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Abstract

In this paper, we describe scalable parallel algorithms for sparse matrix factorization, analyze their
performance and scalability, and present experimental results for up to 1024 processors on a Cray T3D
parallel computer. Through our analysis and experimental results, we demonstrate that our algorithms
substantially improve the state of the art in parallel direct solution of sparse linear systems—both in terms
of scalability and overall performance. It is a well known fact that dense matrix factorization scales well
and can be implemented efficiently on parallel computers. In this paper, we present the first algorithms
to factor a wide class of sparse matrices (including those arising from two- and three-dimensional finite
element problems) that are asymptotically as scalable as dense matrix factorization algorithms on a variety
of parallel architectures. Our algorithms incur less communication overhead and are more scalable than any
previously known parallel formulation of sparse matrix factorization. Although, in this paper, we discuss
Cholesky factorization of symmetric positive definite matrices, the algorithms can be adapted for solving
sparse linear least squares problems and for Gaussian elimination of diagonally dominant matrices that are
almost symmetric in structure. An implementation of one of our sparse Cholesky factorization algorithms
delivers up to 20 GFlops on a Cray T3D for medium-size structural engineering and linear programming
problems. To the best of our knowledge, this is the highest performance ever obtained for sparse Cholesky
factorization on any supercomputer.
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1 Introduction

Solving large sparse systems of linear equations is at the core of many problems in engineering and scientific
computing. Such systems are typically solved by two different types of methods—iterativemethods and direct
methods. The nature of the problem at hand determines which method is more suitable. A direct method for
solving a sparse linear system of the form Ax = b involves explicit factorization of the sparse coefficient matrix
A into the product of lower and upper triangular matrices L and U . This is a highly time and memory consuming
step; nevertheless, direct methods are important because of their generality and robustness. For linear systems
arising in certain applications, such as linear programming and structural engineering applications, they are
the only feasible solution methods. In many other applications too, direct methods are often preferred because
the effort involved in determining and computing a good preconditioner for an iterative solution may outweigh
the cost of direct factorization. Furthermore, direct methods provide and effective means for solving multiple
systems with the same coefficient matrix and different right-hand side vectors because the factorizations needs
to be performed only once.

A wide class of sparse linear systems have a symmetric positive definite (SPD) coefficient matrix that is
factored using Cholesky factorization. Although Cholesky factorization used extensively in practice, their use
for solving large sparse systems has been mostly confined to big vector supercomputers due to its high time
and memory requirements. As a result, parallelization of sparse Cholesky factorization has been the subject of
intensive research [27, 59, 12, 15, 14, 18, 58, 41, 42, 3, 53, 54, 61, 9, 29, 27, 28, 55, 2, 1, 45, 62, 16, 59, 44, 34, 5,
43, 4, 63]. We have developed highly scalable formulations of sparse Cholesky factorization that substantially
improve the state of the art in parallel direct solution of sparse linear systems—both in terms of scalability
and overall performance. It is well known that dense matrix factorization can be implemented efficiently
on distributed-memory parallel computers [8, 47, 10, 35]. We show that the parallel Cholesky factorization
algorithms described here are as scalable as the best parallel formulation of dense matrix factorization on both
mesh and hypercube architectures for a wide class of sparse matrices, including those arising in two- and
three-dimensional finite element problems. These algorithms incur less communication overhead than any
known parallel formulation of sparse matrix factorization, and hence, can utilize a higher number of processors
effectively. The algorithms presented here can deliver speedups in proportion to an increasing number of
processors while requiring almost constant memory per processor.

It is difficult to derive analytical expressions for the number of arithmetic operations in factorization and for
the size (in terms of number of nonzero entries) of the factor for general sparse matrices. This is because the
computation and fill-in during the factorization of a sparse matrix is a function of the the number and position
of nonzeros in the original matrix. In the context of the important class of sparse matrices that are adjacency
matrices of graphs whose n-node subgraphs have O(

√
n)-node separators (this class includes sparse matrices

arising out of all two-dimensional finite difference and finite element problems), the contribution of this work
can be summarized by Figure 11. A simple fan-out algorithm [12] with column-wise partitioning of an N × N
matrix of this type on p processors results in an O(Np log N) total communication volume [15] (box A). The
communication volume of the column-based schemes represented in box A has been improved using smarter
ways of mapping the matrix columns onto processors, such as, the subtree-to-subcube mapping [14] (box B).
A number of column-based parallel factorization algorithms [41, 42, 3, 53, 54, 61, 12, 9, 29, 27, 59, 44, 5]

1In [48], Pan and Reif describe a parallel sparse matrix factorization algorithm for a PRAM type architecture. This algorithm is not
cost-optimal (i.e., the processor-time product exceeds the serial complexity of sparse matrix factorization) and is not included in the
classification given in Figure 1.
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Figure 1: An overview of the performance and scalability of parallel algorithms for factorization of sparse
matrices resulting from two-dimensional N-node grid graphs. Box D represents our algorithm, which is a
significant improvement over other known classes of algorithms for this problem.
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have a lower bound of O(Np) on the total communication volume [15]. Since the overall computation is
only O(N 1.5) [13], the ratio of communication to computation of column-based schemes is quite high. As
a result, these column-cased schemes scale very poorly as the number of processors is increased [59, 57].
In [2], Ashcraft proposes a fan-both family of parallel Cholesky factorization algorithms that have a total
communication volume of2(N

√
p log N). Although the communication volume is less than the other column-

based partitioning schemes, the isoefficiency function of Ashcraft’s algorithm is still2(p3) due to concurrency
constraints because the algorithm cannot effectively utilize more than O(

√
N) processors for matrices arising

from two-dimensional constant node-degree graphs. Recently, a number of schemes with two-dimensional
partitioning of the matrix have been proposed [18, 57, 56, 18, 58, 1, 45, 62, 16, 34, 43, 4, 63]. The least total
communication volume in most of these schemes is O(N

√
p log p) (box C)2.

Most researchers so far have analyzed parallel sparse matrix factorization in terms of the total communication
volume. It is noteworthy that, on any parallel architecture, the total communication volume is only a lower bound
on the overall communication overhead. It is the total communication overhead that actually determines the
overall efficiency and speedup, and is defined as the difference between the parallel processor-time product and
the serial run time [24, 35]. The communication overhead can be asymptotically higher than the communication
volume. For example, a one-to-all broadcast algorithm based on a binary tree communication pattern has a
total communication volume of m(p − 1) for broadcasting m words of data among p processors. However,
the broadcast takes log p steps of O(m) time each; hence, the total communication overhead is O(mp log p)
(on a hypercube). In the context of matrix factorization, the experimental study by Ashcraft et al. [3] serves
to demonstrate the importance of studying the total communication overhead rather than volume. In [3], the
fan-in algorithm, which has a lower communication volume than the distributed multifrontal algorithm, has a
higher overhead (and hence, a lower efficiency) than the multifrontal algorithm for the same distribution of the
matrix among the processors.

The performance and scalability analysis of our algorithm is supported by experimental results on up to
1024 processors of nCUBE2 [25] and Cray T3D parallel computers. We have been able to achieve speedups of
up to 364 on 1024 processors and 230 on 512 processors over a highly efficient sequential implementation for
moderately sized problems from the Harwell-Boeing collection [6]. In [30], we have applied this algorithm to
obtain a highly scalable parallel formulation of interior point algorithms and have observed significant speedups
in solving linear programming problems. On the Cray T3D, we have been able to achieve up to 20 GFlops on
medium-size structural engineering and linear programming problems. To the best of our knowledge, this is
the first parallel implementation of sparse Cholesky factorization that has delivered speedups of this magnitude
and has been able to benefit from several hundred processors.

