Highly Scalable Parallel Algorithmsfor Sparse Matrix
Factorization*

Anshul Gupta George Karypis and Vipin Kumar
IBM T. J. Watson Research Center Department of Computer Science
PO. Box 218 University of Minnesota
Yorktown Heights, NY 10598 Minneapolis, MN 55455
anshul @watson.ibm.com {karypig'kumar} @cs.umn.edu
Abstract

In this paper, we describe scalable parald algorithms for sparse matrix factorization, anayze their
performance and scalability, and present experimenta results for up to 1024 processors on a Cray T3D
paralel computer. Through our analysis and experimenta results, we demonstrate that our algorithms
substantially improve the state of the art in paralel direct solution of sparse linear systems—both in terms
of scalability and overall performance. It isawel known fact that dense matrix factorization scales well
and can be implemented efficiently on parallel computers. In this paper, we present the first algorithms
to factor a wide class of sparse matrices (including those arising from two- and three-dimensiond finite
element problems) that are asymptotically as scalable as dense matrix factorization a gorithms on a variety
of parallel architectures. Our agorithmsincur |ess communication overhead and are more scal able than any
previously known parallel formulation of sparse matrix factorization. Although, in this paper, we discuss
Cholesky factorization of symmetric positive definite matrices, the algorithms can be adapted for solving
gparse linear least squares problems and for Gaussian elimination of diagonally dominant matrices that are
amost symmetric in structure. An implementation of one of our sparse Cholesky factorization algorithms
delivers up to 20 GFlops on a Cray T3D for medium-size structural engineering and linear programming
problems. To the best of our knowledge, thisis the highest performance ever obtained for sparse Cholesky
factorization on any supercomputer.

*This work was supported by IST/BMDO through Army Research Office contract DA/DAAH04-93-G-0080, NSF grant NSG/1RI-
9216941, and by Army High Performance Computing Research Center under the auspices of the Department of the Army, Army
Research Laboratory cooperative agreement number DAAH04-95-2-0003/contract number DA AH04-95-C-0008, the content of which
does not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred. Accessto
computing facilities were provided by Minnesota Supercomputer Institute, Cray Research Inc. and by the Pittsburgh Supercomputing
Center. Related papers are available via WWW at URL : http://www.cs.umn.edu/users/kumar/papers.html.

1 Introduction

Solving large sparse systems of linear equationsis at the core of many problemsin engineering and scientific
computing. Such systemsaretypically solved by two different types of methods—iterativemethodsand direct
methods. The nature of the problem at hand determines which method is more suitable. A direct method for
solving asparselinear system of theform Ax = b involvesexplicit factorization of the sparse coefficient matrix
Aintotheproduct of lower and upper triangular matrices L and U . Thisisahighly timeand memory consuming
step; nevertheless, direct methods are important because of their generality and robustness. For linear systems
arising in certain applications, such as linear programming and structural engineering applications, they are
the only feasible solution methods. In many other applicationstoo, direct methods are often preferred because
the effort involved in determining and computing a good preconditioner for an iterative solution may outweigh
the cost of direct factorization. Furthermore, direct methods provide and effective means for solving multiple
systems with the same coefficient matrix and different right-hand side vectors because the factorizations needs
to be performed only once.

A wide class of sparse linear systems have a symmetric positive definite (SPD) coefficient matrix that is
factored using Cholesky factorization. Although Cholesky factorization used extensively in practice, their use
for solving large sparse systems has been mostly confined to big vector supercomputers due to its high time
and memory requirements. Asaresult, parallelization of sparse Cholesky factorization has been the subject of
intensiveresearch [27, 59, 12, 15, 14, 18,58, 41, 42, 3, 53, 54, 61, 9, 29, 27, 28,55, 2, 1, 45, 62, 16, 59, 44, 34, 5,
43, 4, 63]. We have developed highly scalable formulations of sparse Cholesky factorization that substantially
improve the state of the art in parallel direct solution of sparse linear systems—both in terms of scalability
and overal performance. It is well known that dense matrix factorization can be implemented efficiently
on distributed-memory parallel computers [8, 47, 10, 35]. We show that the paralel Cholesky factorization
algorithms described here are as scalable as the best parallel formulation of dense matrix factorization on both
mesh and hypercube architectures for a wide class of sparse matrices, including those arising in two- and
three-dimensional finite element problems. These agorithms incur less communication overhead than any
known parallel formulation of sparse matrix factorization, and hence, can utilize a higher number of processors
effectively. The agorithms presented here can deliver speedups in proportion to an increasing number of
processors while requiring almost constant memory per processor.

