domains of ap-
plications. The nature of the matrices is shown in the
Table, where N is the dimension of T and jT j is the
number of nonzero elements in T . Figure 4 shows the
speedup in terms of time needed for combined forward
substitution and backward elimination phases for the
number of right hand sides (nrhs) of 1 and 16 re-
spectively. Figure 5 shows the performance of just the
backward substitution phase in terms of the MFLOPS.

The performance was observed to vary with the
blocksize, b and nrhs, as expected. For a given b,
as nrhs increases, we start getting the better perfor-
mance because of the level-3 BLAS. For given nrhs, as
b increases, the grain of computation increases, since
the ratio of computation to communication per block
is proportional to b. The combined e�ect of bet-
ter BLAS performance, reduced number of message
startup costs and better bandwidth obtained from the
communication subsystem, increases the overall per-
formance. But, after a threshold on b, the distribution
gets closer to the block distribution and processors
start idling. This threshold depends on the character-
istics of the problem and the parallel machine. The
detailed results exhibiting these trends can be found
in [5]. For most of the matrices we tested, we found
that a blocksize of 64 gives better performance, on an
IBM SP2 machine.

As can be seen from Figure 4, the parallel sparse
triangular solver based on our two dimensional formu-
lation of the algorithm, achieves good speedup charac-
teristics for a variety of sparse systems. The speedup
and performance numbers cited in Section 1 were ob-
served for the 144pf3D matrix. For the hsct2 matrix,
the entire triangular solver (both phases) delivered a
speedup of 20.9 on 128 processors and of 17.5 on 64
processors for nrhs = 1. The performance curves
in Figure 5(b) show that the backward substitution
phase achieves a performance of 4.575 GFLOPS for
on 128 processors and 3.656 GFLOPS on 64 proces-
sors for the 144pf3D matrix for nrhs = 16. To the
best of our knowledge, these are the best speedup and
performance numbers reported till now for sparse tri-
angular solvers.
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Matrix Application Domain N jT j
bcsstk15 Structural Engineering 3948 474921
bcsstk30 Structural Engineering 28924 4293227
copter2 3D Finite Element Methods 55476 10218255
hsct2 High Speed Commercial Transport 88404 18744255
144pf3D 3D Finite Element Methods 144649 48898387
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Figure 4: Timing Results on the Parallel Sparse Triangular Solver (Forward Elimination and Backward Substi-
tution) (a) nrhs = 1. (b) nrhs = 16.
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Figure 5: Performance Results for Parallel Backward Substitution (a) nrhs = 1. (b) nrhs = 16.