In summary, researchers have improved the simple parallel algorithm with O(Np log p) communication
volume (box A) along two directions—one by improving the mapping of matrix columns onto processors (box
B) and the other by splitting the matrix along both rows and columns (box C). In this paper, we describe a
parallel implementation of sparse matrix factorization that combines the benefits of improvements along both
these lines. The total communication overhead of our algorithm is only O(N

√
p) for factoring an N × N

matrix on p processors if it corresponds to a graph that satisfies the separator criterion. Our algorithms
reduce the communication overhead by a factor of O(log p) over the best algorithm implemented to date.
Furthermore, as we show in Section 5, this reduction in communication overhead by a factor of O(log p)
results in an improvement in the scalability of the algorithm by a factor of O((log p)3); i.e., the rate at which

2[4] and [63] could be possible exceptions, but neither a detailed communication analysis, nor any experimental results are available.
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the problem size must increase with the number of processors to maintain a constant efficiency is lower by
a factor of O((log p)3). This can make the difference between the feasibility and non-feasibility of parallel
sparse factorization on highly parallel (p ≥ 256) computers.

The remainder of the paper is organized as follows. Section 2 describes the serial multifrontal algorithm
for sparse matrix factorization. Section 3 describes our parallel algorithm based on multifrontal elimination.
In Section 4, we derive expressions for the communication overhead of the parallel algorithm. In Section 5, we
use the isoefficiency analysis [35, 37, 17] to determine the scalability of our algorithm and compare it with the
scalability of other parallel algorithms for sparse matrix factorization. In Section 6 we present a variation of
the algorithm described in Section 3 that reduces the overhead due to load imbalance. Section 7 contains the
preliminary experimental results on a Cray T3D parallel computer. Section 8 contains concluding remarks.

2 The Multifrontal Algorithm for Sparse Matrix Factorization

The multifrontal algorithm for sparse matrix factorization was proposed independently, and in somewhat
different forms, by Speelpening [60] and Duff and Reid [7], and later elucidated in a tutorial by Liu [40]. In
this section, we briefly describe a condensed version of multifrontal sparse Cholesky factorization.

Given a sparse matrix and the associated elimination tree, the multifrontal algorithm can be recursively
formulated as shown in Figure 2. Consider the Cholesky factorization of an N × N sparse symmetric positive
definite matrix A into L LT , where L is a lower triangular matrix. The algorithm performs a postorder traversal
of the elimination tree associated with A. There is a frontal matrix Fk and an update matrix U k associated
with any node k. The row and column indices of Fk correspond to the indices of row and column k of L in
increasing order.

In the beginning, Fk is initialized to an (s + 1) × (s + 1) matrix, where s + 1 is the number of nonzeros
in the lower triangular part of column k of A. The first row and column of this initial Fk is simply the upper
triangular part of row k and the lower triangular part of column k of A. The remainder of Fk is initialized to all
zeros. Line 2 of Figure 2 illustrates the initial Fk .

After the algorithm has traversed all the subtrees rooted at a node k, it ends up with a (t + 1) × (t + 1)
frontal matrix Fk , where t is the number of nonzeros in the strictly lower triangular part of column k in L . The
row and column indices of the final assembled Fk correspond to t + 1 (possibly) noncontiguous indices of row
and column k of L in increasing order. If k is a leaf in the elimination tree of A, then the final Fk is the same
as the initial Fk . Otherwise, the final Fk for eliminating node k is obtained by merging the initial Fk with the
update matrices obtained from all the subtrees rooted at k via an extend-add operation. The extend-add is an
associative and commutative operator on two update matrices such the index set of the result is the union of
the index sets of the original update matrices. Each entry in the original update matrices is mapped onto some
location in the accumulated matrix. If entries from both matrices overlap on a location, they are added. Empty
entries are assigned a value of zero. Figure 3 illustrates the extend-add operation.

After Fk has been assembled through the steps of lines 3–7 of Figure 2, a single step of the standard dense
Cholesky factorization is performed with node k as the pivot (lines 8–12). At the end of the elimination step,
the column with index k is removed from Fk and forms the column k of L . The remaining t × t matrix is called
the update matrix U k and is passed on to the parent of k in the elimination tree.

The multifrontal algorithm is further illustrated in a step-by-step fashion in Figure 5 for factoring the matrix
of Figure 4(a).
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/*
A is the sparse N × N symmetric positive definite matrix to be factored. L is the
lower triangular matrix such that A = L LT after factorization. A = (ai, j ) and
L = (li, j ), where 0 ≤ i, j < N . Initially, li, j = 0 for all i, j .
*/
1. begin function Factor(k)

2. Fk :=


ak,k ak,q1 ak,q2 · · · ak,qs

aq1,k 0 0 · · · 0
aq2,k 0 0 · · · 0
...

...
...

. . .
...

aqs,k 0 0 · · · 0

;

3. for all i such that Parent(i) = k in the elimination tree of A, do
4. begin
5. Factor(i);
6. Fk := Extend add(Fk , U i );
7. end
/*
At this stage, Fk is a (t + 1)× (t + 1) matrix, where t is the number of nonzeros
in the sub-diagonal part of column k of L . U k is a t × t matrix. Assume that
an index i of Fk or U k corresponds to the index qi of A and L .
*/
8. for i := 0 to t do
9. lqi ,k := Fk(i, 0)/

√
Fk(0, 0);

10. for j := 1 to t do
11. for i := j to t do
12. U k(i, j ) := Fk(i, j ) − lqi ,k × lqj ,k;
13. end function Factor.

Figure 2: An elimination-tree guided recursive formulation of the serial multifrontal algorithm for Cholesky
factorization of a sparse symmetric positive definite matrix A into L LT , where L is a lower-triangular matrix.
If r is the root of the postordered elimination tree of A, then a call to Factor(r) factors the matrix A.
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Figure 4: A symmetric sparse matrix and the associated elimination tree with subtree-to-subcube mapping onto
8 processors. The nonzeros in the original matrix are denoted by the symbol “×” and fill-ins are denoted by
the symbol “◦”.

3 A Parallel Multifrontal Algorithm

In this section we describe the parallel multifrontal algorithm. We assume a hypercube interconnection
network; however, the algorithm also can be adapted for a mesh topology (Section 3.2) without any increase
in the asymptotic communication overhead. On other architectures as well, such as those of the CM-5, Cray
T3D, and IBM SP-2, the asymptotic expression for the communication overhead remains the same. In this
paper, we use the term relaxed supernode for a group of consecutive nodes in the elimination tree with one
child. Henceforth, any reference to the height, depth, or levels of the tree will be with respect to the relaxed
supernodal tree. For the sake of simplicity, we assume that the relaxed supernodal elimination tree is a binary
tree up to the top log p relaxed supernodal levels. Any elimination tree can be converted to a binary relaxed
supernodal tree suitable for parallel multifrontal elimination by a simple preprocessing step described in detail
in [25].

In order to factorize the sparse matrix in parallel, portions of the elimination tree are assigned to processors
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using the standard subtree-to-subcube assignment strategy. This assignment is illustrated in Figure 4(b) for
eight processors. With subtree-to-subcube assignment, all p processors in the system cooperate to factorize
the frontal matrix associated with the topmost relaxed supernode of the elimination tree. The two subtrees
of the root are assigned to subcubes of p/2 processors each. Each subtree is further partitioned recursively
using the same strategy. Thus, the p subtrees at a depth of log p relaxed supernodal levels are each assigned
to individual processors. Each processor can work on this part of the tree completely independently without
any communication overhead. A call to the function Factor given in Figure 2 with the root of a subtree as
the argument generates the update matrix associated with that subtree. This update matrix contains all the
information that needs to be communicated from the subtree in question to other columns of the matrix.