Itisdifficult to derive analytical expressionsfor the number of arithmetic operationsin factorization and for
the size (in terms of number of nonzero entries) of the factor for general sparse matrices. Thisis because the
computation and fill-in during the factorization of a sparse matrix is a function of the the number and position
of nonzeros in the original matrix. In the context of the important class of sparse matrices that are adjacency
matrices of graphs whose n-node subgraphs have O(,/n)-node separators (this class includes sparse matrices
arising out of al two-dimensiona finite difference and finite element problems), the contribution of this work
can be summarized by Figure 1'. A simplefan-out algorithm [12] with column-wise partitioning of an N x N
matrix of thistype on p processors resultsin an O(Np log N) total communication volume [15] (box A). The
communication volume of the column-based schemes represented in box A has been improved using smarter
ways of mapping the matrix columns onto processors, such as, the subtree-to-subcube mapping [14] (box B).
A number of column-based parallel factorization algorithms [41, 42, 3, 53, 54, 61, 12, 9, 29, 27, 59, 44, 5]

1In [48], Pan and Reif describe a parallel sparse matrix factorization algorithm for a PRAM type architecture. This algorithm is not
cost-optimal (i.e., the processor-time product exceeds the serial complexity of sparse matrix factorization) and is not included in the
classification given in Figure 1.

Global Mapping ——— = Subtree-to-Subcube Mapping

Columnwise | Partitioning: 1-D Partitioning: 1-D

Partitioning Mapping: Global Mapping: Subtree-subcube

Communication overhead: | Communication overhead:
Q(Np log(p)) Q(Np)

Scalability: Q ((plog(p))3) | Scaability: Q(p3)

Partitioning: 2-D Partitioning: 2-D @

Mapping: Global Mapping: Subtree-subcube

Communication overhead: | Communication overhead:
Partitioning Q(Np°* log(p)) O(Np®®)
in Both

Scalability: Q (pt5(log(p)) 3)| Scalability: ©(pLs)
Dimensions

Column-wise 1-D partitioning of matrix.
Columns distributed via subtree-subcube mapping.

2-D partitioning of matrix among processors.

oo w2

Dense submatrices partitioned dynamically in two
dimensions according to subtree-subcube mapping.

Figure 1. An overview of the performance and scalability of parallel algorithms for factorization of sparse
matrices resulting from two-dimensional N-node grid graphs. Box D represents our algorithm, which is a
significant improvement over other known classes of agorithmsfor this problem.

have a lower bound of O(Np) on the total communication volume [15]. Since the overall computation is
only O(N'%) [13], the ratio of communication to computation of column-based schemes is quite high. As
a result, these column-cased schemes scale very poorly as the number of processors is increased [59, 57].
In [2], Ashcraft proposes a fan-both family of parallel Cholesky factorization algorithms that have a total
communicationvolumeof ®(N,/plog N). Althoughthe communicationvolumeislessthan the other column-
based partitioning schemes, theisoefficiency function of Ashcraft’s algorithmis still ® (p®) dueto concurrency
constraints because the algorithm cannot effectively utilize more than O(+/N) processors for matrices arising
from two-dimensional constant node-degree graphs. Recently, a number of schemes with two-dimensional
partitioning of the matrix have been proposed [18, 57, 56, 18, 58, 1, 45, 62, 16, 34, 43, 4, 63]. The least tota
communication volume in most of these schemesis O(N,/plog p) (box C).

M ost researcherssofar haveanalyzed parallel sparsematrix factorizationintermsof thetotal communication
volume. Itisnoteworthy that, on any parallel architecture, thetotal communication volumeisonly alower bound
on the overal communication overhead. It isthe total communication overhead that actually determines the
overal efficiency and speedup, and is defined as the difference between the parallel processor-time product and
theserial runtime[24, 35]. The communication overhead can be asymptotically higher than the communication
volume. For example, a one-to-all broadcast agorithm based on a binary tree communication pattern has a
total communication volume of m(p — 1) for broadcasting m words of data anong p processors. However,
the broadcast takes log p steps of O(m) time each; hence, the total communication overhead is O(mp log p)
(on a hypercube). In the context of matrix factorization, the experimental study by Ashcraft et a. [3] serves
to demonstrate the importance of studying the total communication overhead rather than volume. In [3], the
fan-in algorithm, which has a lower communication volume than the distributed multifrontal agorithm, has a
higher overhead (and hence, alower efficiency) than the multifrontal agorithm for the same distribution of the
matrix among the processors.

The performance and scalability analysis of our algorithm is supported by experimental results on up to
1024 processors of NCUBE2 [25] and Cray T3D parallel computers. We have been able to achieve speedups of
up to 364 on 1024 processors and 230 on 512 processors over a highly efficient sequential implementation for
moderately sized problemsfrom the Harwell-Boeing collection [6]. In [30], we have applied this agorithm to
obtain ahighly scalable parallel formulation of interior point algorithmsand have observed significant speedups
in solving linear programming problems. On the Cray T3D, we have been able to achieve up to 20 GFlopson
medium-size structural engineering and linear programming problems. To the best of our knowledge, thisis
thefirst parallel implementation of sparse Cholesky factorization that has delivered speedups of this magnitude
and has been able to benefit from several hundred processors.

In summary, researchers have improved the simple parallel agorithm with O(Np log p) communication
volume (box A) aong two directions—one by improving the mapping of matrix columns onto processors (box
B) and the other by splitting the matrix along both rows and columns (box C). In this paper, we describe a
paralle implementation of sparse matrix factorization that combines the benefits of improvements along both
these lines. The total communication overhead of our algorithm is only O(N,/p) for factoringan N x N
matrix on p processors if it corresponds to a graph that satisfies the separator criterion. Our agorithms
reduce the communication overhead by a factor of O(log p) over the best algorithm implemented to date.
Furthermore, as we show in Section 5, this reduction in communication overhead by a factor of O(log p)
results in an improvement in the scal ability of the algorithm by a factor of O((log p)?); i.e., the rate at which

2[4] and [63] could be possible exceptions, but neither a detailed communication analysis, nor any experimental results are available.

the problem size must increase with the number of processors to maintain a constant efficiency is lower by
afactor of O((log p)®). This can make the difference between the feasibility and non-feasibility of parallel
gparse factorization on highly paralel (p > 256) computers.

The remainder of the paper is organized as follows. Section 2 describes the serid multifrontal algorithm
for sparse matrix factorization. Section 3 describes our paralldl agorithm based on multifrontal elimination.
In Section 4, we derive expressionsfor the communication overhead of the parallel algorithm. In Section 5, we
use theisoefficiency analysis[35, 37, 17] to determine the scalability of our algorithm and compare it with the
scalahility of other parallel agorithms for sparse matrix factorization. In Section 6 we present a variation of
the algorithm described in Section 3 that reduces the overhead due to load imbalance. Section 7 contains the
preliminary experimental resultson a Cray T3D parallel computer. Section 8 contains concluding remarks.

2 TheMultifrontal Algorithm for Sparse Matrix Factorization

The multifrontal algorithm for sparse matrix factorization was proposed independently, and in somewhat
different forms, by Speelpening [60] and Duff and Reid [7], and later elucidated in atutoria by Liu [40]. In
this section, we briefly describe a condensed version of multifrontal sparse Cholesky factorization.

Given a sparse matrix and the associated elimination tree, the multifrontal algorithm can be recursively
formulated as shown in Figure 2. Consider the Cholesky factorization of an N x N sparse symmetric positive
definite matrix Ainto LLT, where L isalower triangular matrix. The agorithm performs a postorder traversal
of the elimination tree associated with A. There is a frontal matrix F¥ and an update matrix U* associated
with any node k. The row and column indices of F* correspond to the indices of row and columnk of L in
increasing order.