After the independent factorization phase, pairs of processors (P2 j and P2 j+1 for 0 ≤ j < p/2) perform a
parallel extend-add on their update matrices, say C and D, respectively. At the end of this parallel extend-add
operation, P2 j and P2 j+1 roughly equally share C + D. Here, and in the remainder of this paper, the sign “+”
in the context of matrices denotes an extend-add operation. More precisely, all even columns of C + D go to
P2 j and all odd columns of C + D go to P2 j+1. At the next level, subcubes of two processors each perform a
parallel extend-add. Each subcube initially has one update matrix. The matrix resulting from the extend-add
on these two update matrices is now merged and split among four processors. To effect this split, all even
rows are moved to the subcube with the lower processor labels, and all odd rows are moved to the subcube
with the higher processor labels. During this process, each processor needs to communicate only once with
its counterpart in the other subcube. After this (second) parallel extend-add each of the processors has a block
of the update matrix roughly one-fourth the size of the whole update matrix. Note that, both the rows and the
columns of the update matrix are distributed among the processors in a cyclic fashion. Similarly, in subsequent
parallel extend-add operations, the update matrices are alternatingly split along the columns and rows.

Assume that the levels of the binary relaxed supernodal elimination tree are labeled starting with 0 at the
top as shown in Figure 4(b). In general, at level l of the relaxed supernodal elimination tree, 2log p−l processors
work on a single frontal or update matrix. These processors form a logical 2b(log p−l)/2c × 2d(log p−l)/2e mesh. All
update and frontal matrices at this level are distributed on this mesh of processors. The cyclic distribution of
rows and columns of these matrices among the processors helps maintain load-balance. The distribution also
ensures that a parallel extend-add operation can be performed with each processor exchanging roughly half of
its data only with its counterpart processor in the other subcube. This distribution is fairly straightforward to
maintain. For example, during the first two parallel extend-add operations, columns and rows of the update
matrices are distributed depending on whether their least significant bit (LSB) is 0 or 1. Indices with LSB
= 0 go to the lower subcube and those with LSB = 1 go to the higher subcube. Similarly, in the next two
parallel extend-add operations, columns and rows of the update matrices are exchanged among the processors
depending on the second LSB of their indices.

Figure 6 illustrates all the parallel extend-add operations that take place during parallel multifrontal factor-
ization of the matrix shown in Figure 4. The portion of an update matrix that is sent out by its original owner
processor is shown in grey. Hence, if processors Pi and Pj with respective update matrices C and D perform a
parallel extend-add, then the final result at Pi will be the add-extension of the white portion of C and the grey
portion of D. Similarly, the final result at Pj will be the add-extension of the grey portion of C and the white
portion of D. Figure 7 further illustrates the this processes by showing four consecutive extend-add operations
on hypothetical update matrices to distribute the result among 16 processors.

Between two successive parallel extend-add operations, several steps of dense Cholesky elimination may
be performed. The number of such successive elimination steps is equal to the number of nodes in the relaxed
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Figure 6: Extend-add operations on the update matrices during parallel multifrontal factorization of the matrix
shown in Figure 4(a) on eight processors. Pi|M denotes the part of the matrix M that resides on processor
number i. M may be an update matrix or the result of performing an extend-add on two update matrices. The
shaded portions of a matrix are sent out by a processor to its communication partner in that step.
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(d)  Update matrices before fourth parallel extend-add
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Figure 7: Four successive parallel extend-add operations (denoted by “+”) on hypothetical update matrices
for multifrontal factorization on 16 processors, numbered from 0 to 15. The number inside a box denotes the
number of the processor that owns the matrix element represented by the box.
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Figure 8: The two communication operations involved in a single elimination step (index of pivot = 0 here) of
Cholesky factorization on a 12× 12 frontal matrix distributed over 16 processors.

supernode being processed. The communication that takes place in this phase is the standard communication
in pipelined grid-based dense Cholesky factorization [47, 35]. If the average size of the frontal matrices is t × t
during the processing of a relaxed supernode with m nodes on a q-processor subcube, then O(m) messages
of size O(t/

√
q) are passed through the grid in a pipelined fashion. Figure 8 shows the communication for

one step of dense Cholesky factorization of a hypothetical frontal matrix for q = 16. It is shown in [36] that
although this communication does not take place between the nearest neighbors on a subcube, the paths of all
communications on any subcube are conflict free with e-cube routing [46, 35] and cut-through or worm-hole
flow control. This is a direct consequence of the fact that a circular shift is conflict free on a hypercube with
e-cube routing. Thus, a communication pipeline can be maintained among the processors of a subcube during
the dense Cholesky factorization of frontal matrices.

3.1 Block-cyclic mapping of matrices onto processors

In the parallel multifrontal algorithm described in this section, the rows and columns of frontal and update
matrices are distributed among the processors of a subcube in a cyclic manner. For example, the distribution of
a matrix with indices from 0 to 11 on a 16-processor subcube is shown in Figure 7(e). The 16 processors form a
logical mesh. The arrangement of the processors in the logical mesh is shown in Figure 9(a). In the distribution
of Figure 7(e), consecutive rows and columns of the matrix are mapped onto neighboring processors of the
logical mesh. If there are more rows and columns in the matrix than the number of processors in a row or
column of the processor mesh, then the rows and columns of the matrix are wrapped around on the mesh.

Although the mapping shown in Figure 7(e) results in a very good load balance among the processors, it
has a disadvantage. Notice that while performing the steps of Cholesky factorization on the matrix shown in
Figure 7(e), the computation corresponding to consecutive pivots starts on different processors. For example,
pivot 0 on processor 0, pivot 1 on processor 3, pivot 2 on processor 12, pivot 3 on processor 15, and so on.
If the message startup time is high, this may lead to significant delays between the stages of the pipeline.

12



0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

(a)  A logical mesh of 16 processors (b)  Block-cyclic mapping with 2    2 blocksX

0

0 2 3 4 5 7 8 10 111 6

0

1

2

3

4

5

6

7

8

9

10

11

9 Matrix indices

Processor numbers

0 0
2 2

22
3

33
8
8 8

8 9
9 9

9 12
12 12

10
10

10
10

11 11
1111

14
14 14

14 15
15 15

0 0
00

0
0 0

2 2
22

2 2
22

3
3 33 3

33

1 1
11

4 4
44

5 5
55

6 6
66

7 7
77

Figure 9: Block-cyclic mapping of a 12× 12 matrix on a logical processor mesh of 16 processors.

Furthermore, on cache-based processors, the use of BLAS-3 for eliminating multiple columns simultaneously
yields much higher performance than the use of BLAS-2 for eliminating one column at a time. Figure 9(b)
shows a variation of the cyclic mapping, called block-cyclic mapping [35], that can alleviate these problems at
the cost of some added load imbalance.

Recall that in the mapping of Figure 7(e), the least significant dlog p/2e bits of a row or column index
of the matrix determine the processor to which that row or column belongs. Now if we disregard the least
significant bit, and determine the distribution of rows and columns by the dlog p/2e bits starting with the second
least significant bit, then the mapping of Figure 9(b) will result. In general, we can disregard the first k least
significant bits, and arrive at a block-cyclic mapping with a block size of 2k × 2k . The optimal value of k
depends on the ratio of computation time and the communication latency of the parallel computer in use and
may vary from one computer to another for the same problem. In addition, increasing the block size too much
may cause too much load imbalance during the dense Cholesky steps and may offset the advantage of using
BLAS-3.

3.2 Subtree-to-submesh mapping for the 2-D mesh architecture

The mapping of rows and columns described so far works fine for the hypercube network. At each level, the
update and frontal matrices are distributed on a logical mesh of processors (e.g., Figure 9(a)) such that each
row and column of this mesh is a subcube of the hypercube. However, if the underlying architecture is a mesh,
then a row or a column of the logical mesh may not correspond to a row or a column of the physical mesh.
This will lead to contention for communication channels during the pipelined dense Cholesky steps of Figure 8
on a physical mesh. To avoid this contention for communication channels, we define a subtree-to-submesh
mapping in this subsection. The subtree-to-subcube mapping described in Figure 4(b) ensures that any subtree
of the relaxed supernodal elimination tree is mapped onto a subcube of the physical hypercube. This helps
in localizing communication at each stage of factorization among groups of as few processors as possible.
Similarly, the subtree-to-submesh mapping ensures that a subtree is mapped entirely within a submesh of the
physical mesh.