In the beginning, FX isinitidlizedto an (s + 1) x (S+ 1) matrix, where s + 1 is the number of nonzeros
in the lower triangular part of column k of A. The first row and column of thisinitial F¥ is simply the upper
triangular part of row k and the lower triangular part of columnk of A. The remainder of F¥ isinitialized to all
zeros. Line 2 of Figure 2 illustrates the initial F.

After the algorithm has traversed all the subtrees rooted at a node k, it endsup witha (t + 1) x (t + 1)
frontal matrix FX, wheret isthe number of nonzerosin the strictly lower triangular part of columnk in L. The
row and column indices of thefinal assembled F¥ correspond tot + 1 (possibly) noncontiguousindices of row
and column k of L inincreasing order. If k isaleaf inthe eimination tree of A, then thefina FX isthe same
astheinitial F¥. Otherwise, thefinal F* for eliminating node k is obtained by merging the initia F* with the
update matrices obtained from all the subtrees rooted at k via an extend-add operation. The extend-add is an
associative and commutative operator on two update matrices such the index set of the result is the union of
theindex sets of the origina update matrices. Each entry in the original update matrices is mapped onto some
location in the accumul ated matrix. If entries from both matrices overlap on alocation, they are added. Empty
entries are assigned a value of zero. Figure 3 illustrates the extend-add operation.

After F* has been assembled through the steps of lines 3—7 of Figure 2, a single step of the standard dense
Cholesky factorization is performed with node k as the pivot (lines 8-12). At the end of the elimination step,
the column with index k isremoved from F* and formsthe columnk of L. Theremainingt x t matrix iscalled
the update matrix U* and is passed on to the parent of k in the elimination tree.

Themultifrontal algorithmisfurther illustrated in a step-by-step fashion in Figure 5 for factoring the matrix
of Figure 4(a).

/*

Aisthesparse N x N symmetric positive definite matrix to be factored. L isthe
lower triangular matrix suchthat A = LLT after factorization. A = (a ;) and

L =(;;),where0 <i, j < N. Initidly,l; ; = Oforali, j.

*/

1. begin function Factor(k)
ak,k ak,q1 ak,qz ak,qS
agx O 0O --- 0

2. Fk:=]la« O 0 -~ 0 [,
agx O 0O --- 0

3. for al i suchthat Parent(i) = k in the limination tree of A, do

4. begin

5. Factor(i);

6. FX .= Extend_add(F¥, U');

7. end

/*

Atthisstage, F¥isa(t + 1) x (t + 1) matrix, wheret isthe number of nonzeros
in the sub-diagonal part of columnk of L. U isat x t matrix. Assume that
anindex i of F* or UX correspondsto theindex ¢ of Aand L.

*/

8. fori :=0totdo

9. lg .k := FX(i, 0)/+/FX(0, 0);

10. for j :=1totdo

11. fori:=jtotdo

12. UG,) = FRGL) =gk x g i

13. end function Factor.

Figure 2: An elimination-tree guided recursive formulation of the serial multifrontal agorithm for Cholesky
factorization of a sparse symmetric positive definite matrix Aiinto LLT, where L isalower-triangular matrix.
If r istheroot of the postordered elimination tree of A, then a call to Factor(r) factors the matrix A.

iy |atg

o| @ o) @ i, b|d
+) =
) bl o) 0] i, cth| e | f+j
i, c|e| f i 0| k| T e T
3
IO Il |2 iO |2 |3 |0 Il i2 |3

0 |X X X| X

1 X| X X|X

2 | X|X|X X

3 X X X X
4 XXX X
5 X|IX|X|X|X|X X
6 X|O X|X|X|X

7 XXX XX | X| X

8 | X O|X X]O| X | X

9 X X XX
10 X | X X|X

11 XXX X

12 X X X|X
13 X|X|X X
14 XIX|X[X]|X|X|X
15 X|O X| X[X|X
16 XXX XX | X|X
17 X O] X X|O|X|X
18 X|X 0|0|0 X|X|X|O]|O|O| X

0123456 7 8 9101112131415161718

@ (b)

Figure4: A symmetric sparse matrix and the associated elimination tree with subtree-to-subcube mapping onto
8 processors. The nonzeros in the original matrix are denoted by the symbol “ x” and fill-ins are denoted by

the symbol “o”.

3 A Paralld Multifrontal Algorithm

In this section we describe the parallel multifrontal algorithm. We assume a hypercube interconnection
network; however, the algorithm aso can be adapted for a mesh topology (Section 3.2) without any increase
in the asymptotic communication overhead. On other architectures as well, such as those of the CM-5, Cray
T3D, and IBM SP-2, the asymptotic expression for the communication overhead remains the same. In this
paper, we use the term relaxed supernode for a group of consecutive nodes in the elimination tree with one
child. Henceforth, any reference to the height, depth, or levels of the tree will be with respect to the relaxed
supernodal tree. For the sake of simplicity, we assume that the relaxed supernodal elimination treeis a binary
tree up to the top log p relaxed supernodal levels. Any elimination tree can be converted to a binary relaxed
supernodal tree suitablefor parallel multifrontal elimination by a simple preprocessing step described in detail
in[25].

In order to factorize the sparse matrix in parallel, portions of the elimination tree are assigned to processors

o[x] 1[x] 3 [x] 4 [x] 9 [x] 10x] 12 [X] 13[X]
2 [x 2 [x 5 (X 5 [11 [X 11 [X 14 [x 14 [X
7 X | 6 |X | 8 X | 6 | X | 16 | X | 15 [X | 17 | X | 15 | X |
8 X [] 7[x |] 18[x [] 18(x [] 17x [] 18[x [] 18[x |] 18[x |]
0278 1267 35 818 45618 9 1116 17 10 11 15 16 12 14 17 18 13 14 15 18
Fo Fy Fs Fa Fo Fio Fio Fis
(@ Initial frontal matrices
2 [x] 2 [x] 5 [X] 5 [X] 11 [X] 11 [X] 14 [X] 14[X]
7 [x]x 6 [O]x 8 [x|x 6 [X|x 16 [x]X] 15 [O] X] 17 [x] X 15/ X[X
8 [O]x]x] 7 [x]x[x] 18 | x|O|X] 18 | x|0]X] 17 [O] x| X] 16 | x| x| x] 18 | x|O]X] 181%]0]]
278 267 5 8 18 5 6 18 11 16 17 11 15 16 1417 18 14 15 18
Uo U Us U, Ug Ui Uy, U
(b) Update matrices after one step of elimination in each frontal matrix
2 [x] 11 [X]
2 [X] 6 |O]X 15 [0 X
F, = 7[x|] + U, + U = 7[x[x][x] F, = 1s[x | + Ug + Uy = 16 x[x[x]
27 8 [o] [x[x] 11 16 17 [o] [x[x]
2678 11 15 16 17
5 [x] 5 [x] 14 [X] 14 [x]
6 X 6 |x|x 15 [X 15 [x| x
Fs = 7 [x + U; + U, = 7(x Fia = 16X + Up+ Uz = 16X
8 X | 8 | X X] 17 | X | 17 [X X]
18 | X |] 18 |x|o] |o]x] 18 | X [] 18 |x|o] |o]x]
56 7 818 56 7 818 14 15 16 17 18 14 15 16 17 18
(c) Frontal matrices at the second level of the elimination tree
6 [X] ? XX 15(x] 16 [xI%]
; éﬂx\ 8 [0]x]|x] ﬁé?\x\ 17 [O] X | X]
U, 7 e Us 18|0|0|0]X] U, Py U, 18[0]o[o[x]
6 7 818 15 16 17 18
(d) Update matrices after elimination of nodes 2, 5, 11, and 14
6 [x] 15[x]
6 [x] 7 [x]X 15 [x] 16 | X| X
Fe = 7[x|] + U, + Us = s8|0[x]X] Fis = 16(x] | + Uy + U, = 17[0[x X]
6 7 18 [0]0]0]X] 15 16 18 [0]0]0]X]
6 7 818 15 16 17 18
7 [X] 7 [x] 16 [X] 16 [X]
— b v = B R - LB wB e us= nhi+ 2R = DR
Fr=8[x] [+Us = 8[x[|+130[0[x] = 1ojo]x] Fe=17[x] J+U;s=17[x] |+ 130[0[x] = 18[0[0]x]
78 78 7 818 7 818 16 17 16 17 16 17 18 16 17 18
8 [X 8 [X 17 [x 17 [x
F8:8+U7_ s [x] + 18 = 18 Fl7:17+U16: w[x] + 18 = 18
8 8 8 18 8 18 m 7 17 18 17 18
Fig = 18 Uy o+ Uy = 18 L L 18
18 18 18 18 18