Note that in subtree-to-subcube mapping for a 2d-processor hypercube, all level-d subtrees of the relaxed
supernodal elimination tree are numbered in increasing order from left to right and a subtree labeled i is mapped
onto processor i. For example, the subtree labeling of Figure 10(a) results in the update and frontal matrices
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(b)  Subtree-submesh assignment of level-4 subtrees and the corresponding logical mesh for level-0 supernode
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(a)  Subtree-subcube assignment of level-4 subtrees and the corresponding logical mesh for level-0 supernode

Figure 10: Labeling of subtrees in subtree-to-subcube (a) and subtree-to-submesh (b) mappings.

for the supernodes in the topmost (level-0) relaxed supernode to be distributed among 16 processors as shown
in Figure9(a). The subtree-to-submesh mapping starts with a different initial labeling of the level-d subtrees.
Figure10(b) shows this labeling for 16 processors, which will result in the update and frontal matrices of the
topmost relaxed supernode being partitioned on a 4× 4 array of processors labeled in a row-major fashion.

We now define a function map such that replacing every reference to processor i in subtree-to-subcube
mapping by a reference to processor map(i,m, n) results in a subtree-to-submesh mapping on an m × n mesh.
We assume that both m and n are powers of two. We also assume that either m = n or m = n/2 (this
configuration maximizes the cross-section width and minimizes the diameter of an mn-processor mesh). The
function map(i,m, n) is given by the following recurrence:

map(i,m, n) = i, if i < 2.
map(i,m, n) = map(i, m

2 , n), if m = n, i < mn
2 .

map(i,m, n) = mn
2 + map(i − mn

2 ,
m
2 , n), if m = n, i ≥ mn

2 .

map(i,m, n) = mbmap(i,m, n
2 )/mc + map(i,m, n

2 ), if m = n
2, i < mn

2 .

map(i,m, n) = m(bmap(i − mn
2 ,m, n

2 )/mc + 1)+ map(i − mn
2 ,m, n

2), if m = n
2, i ≥ mn

2 .

The above recurrence always maps a level-l relaxed supernode of a binary relaxed supernodal elimination
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tree onto an (mn/2l)-processor submesh of the mn-processor two-dimensional mesh.

4 Analysis of Communication Overhead

In this section, we derive expressions for the communication overhead of our algorithm for sparse matrices
resulting from a finite difference operator on regular two- and three-dimensional grids. Within constant factors,
these expressions can be generalized to all sparse matrices that are adjacency matrices of graphs whose n-
node subgraphs have O(

√
n)-node and O(n2/3)-node separators, respectively. This is because the properties

of separators can be generalized from grids to all such graphs within the same order of magnitude bounds
[39, 38, 13]. We derive these expressions for both hypercube and mesh architectures, and also extend the
results to sparse matrices resulting from three-dimensional graphs whose n-node subgraphs have O(n2/3)-node
separators.

The parallel multifrontal algorithm described in Section 3 incurs two types of communication overhead: one
during parallel extend-add operations (Figure 7) and the other during the steps of dense Cholesky factorization
while processing the supernodes (Figure 8). Crucial to estimating the communication overhead is estimating
the sizes of frontal and update matrices at any level of the supernodal elimination tree.

Consider a
√

N×√N regular finite difference grid. We analyze the communication overhead for factorizing
the N × N sparse matrix associated with this grid on p processors. In order to simplify the analysis, we assume
a somewhat different form of nested-dissection than the one used in the actual implementation. This method
of analyzing the communication complexity of sparse Cholesky factorization has been used in [15] in the
context of a column-based subtree-to-subcube scheme. Within very small constant factors, the analysis holds
for the standard nested dissection [11] of grid graphs. We consider a cross-shaped separator (described in
[15]) consisting of 2

√
N − 1 nodes that partitions the N-node square grid into four square subgrids of size

(
√

N − 1)/2 × (√N − 1)/2. We call this the level-0 separator that partitions the original grid (or the level-0
grid) into four level-1 grids. The nodes in the separator are numbered after the nodes in each subgrid have
been numbered. To number the nodes in the subgrids, they are further partitioned in the same way, and the
process is applied recursively until all nodes of the original grid are numbered. The supernodal elimination tree
corresponding to this ordering is such that each non-leaf supernode has four children. The topmost supernode
has 2
√

N − 1 (≈ 2
√

N ) nodes, and the size of the supernodes at each subsequent level of the tree is half of the
supernode size at the previous level. Clearly, the number of supernodes increases by a factor of four at each
level, starting with one at the top (level 0).

The nested dissection scheme described above has the following properties: (1) the size of level-l subgrids
is approximately

√
N/2l ×√N/2l , (2) the number of nodes in a level-l separator is approximately 2

√
N/2l ,

and hence, the length of a supernode at level l of the supernodal elimination tree is approximately 2
√

N/2l .
It has been proved in [15] that the number of nonzeros that an i × i subgrid can contribute to the nodes of its
bordering separators is bounded by ki2, where k = 341/12. Hence, a level-l subgrid can contribute at most
kN/4l nonzeros to its bordering nodes. These nonzeros are in the form of the triangular update matrix that is
passed along from the root of the subtree corresponding to the subgrid to its parent in the elimination tree. The
dimensions of a matrix with a dense triangular part containing kN/4l entries is roughly

√
2kN/2l ×√2kN/2l .

Thus, the size of an update matrix passed on to level l − 1 of the supernodal elimination tree from level l is
roughly upper-bounded by

√
2kN/2l ×√2kN/2l for l ≥ 1.

The size of a level-l supernode is 2
√

N/2l ; hence, a total of 2
√

N/2l elimination steps take place while the
computation proceeds from the bottom of a level-l supernode to its top. A single elimination step on a frontal
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matrix of size (t + 1)× (t+ 1) produces an update matrix of size t × t . Since the size of an update matrix at the
top of a level-l supernode is at most

√
2kN/2l ×√2kN/2l , the size of the frontal matrix at the bottom of the

same supernode is upper-bounded by (
√

2k+2)
√

N/2l×(√2k+2)
√

N/2l . Hence, the average size of a frontal
matrix at level l of the supernodal elimination tree is upper-bounded by (

√
2k+ 1)

√
N/2l × (√2k+ 1)

√
N/2l .

Let
√

2k− 1 = α. Then α
√

N/2l ×α√N/2l is an upper bound on the average size of a frontal matrix at level l.
We are now ready to derive expressions for the communication overhead due to the parallel extend-add

operations and the elimination steps of dense Cholesky on the frontal matrices.

4.1 Overhead in parallel extend-add

Before the computation corresponding to level l − 1 of the supernodal elimination tree starts, a parallel extend-
add operation is performed on lower triangular portions of the update matrices of size

√
2kN/2l ×√2kN/2l ,

each of which is distributed on a
√

p/2l × √p/2l logical mesh of processors. Thus, each processor holds
roughly (kN/4l ) ÷ (p/4l ) = kN/p elements of an update matrix. Assuming that each processor exchanges
roughly half of its data with the corresponding processor of another subcube, ts + twkN/(2p) time is spent in
communication, where ts is the message startup time and tw is the per-word transfer time. Note that this time is
independent of l. Since there are (log p)/2 levels at which parallel extend-add operations take place, the total
communication time for these operations is O(N/p) log p on a hypercube. The total communication overhead
due to the parallel extend-add operations is O(N log p) on a hypercube.