(e) Factorization of the remainder of the matrix

Figure 5: Stepsin serial multifrontal Cholesky factorization of the matrix shown in Figure 4(a). The symbol
“+” denotes an extend-add operation. The nonzeros in the original matrix are denoted by the symbol “ x” and

fill-ins are denoted by the symbol “o”.

using the standard subtree-to-subcube assignment strategy. This assignment is illustrated in Figure 4(b) for
eight processors. With subtree-to-subcube assignment, all p processors in the system cooperate to factorize
the frontal matrix associated with the topmost relaxed supernode of the elimination tree. The two subtrees
of the root are assigned to subcubes of p/2 processors each. Each subtree is further partitioned recursively
using the same strategy. Thus, the p subtrees at a depth of log p relaxed supernodal levels are each assigned
to individua processors. Each processor can work on this part of the tree completely independently without
any communication overhead. A call to the function Factor given in Figure 2 with the root of a subtree as
the argument generates the update matrix associated with that subtree. This update matrix contains al the
information that needs to be communicated from the subtree in question to other columns of the matrix.

After the independent factorization phase, pairs of processors (P,; and P, for 0 < j < p/2) perform a
parallel extend-add on their update matrices, say C and D, respectively. At the end of this parallel extend-add
operation, P,; and P,;; roughly equally share C + D. Here, and in the remainder of this paper, the sign “+”
in the context of matrices denotes an extend-add operation. More precisely, al even columnsof C + D go to
P,; and all odd columnsof C + D goto P,;,;. At the next level, subcubes of two processors each perform a
paralld extend-add. Each subcubeinitially has one update matrix. The matrix resulting from the extend-add
on these two update matrices is now merged and split among four processors. To effect this split, al even
rows are moved to the subcube with the lower processor labels, and all odd rows are moved to the subcube
with the higher processor labels. During this process, each processor needs to communicate only once with
its counterpart in the other subcube. After this(second) parallel extend-add each of the processors has a block
of the update matrix roughly one-fourth the size of the whole update matrix. Note that, both the rows and the
columns of the update matrix are distributed among the processorsin acyclic fashion. Similarly, in subsequent
parallel extend-add operations, the update matrices are adternatingly split along the columns and rows.

Assume that the levels of the binary relaxed supernodal eimination tree are labeled starting with O at the
top as shown in Figure 4(b). In general, at level | of the relaxed supernodal elimination tree, 2/°9P~' processors
work on asingle frontal or update matrix. These processors form alogical 21(109P=D/2 x 2110gp-h/21 mesh, All
update and frontal matrices at thislevel are distributed on this mesh of processors. The cyclic distribution of
rows and columns of these matrices among the processors helps maintain load-balance. The distribution also
ensures that a parallel extend-add operation can be performed with each processor exchanging roughly half of
its data only with its counterpart processor in the other subcube. This distribution is fairly straightforward to
maintain. For example, during the first two parallel extend-add operations, columns and rows of the update
matrices are distributed depending on whether their least significant bit (LSB) is 0 or 1. Indices with LSB
= 0 go to the lower subcube and those with LSB = 1 go to the higher subcube. Similarly, in the next two
paralld extend-add operations, columns and rows of the update matrices are exchanged among the processors
depending on the second L SB of their indices.

Figure 6 illustrates all the parallel extend-add operations that take place during parallel multifronta factor-
ization of the matrix shown in Figure 4. The portion of an update matrix that is sent out by its original owner
processor is shown in grey. Hence, if processors P, and P; with respective update matrices C and D perform a
paralld extend-add, then the final result at P, will be the add-extension of the white portion of C and the grey
portion of D. Similarly, the final result at P; will be the add-extension of the grey portion of C and the white
portion of D. Figure 7 further illustratesthe this processes by showing four consecutive extend-add operations
on hypothetical update matrices to distribute the result among 16 processors.