4.2 Overhead in factorization steps

We have shown earlier that the average size of a frontal matrix at level l of the supernodal elimination tree is
bounded by α

√
N/2l × α√N/2l , where α =

√
341/6 − 1. This matrix is distributed on a

√
p/2l × √p/2l

logical mesh of processors. As shown in Figure 8, there are two communication operations involved with each
elimination step of dense Cholesky. The average size of a message is (α

√
N/2l)÷(√p/2l) = α

√
N/p. It can be

shown [47, 35] that in a pipelined implementation on a
√

q ×√q mesh of processors, the communication time
for s elimination steps with an average message size of m is O(ms). The reason is that although each message
must go to O(

√
q) processors, messages corresponding to O(

√
q) elimination steps are active simultaneously in

different parts of the mesh. Hence, each message effectively contributes only O(m) to the total communication
time. In our case, at level l of the supernodal elimination tree, the number of steps of dense Cholesky is
2
√

N/2l . Thus the total communication time at level l is α
√

N/p × 2
√

N/2l = O((N/
√

p)(1/2l)). The
total communication time for the elimination steps at top (log p)/2 levels of the supernodal elimination tree is
O((N/

√
p)6log4 p−1

l=0 (1/2l)). This has an upper bound of O(N/
√

p). Hence, the total communication overhead
due to the elimination steps is O(p × N/

√
p) = O(N

√
p).

The parallel multifrontal algorithm incurs an additional overhead of emptying the pipeline log p times (once
before each parallel extend-add) and then refilling it. It can be easily shown that this overhead is O(N) each
time the pipeline restarts. Hence, the overall overhead due to restarting the pipeline log p time is O(N log p),
which is smaller in magnitude than the O(N

√
p) communication overhead of the dense Cholesky elimination

steps.
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4.3 Communication overhead for 3-D problems

The analysis of the communication complexity for the sparse matrices arising out of three-dimensional finite
element problems can be performed along the lines of the analysis for the case of two-dimensional grids.
Consider an N 1/3 × N 1/3 × N 1/3 grid that is recursively partitioned into eight subgrids by a separator that
consists of three orthogonal N 1/3 × N 1/3 planes. The number of nonzeros that an i × i × i subgrid contributes
to the nodes of its bordering separators is O(i4) [15]. At level l, due to l bisections, i is no more than
N 1/3/2l . As a result, an update or a frontal matrix at level l of the supernodal elimination tree will contain
O(N 4/3/24l) entries distributed among p/8l processors. Thus, the communication time for the parallel extend-
add operation at level l is O(N 4/3/(2l p)). The total communication time for all parallel extend-add operations
is O((N 4/3/p)6log8 p−1

l=0 (1/2l)), which is O(N 4/3/p). For the dense Cholesky elimination steps at any level, the
message size is O(N 2/3/

√
p). Since there are 3N 2/3/4l nodes in a level-l separator, the total communication

time for the elimination steps is O((N 4/3/
√

p)6log8 p−1
l=0 (1/4l)), which is O(N 4/3/

√
p).

Hence, the total communication overhead due to parallel extend-add operations is O(N 4/3) and that due
to the dense Cholesky elimination steps is O(N 4/3√p). As in the 2-D case, these asymptotic expressions
can be generalized to sparse matrices resulting from three-dimensional graphs whose n-node subgraphs have
O(n2/3)-node separators. This class includes the linear systems arising out of three-dimensional finite element
problems.

4.4 Communication overhead on a mesh

The communication overhead due the dense Cholesky elimination steps is the same on both the mesh and the
hypercube architectures because the frontal matrices are distributed on a logical mesh of processors. However,
the parallel extend operations use the entire cross-section bandwidth of a hypercube, and the communication
overhead due to them will increase on a mesh due to channel contention.

Recall from Section 4.1 that the communication time for parallel extend-add at any level is O(N/p) on
a hypercube. The extend-add is performed among groups of p/4l processors at level l of the supernodal
elimination tree. Therefore, at level l, the communication time for parallel extend-add on a

√
p/2l ×√p/2l

submesh is O(N/(2l√p)). The total communication time for all the levels is O((N/
√

p)6log4 p−1
l=0 (1/2l)).

This has an upper bound of O(N/
√

p), and the upper bound on the corresponding communication overhead
term is O(N

√
p). This is the same as the total communication overhead for the elimination steps. Hence,

for two-dimensional problems, the overall asymptotic communication overhead is the same for both mesh and
hypercube architectures.

The communication time on a hypercube for the parallel extend-add operation at level l is O(N 4/3/

(2l p)) for three-dimensional problems (Section 4.3). The corresponding communication time on a mesh
would be O(N 4/3/(4l√p). The total communication time for all the parallel extend-add operations is
O((N 4/3/

√
p)6log8 p−1

l=0 (1/4l)), which is O(N 4/3/
√

p). As in the case of two-dimensional problems, this is
asymptotically equal to the communication time for the elimination steps.

5 Scalability Analysis

The scalability of a parallel algorithm on a parallel architecture refers to the capacity of the algorithm-
architecture combination to effectively utilize an increasing number of processors. In this section we use the
isoefficiency metric [35, 37, 17] to characterize the scalability of our algorithm. The isoefficiency function
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of a combination of a parallel algorithm and a parallel architecture relates the problem size to the number
of processors necessary to maintain a fixed efficiency or to deliver speedups increasing proportionally with
increasing number of processors.

5.1 The isoefficiency metric of scalability analysis

Let W be the size of a problem in terms of the total number of basic operations required to solve a problem
on a serial computer. For example, W = O(N 2) for multiplying a dense N × N matrix with an N-vector.
The serial run time of a problem of size W is given by TS = tcW , where tc is the time to perform a single
basic computation step. If TP is the parallel run time of the same problem on p processors, then we define
an overhead function To as pTP − TS. Both TP and To are functions of W and p, and we often write them
as TP(W, p) and To(W, p), respectively. The efficiency of a parallel system with p processors is given by
E = TS/(TS + To(W, p)). If a parallel system is used to solve a problem instance of a fixed size W , then the
efficiency decreases as p increases. This is because the total overhead To(W, p) increases with p. For many
parallel systems, for a fixed p, if the problem size W is increased, then the efficiency increases because for a
given p, To(W, p) grows slower than O(W ). For these parallel systems, the efficiency can be maintained at a
desired value (between 0 and 1) for increasing p, provided W is also increased. We call such systems scalable
parallel systems. Note that for a given parallel algorithm, for different parallel architectures, W may have to
increase at different rates with respect to p in order to maintain a fixed efficiency. As the number of processors
are increased, the smaller the growth rate of problem size required to maintain a fixed efficiency, the more
scalable the parallel system is.

Given that E = 1/(1+ To(W, p)/(tc W )), in order to maintain a fixed efficiency, W should be proportional
to To(W, p). In other words, the following relation must be satisfied in order to maintain a fixed efficiency:

W = e

tc
To(W, p), (1)

where e = E/(1 − E) is a constant depending on the efficiency to be maintained. Equation (1) is the central
relation that is used to determine the isoefficiency function of a parallel algorithm-architecture combination.
This is accomplished by abstracting W as a function of p through algebraic manipulations on Equation (1).
If the problem size needs to grow as fast as fE (p) to maintain an efficiency E , then fE (p) is defined as the
isoefficiency function of the parallel algorithm-architecture combination for efficiency E .

5.2 Scalability of the parallel multifrontal algorithm

It is well known [13] that the total work involved in factoring the adjacency matrix of an N-node graph with
an O(

√
N )-node separator using nested dissection ordering of nodes is O(N 1.5). We have shown in Section 4

that the overall communication overhead of our scheme is O(N
√

p). From Equation 1, a fixed efficiency can
be maintained if and only if N 1.5 ∝ N

√
p, or
√

N ∝ √p, or N 1.5 = W ∝ p1.5. In other words, the problem
size must be increased as O(p1.5) to maintain a constant efficiency as p is increased. In comparison, a lower
bound on the isoefficiency function of Rothberg and Gupta’s scheme [57, 18] with a communication overhead
of at least O(N

√
p log p) is O(p1.5(log p)3). The isoefficiency function of any column-based scheme is at

least O(p3) because the total communication overhead has a lower bound of O(Np). Thus, the scalability of
our algorithm is superior to that of the other schemes.

It is easy to show that the scalability of our algorithm is O(p1.5) even for the sparse matrices arising out of
three-dimensional finite element grids. The problem size in the case of an N×N sparse matrix resulting from a
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three-dimensional grid is O(N 2) [15]. We have shown in Section 4.3 that the overall communication overhead
in this case is O(N 4/3√p). To maintain a fixed efficiency, N 2 ∝ N 4/3√p, or N 2/3 ∝ √p, or N 2 = W ∝ p1/5.

A lower bound on the isoefficiency function for dense matrix factorization is2(p1.5) [35, 36] if the number
of rank-1 updates performed by the serial algorithm is proportional to the rank of the matrix. The factorization
of a sparse matrix derived from an N-node graph with an S(N)-node separator involves a dense S(N)× S(N)
matrix factorization. S(N) is 2(

√
N ) and 2(N 2/3) for two- and three-dimensional constant node-degree

graphs, respectively. Thus, the complexity of the dense portion of factorization for these two types of matrices
is2(N 1.5) and 2(N 2), respectively, which is of the same order as the computation required to factor the entire
sparse matrix [13, 15]. Therefore, the isoefficiency function of sparse factorization of such matrices is bounded
from below by the isoefficiency function of dense matrix factorization, which is 2(p1.5). As we have shown
earlier in this section, our algorithm achieves this lower bound for both two- and three-dimensional cases.

5.3 Scalability with respect to memory requirement

We have shown that the problem size must increase in proportion to p1.5 for our algorithm to achieve a fixed
efficiency. As the overall problem size increases, so does the overall memory requirement. For an N-node
two-dimensional constant node-degree graphs, the size of the lower triangular factor L is 2(N log N) [13].
For a fixed efficiency, W = N 1.5 ∝ p1.5, which implies N ∝ p and N log N ∝ p log p. As a result, if we
increase the number of processors while solving bigger problems to maintain a fixed efficiency, the overall
memory requirement increases at the rate of 2(p log p) and the memory requirement per processor increase
logarithmically with respect to the number of processors.

In the three-dimensional case, size of the lower triangular factor L is 2(N 4/3) [13]. For a fixed efficiency,
W = N 2 ∝ p1.5, which implies N ∝ p3/4 and N 4/3 ∝ p. Hence, in this case the overall memory requirement
increases linearly with the number of processors and the per-processor memory requirement is constant for
maintaining a fixed efficiency. It can be easily shown that for the three-dimensional case, the isoefficiency
function should not be of a higher order than 2(p1.5) if speedups proportional to the number of processors are
desired without increasing the memory requirement per processor. To the best of our knowledge, the algorithm
described in Section 3 is the only parallel algorithm for sparse Cholesky factorization with an isoefficiency
function of2(p1.5).

6 An Improvement for Better Load Balance

We implemented the parallel multifrontal algorithm described in Section 3 on the nCUBE 2 parallel computer.
The detailed experimental performance and scalability results of this implementation have been presented
in [25]. Table 1 shows the results of factoring some matrices from the Harwell-Boeing collection of sparse
matrices [6]. These results show that our algorithm can deliver good speedups on hundreds of processors for
practical problems. Spectral nested dissection [50, 51, 52] was used to order these matrices.

The algorithm presented in Section 3 relies on the ordering algorithm to yield a balanced elimination tree.
Imbalances in the elimination tree result in a loss in the efficiency of the parallel implementation. For example,
the two subtrees of the top level relaxed supernode might require different amount of computation. Therefore,
one half of the processors working on the smaller subtree will be idle after processing their subtree until the other
half finishes the bigger subtree. Since subtree-to-subcube mapping is recursively applied in each subcube, the
load imbalance at each level accumulates. In fact, in the results shown in Table 1, nearly half of the efficiency
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Matrix:     BCSSTK31;   N = 35588;  NNZ = 6458.34 thousand;  FLOP = 2583.6 million
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Table 1: Experimental results on an nCUBE-2 for factoring some sparse symmetric positive definite matrices
resulting from 3-D problems in structural engineering. All times are in seconds. The suffix “*” indicates run
time estimated by timing the computation on two processors.

loss is due to load imbalance and the rest due to communication. We have experimentally shown in [25] that
the overhead due do load imbalance tends to saturate as the number of processors increase and, therefore, does
not affect the asymptotic scalability of the algorithm. However, load imbalance puts an upper bound on the
achievable efficiency and results in a significant performance penalty.

In this section, we describe an algorithm that minimizes this drawback of a subtree-to-subcube mapping.
This mapping assigns groups of subtrees to processor subcubes; hence, we call it subforest-to-subcube mapping.

6.1 Subforest-to-subcube mapping

In subforest-to-subcube mapping, we assign many subtrees of the elimination tree to each processor subcube.
These trees are chosen in such a way that the total amount of work assigned to each subcube is as equal as
possible. The best way to describe this partitioning scheme is via an example. Consider the elimination tree
shown in Figure 11. Assume that it takes a total of 100 time units to factor the entire sparse matrix. Each node
in the tree is marked with the number of time units required to factor the subtree rooted at this particular node
(including the time required to factor the node itself). For instance, the subtree rooted at node B requires 65
units of time, while the subtree rooted at node F requires only 18.

As shown in Figure 11(b), the subtree-to-subcube mapping scheme will assign the computation associated
with the top supernode A to all the processors, the subtree rooted at B to half the processors, and the
subtree rooted at C to the remaining half of the processors. Since, these subtrees require different amount of
computation, this particular partition will lead to load imbalances. Since 7 time units of work (corresponding
to the node A) is distributed among all the processors, this factorization takes at least 7/p units of time. Now
each subcube of p/2 processors independently works on each subtree. The time required for these subcubes to
finish is lower-bounded by the time to perform the computation for the larger subtree (the one rooted at node
B). Even if we assume that all subtrees of B are perfectly balanced, computation of the subtree rooted at B by
p/2 processors will take at least 65/(p/2) time units. Thus, an upper bound on the efficiency of this mapping
is only 100/(p(7/p + 65/(p/2))) ≈ .73. Now consider the following mapping scheme: The computation
associated with supernodes A and B is assigned to all the processors. The subtrees rooted at E and C are
assigned to half of the processors, while the subtree rooted at D is assigned to the remaining processors. In
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(a) Top 2 levels of a partial elimination tree
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Distributed to all the processors Distributed to one half of processors Distributed to the other half of processors

Figure 11: The top two levels of an elimination tree is shown in (a). The subtree-to-subcube mapping is shown
in (b), the subforest-to-subcube mapping is shown in (c).

this mapping scheme, the first half of the processors are assigned 43 time units of work, while the other half is
assigned 45 time units. The upper bound on the is 100/(p(12/p + 45/(p/2)))) ≈ 0.98, which is a significant
improvement over the earlier bound of .73.

The above example illustrates the basic ideas behind the new mapping scheme. The general mapping
algorithm is outlined in Figure 12.