Between two successive parallel extend-add operations, several steps of dense Cholesky elimination may
be performed. The humber of such successive elimination stepsis equal to the number of nodesin the relaxed

2 [X] 2 [x] 5 [X] 5 [x] 11 [X] 11 [X] 14 [X]
7 [x[x] <=— 6 [0]X 8 [x[x] =— & [x]x 16 [x[x] =—15[0]x 17 [x[x
8 [O]x[x] 7 X[x[x] 18 [x|O[x] 18 [x|O[x] 17 [0 x| x] 16 [x| x[x] 18 [x|O[x]
278 267 5 8 18 5 6 18 11 16 17 11 15 16 14 17 18
Po|Uo Py |U; P, |Us P3|U, PalUg Ps U Ps |Up,
(a) Update matrices before the first parallel extend-add operation
2 [X] - 11 [X] 14 [X]
6 [O]X 6 [X 15 [O] X 15 [X|
7 [x]x 7 8| |x 16 16 [x| X 17 | X
8 [0] [X] 8 [X| 18 [0]O[x] 17 [X| 17 [o] [x] 18 | x| x]
268 7 6 8 18 5 16 11 15 17 14 18
PolUp+ Uy PlUpg+ Uy PofUs+ U, PglUs+ U, PylUg+ Uy PslUg+ Uy Pg|Up+ U
(b) Update matrices after the first parallel extend-add operation
B o [X] _ B
6 x| 7]x 7 [x] __ 18x| 15 [X |
7 x| =— 8|0]x 7[x] =— 8][X] 16[x] = 17|x 16 | X
8 [0]x] 18 [0]0]X] 8 x| 18 17 [x| 18 [O]x] 17 [0]X]
6 8 6 8 18 7 7 16 16 18 15 17
PolU; P, |Us P;|U, P3|Us PslUn Pe|U1s Ps[Uyy
(c) Update matrices before the second parallel extend-add operation
6 [X] - -
8 [O]x 8 [X] 16 [X 16 [X
18 [0]O]X] 7 [X] 18 19| 7 [X] 18 [O]X] 17 [X] 18 [0]0]
6 818 6 7 7 16 18 16 15 17
PolUz+Us PplU;+Us PifUp+Us PylU;+Us PylUp+ Uy PglUp+Uy PslUp+ Uy,
(d) Update matrices after the second parallel extend-add operation
18 ——~ 18
18 18
Po|Ug P4|Uyy P Ps P, Ps Ps
(e) Update matrices before the third parallel extend-add operation
18
18
Po P4|Ug + Upy P Ps P, Ps Ps

(f) Update matrices after the third parallel extend-add operation

14

14 15 18

I:)7 ‘U13

15| X
17 X
18 |O|O

15 17
P7[Up+Ug5

15
16

15 17
I:)7 ‘U14

15 [X
17 [0]x]

15 17
P7 Uy + Uy,

Figure 6: Extend-add operations on the update matrices during parallel multifrontal factorization of the matrix
shown in Figure 4(a) on eight processors. P,|M denotes the part of the matrix M that resides on processor
number i. M may be an update matrix or the result of performing an extend-add on two update matrices. The

shaded portions of amatrix are sent out by a processor to its communication partner in that step.

10

oo =21 ez =@ o] = sE_ 1] = «f_
1]o0]o 311 7022 7(3]3 1]4]a 4|55 8|66 507]7
2]o]o]o0] 41]1]1 8|2]2]2] 10[3[3][3] 34]4]4] 5/5/5]5] 9/6/6]6] 617]7]7]
3lofololo] sla]1]1f1r] 9|2]2]2[2] 113]3]|3|3] 4|4]4]|4|4] 6|5][5[5]5] 1w0l6|el6]6] 7|7|7]7]7]
0123 23 6789 6 7 1011 0134 3 4 78 910 4567
A B C D E F G H
o6 == r[s] ofm == s ofE == e 2] == efE
8[8|8 EIE 4|10]10 41111 11212 5]13]13 3|14]14 7 [1515
9/8|8]|8] 9/9]9]9] 7 |10[10[10| 5]11]11]11] 3[12]12]12] 6 [13[13[13] 6 |14[14[14] 10[15[15[15]
11(8[8l8[8] 10/9|9]9]9] o9[i0/10/10120] 6[1112]12[11] 4|1212[12[12] 7[13|13[13[13] 7[14|14|14|14] 11[15[15]15]15|
6 8 911 78 910 04709 3456 0134 4567 2367 6 7 1011
| J K L M N o) P
() Update matrices before first parallel extend-add -
4 |6
ofo] 6 [2] o[4] 5 [6]7]
101 7(2]3 1 (4[5 66/7]6
2 [o0]1]o 8 2]3]2 3 |4]5]5 706][7]6]7
3 |o]1fo]1 9 2[3[2]3 4 |4|5]5]4 8 |6|7]6[7]6
4 o]1]o]1]0] 10[2]3]2]3]2] 5 14|5/5[4]5] 916|7]6]7]6][7]