The tree partitioning algorithm uses a set C that contains the unassigned nodes of the elimination tree. The
algorithm inserts the root of the elimination tree into C , and then it calls the routine Elpart that recursively
partitions the elimination tree. Elpart partitions C into two parts, L and R and checks if this partitioning is
acceptable. If yes, then it assigns L to half of the processors, and R to the remaining half, and recursively calls
Elpart to perform the partitioning in each of these halves. If the partitioning is not acceptable, then one node of
C (i.e., node = select(C)) is assigned to all the p processors, node is deleted from C , and the children of node
are inserted into the C . The algorithm then continues by repeating the whole process. The above description
provides a high level overview of the subforest-to-subcube partitioning scheme. However, a number of details
need to be clarified. In particular, we need to specify how the select, halfsplit, and acceptable procedures
work.

Selection of a node from C There are two different ways3 of defining the procedure select(C).

• One way is to select a node whose subtree requires the largest number of operations to be factored.

• The second way is to select a node that requires the largest number of operations to factor it.

The first method favors nodes whose subtrees require significant amount of computation. Thus, by selecting
such a node and inserting its children in C we may get a good partitioning of C into two halves. However,
this approach can assign nodes with relatively small computation to all the processors, causing poor efficiency
in the factorization of these nodes. The second method guarantees that the selected node has more work, and
thus its factorization can achieve higher efficiency when it is factored by all p processors. However, if the
subtrees attached to this node are not large, then this may not lead to a good partitioning of C in later steps. In
particular, if the root of the subtree having most of the remaining work, requires little computation (e.g., single

3Note, that the information required by these methods (the amount of computation to eliminate a node, or the total amount of
computation associated with a subtree), can be easily obtained during the symbolic factorization phase.
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1. Partition(T , p) /* Partition the tree T , among p processors. */
2. C = {}
3. Add root(T ) into C
4. Elpart(C , T , p)
5. End Partition

6. Elpart(C , T , p)
7. if (p == 1) return
8. done = false
9. while (done == false)
10. halfsplit(C , L , R)
11. if (acceptable(L , R))
12. Elpart(L , T , p/2)
13. Elpart(R, T , p/2)
14. done = true
15. else
16. node = select(C)
17. delete(C , node)
18. node => p /* Assign node to all p processors */
19. Insert into C the children of node in T
20. end while
21. End Elpart

Figure 12: The subforest-to-subcube partitioning algorithm.

node supernode), then the root of this subtree will not be selected for expansion until very late, leading to too
many nodes being assigned at all the processors.

Another possibility is to combine the above two schemes and apply each one in alternate steps. This
combined approach eliminates most of the limitations of the above schemes while retaining their advantages.
This is the scheme we used in the experiments described in Section 7.

So far we considered only the floating point operations when we were referring to the number of operations
required to factor a subtree. On systems where the cost of each memory access relative to a floating point
operation is relatively high, a more accurate cost model will also take the cost of each extend-add operation
into account. The total number of memory accesses required for extend-add can be easily computed from the
symbolic factorization of the matrix.

Splitting The Set C In each step, the partitioning algorithm checks to see if it can split the set C into two
roughly equal halves. The ability of the halfsplit procedure to find a partition of the nodes (and consequently
create two subforests) is crucial to the overall ability of this partitioning algorithm to balance the computation.
Fortunately, this is a typical bin-packing problem, and even though, bin-packing is NP complete, a number of
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good approximate algorithms exist [49]. The use of bin-packing makes it possible to balance the computation
and to significantly reduce the load imbalance.

Acceptable Partitions A partition is acceptable if the percentage difference in the amount of work in the
two parts is less than a small constant ε. If ε is chosen to be high (e.g., ε ≥ 0.2), then the subforest-to-subcube
mapping becomes similar to the subtree-to-subcube mapping scheme. If ε is chosen to be too small, then most
of the nodes of the elimination tree will be processed by all the processors, and the communication overhead
during the dense Cholesky factorization will become too high. For example, consider the task of factoring
two n × n matrices A and B on p-processor square mesh or a hypercube using a standard algorithm that uses
two-dimensional partitioning and pipelining. If each of the matrices is factored by all the processors, then the
total communication time for factoring the two matrices is n2/

√
p [35]. If A and B are factored concurrently

by p/2 processors each, then the communication time is n2/(2
√

p/2)which is smaller. Thus the value of ε has
to be chosen to strike a good balance between these two conflicting goals of minimizing load imbalance and
the communication overhead in individual factorization steps. For the experiments reported in Section 7, we
used ε = 0.05.

Impact on Communication Overhead Note that the communication overhead of subforest-to-subcube
mapping is somewhat higher than that of subtree-to-subcube mapping. This is is mainly because subforest-to-
subcube mapping results in smaller frontal matrices being mapped onto larger groups of processor. However,
we have proved in [23] that the asymptotic bounds on the communication overhead of subforest-to-subcube
mapping are the same as those of subtree-to-subcube mapping. Therefore, the algorithm described in this
section is equally scalable as the one discussed in 3. The actual impact on the performance depends on the ratio
of communication and computation speeds of the parallel computer being used. Faster communication relative
to computation will permit a smaller value of ε to be used, resulting in a finer load balance.

7 Experimental Results

We implemented our new parallel sparse multifrontal algorithm on a 1024-processor Cray T3D parallel com-
puter. Each processor on the T3D is a 150 Mhz Dec Alpha chip, with peak performance of 150 MFlops for
64-bit operations (double precision). However, the peak performance of most level three BLAS routines is
around 50 MFlops. The processors are interconnected via a three dimensional torus network that has a peak
unidirectional bandwidth of 150 MBytes per second, and a very small latency. Even though the memory
on T3D is physically distributed, it can be addressed globally. That is, processors can directly access (read
and/or write) other processor’s memory. T3D provides a library interface to this capability called SHMEM. We
used SHMEM to develop a lightweight message passing system. Using this system we were able to achieve
unidirectional data transfer rates up to 70 MBytes per second. This is significantly higher than the 35 MBytes
channel bandwidth usually obtained when using T3D’s PVM.

For the computation performed during the dense Cholesky factorization, we used single-processor imple-
mentation of BLAS primitives. These routines are part of the standard scientific library on T3D, and they have
been fine tuned for the Alpha chip. The new algorithm was tested on matrices from a variety of sources. Four
matrices (BCSSTK30, BCSSTK31, BCSSTK32, and BCSSTK33) come from the Boeing-Harwell matrix set.
MAROS-R7 is from a linear programming problem taken from NETLIB. COPTER2 comes from a model of a
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helicopter rotor. CUBE35 is a 35× 35× 35 regular three-dimensional grid. NUG15 is from a linear program-
ming problem derived from a quadratic assignment problem obtained from AT&T. In all of our experiments,
we used spectral nested dissection [50] to order the matrices. The factorization algorithms described in this
paper will work well with any type of nested dissection. In [21, 22, 20, 32, 31], we show that nested dissection
orderings with proper selection of separators can yield better quality orderings that traditional heuristics, such
as, the multiple minimum degree heuristic.

The performance obtained by this algorithm in some of these matrices is shown in Table 2. The operation
count shows only the number of operations required to factor the nodes of the elimination tree.

Figure 13 graphically represents the data shown in Table 2. Figure 13(a) shows the overall performance
obtained versus the number of processors, and is similar in nature to a speedup curve. Figure 13(b) shows the
per processor performance versus the number of processors, and reflects reduction in efficiency as p increases.
Since all these problems run out of memory on one processor, the standard speedup and efficiency could not be
computed experimentally.

Number of Processors
Problem n |A| |L| OPC 16 32 64 128 256 512 1024
PILOT87 2030 122550 504060 240M 0.32 0.44 0.73 1.05
MAROS-R7 3136 330472 1345241 720M 0.48 0.83 1.41 2.14 3.02 4.07 4.48
FLAP 51537 479620 4192304 940M 0.48 0.75 1.27 1.85 2.87 3.83 4.25
BCSSTK33 8738 291583 2295377 1000M 0.49 0.76 1.30 1.94 2.90 4.36 6.02
BCSSTK30 28924 1007284 5796797 2400M 1.48 2.42 3.59 5.56 7.54
BCSSTK31 35588 572914 6415883 3100M 0.80 1.45 2.48 3.97 6.26 7.93
BCSSTK32 44609 985046 8582414 4200M 1.51 2.63 4.16 6.91 8.90
COPTER2 55476 352238 12681357 9200M 0.64 1.10 1.94 3.31 5.76 9.55 14.78
CUBE35 42875 124950 11427033 10300M 0.67 1.27 2.26 3.92 6.46 10.33 15.70
NUG15 6330 186075 10771554 29670M 4.32 7.54 12.53 19.92

Table 2: The performance of sparse direct factorization on Cray T3D. For each problem the table contains the
number of equations n of the matrix A, the original number of nonzeros in A, the nonzeros in the Cholesky
factor L , the number of operations required to factor the nodes, and the performance in gigaflops for different
number of processors.

The highest performance of 19.9 GFlops was obtained for NUG15, which is a fairly dense problem.
Among the sparse problems, a performance of 15.7 GFlops was obtained for CUBE35, which is a regular
three-dimensional problem. Nearly as high performance (14.78 GFlops) was also obtained for COPTER2
which is irregular. Since both problems have similar operation count, this shows that our algorithm performs
equally well in factoring matrices arising in irregular problems. Focusing our attention on the other problems
shown in Table 2, we see that even on smaller problems, our algorithm performs quite well. For example,
BCSSTK33 was able to achieve 2.90 GFlops on 256 processors and BCSSTK30 achieved 3.59 GFlops.

To further illustrate how various components of our algorithm work, we have included a breakdown of
the various phases for BCSSTK31 and CUBE35 in Table 3. This table shows the average time spent by all
the processors in the local computation and in the distributed computation. Furthermore, we break down the
time taken by distributed computation into two major phases, (a) dense Cholesky factorization, (b) extend-add
overhead. The latter includes the cost of performing the extend-add operation, splitting the stacks, transferring
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Figure 13: Plot of the performance of the parallel sparse multifrontal algorithm for various problems on Cray
T3D. The first plot shows total Gigaflops obtained and the second one shows Megaflops per processor.
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the stacks, and idling due to load imbalances in the subforest-to-subcube partitioning. Note that the figures in
this table are averages over all processors, and they should be used only as an approximate indication of the
time required for each phase.

A number of interesting observations can be made from this table. First, as the number of processors
increases, the time spent processing the local tree in each processor decreases substantially because the
subforest assigned to each processor becomes smaller. This trend is more pronounced for three-dimensional
problems, because they tend to have fairly shallow trees. The cost of the distributed extend-add phase decreases
almost linearly as the number of processors increases. This is consistent with the analysis presented in 4, since
the overhead of distributed extend-add is O((n log p)/p). Since the expression for the time spent during the
extend-add steps also includes the idling due to load imbalance, the almost linear decrease also shows that the
load imbalance is quite small.

The time spent in distributed dense Cholesky factorization decreases as the number of processors increases.
This reduction is not linear with respect to the number of processors for two reasons: (a) the ratio of communi-
cation to computation during the dense Cholesky factorization steps increases, and (b) for a fixed size problem
load imbalances due to the block cyclic mapping becomes worse as p increases.

For reasons discussed in Section 3.1, we distributed the frontal matrices in a block-cyclic fashion. To get
good performance on Cray T3D out of level three BLAS routines, we used a block size of sixteen (block sizes of
less than sixteen result in degradation of level 3 BLAS performance on Cray T3D) For small problems, such a
large block size results in a significant load imbalance within the dense factorization phase. This load imbalance
becomes worse as the number of processors increases. However, as the size of the problem increases, both
the communication overhead during dense Cholesky and the load imbalance due to the block cyclic mapping
becomes less significant. The reason is that larger problems usually have larger frontal matrices at the top
levels of the elimination tree, so even large processor grids can be effectively utilized to factor them. This
is illustrated by comparing how the various overheads decrease for BCSSTK31 and CUBE35. For example,
for BCSSTK31, the factorization on 128 processors is only 48% faster compared to 64 processors, while for
CUBE35, the factorization on 128 processors is 66% faster compared to 64 processors.

Distributed Computation
p Local Comp. Factorization Extend-Add

BCSSTK31 64 0.17 1.34 0.58
128 0.06 0.90 0.32
256 0.02 0.61 0.18

CUBE35 64 0.15 3.74 0.71
128 0.06 2.25 0.43
256 0.01 1.44 0.24

Table 3: A break-down of the various phases of the sparse multifrontal algorithm for BCSSTK31 and CUBE35.
Each number represents time in seconds.

To see the effect of the choice of ε in the overall performance of the sparse factorization algorithm we
factored BCSSTK31 on 128 processors using ε = 0.4 and ε = 0.0001. Using these values for ε we obtained a
performance of 1.18 GFlops when ε = 0.4, and 1.37 GFlops when ε = 0.0001. In either case, the performance
is worse than the 2.48 GFlops obtained for ε = 0.05. When ε = 0.4, the mapping of the elimination tree to
the processors resembles that of the subtree-to-subcube allocation. Thus, the performance degradation is due
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to the elimination tree load imbalance. When ε = 0.0001, the elimination tree mapping assigns a large number
of nodes to all the processors, leading to poor performance during the dense Cholesky factorization.

8 Concluding Remarks

In this paper, we analytically and experimentally demonstrate that scalable parallel implementations of direct
methods for solving large sparse systems are possible. We describe an implementation on Cray T3D that yields
up to 20 GFlops on medium-size problems. We use the isoefficiency metric [35, 37, 17] to characterize the
scalability of our algorithms. We show that the isoefficiency function of our algorithms is O(p1.5) on hypercube
and mesh architectures for sparse matrices arising out of both two- and three-dimensional problems. We also
show that O(p1.5) is asymptotically the best possible isoefficiency function for a parallel implementation of
any direct method for solving a system of linear equations, either sparse or dense. In [59], Schreiber concludes
that it is not yet clear whether sparse direct solvers can be made competitive at all for highly (p ≥ 256) and
massively (p ≥ 4096) parallel computers. We hope that, through this paper, we have given an affirmative
answer to at least a part of the query.

The process of obtaining a direct solution of a sparse system of linear equations of the form Ax = b consists
of the following four phases: Ordering, which determines permutation of the coefficient matrix A such that
the factorization incurs low fill-in and is numerically stable; Symbolic Factorization, which determines
the structure of the triangular matrices that would result from factorizing the coefficient matrix resulting from
the ordering step; Numerical Factorization, which is the actual factorization step that performs arithmetic
operations on the coefficient matrix A to performs arithmetic operations on the coefficient matrix A to produce
a lower triangular matrix L and an upper triangular matrix U ; and Solution of Triangular Systems, which
produces the solution vector x by performing forward and backward eliminations on the triangular matrices
resulting from numerical factorization. Numerical factorization is the most time-consuming of these four
phases. However, in order to maintain the scalability of the entire solution process and to get around single-
processor memory constraints, the other three phases need to be parallelized as well. We have developed
parallel algorithms for the other phases that are tailored to work in conjunction with the numerical factorization
algorithm. In [33], we describe an efficient parallel algorithm for determining fill-reducing orderings for parallel
factorization of sparse matrices. This algorithm, while performing the ordering in parallel, also distributes the
data among the processors in way that the remaining steps can be carried out with minimum data-movement.
At the end of the parallel ordering step, the parallel symbolic factorization algorithm described in [19] can
proceed without any redistribution. In [19, 26], we present efficient parallel algorithms for solving the upper
and lower triangular systems. The experimental results in [19, 26] show that the data mapping scheme described
in Section 3 works well for triangular solutions. We hope that the work presented in this paper, along with
[19, 26, 33] will enable the development of efficient practical parallel solvers for a broad range of scientific
computing problems.
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