5 0]1]o]1]o0]1] 11]2]3]2]3]|2]3] 6 |4|5]5]4|5]4] 10(6]|7|6|7]6]7]6]
012345 6 78 91011 013456 45678910
A+B C+D E+F G+H

0 [10] 0 [12]
6[8] 3 [10[11] 1 [12]13] 2 [14]
718]9 - 4 |10/11/10 3 |12[13[13 - 3 |14]15
8 |8]9]8 - 5 |10[11[10]11 4 |12[13[13[12 - 6 141514
REREE 6 |10[11]10[11|10 5 [12[13[13]12]13 7 [14]15[14[15
10(8|9|8|9]8] 7 |10/11]10]11]10[11] 6 |12|13]13[12[13[12] 10 [14{15[14|15]14]
11|8|9|8|9]8]9] 9 |10]11]10]11]10[12]11] 7 |12|13]13[12[13[12]13] 11 |14]15]14/1514]15]
6 78 91011 0345679 0134567 23671011
I +J K+L M+ N O+P
olo] (b) Update matrices before second parallel extend-add
1]2]3
2]0]1]0 of[4] o8] o[12]
3/2[3]2]3 1(6]7 3 [10[11 1 [14]15
4fo]1]o]1]0 3(6|7]7 4 (8|98 2 [12[13[12
5/2[3|2|3[2]3 4 |4]5[5]4 5 |10[11[10]11 3 [14[15[14]15
6/0o/1]of1]o]1]0 56|7]7]6]7 6 8]o]8]9]8 4 |12[13[12[13[12
7/2]3|2]3]|2]3]2]3 6 4|5/5]/4[5[4 7 [10[11]10]11]10[21 5 [14[15]14]15]14]15
glol1|of1]o]1]o[1]0 76|7][7]6]7]6]7 8 |8/9]8|9|8|9]8 6 |12[13[12]13]12[13]12
9/2]3|2|3[2]3]2]3]2]3 8 |4]|5[5]4]5/4]5]4 9 [10[11[10]11|10[11]10]12 7 [14[15[14]15]14|15]1415
10(of1]o]z]o]1]olz]0]1]0] 9lel7]7]6]7]6|7|6]7] 10(8]9|8|9|8l9]8[9]8] 10 |[12]13]12]13[12]13]12|13]12]
11[2[3]2]3]2]3]|2|3]2]3]2]3] 10|4|5|5[4[5]4][5][4|5]4] 11 |w0[12|10[11|10[21]10[12[10[22] 11 |14|15|14]15]14]15|14|15]|14]15]
01234567 8091011 013456780910 034567891011 012345671011
A+B+C+D E+F+G+H l+J+K+L M+N+O+P
(c) Update matrices before third parallel extend-add
ofo] ofs] ofo]
123 1 [10[11 123
2 [o[1]4 2 [8[9]12 2 [8]9]12
3|2[3[6]7 3 [10[11[14]15 3 [10[11[14]15
4 |0]1]4[5]0 4 |8]9]1213[8 4 |0|1]4]5]0
5 2[3]6]7]2]3 5 [10[11]14]15]10[11 5(2[3]6]7]2]3
6 |0[1][4]5]0]1]4 6 |8[9]1213[8 912 6 [8]9]12[13[8 912
7 |2[3[6]7]2]|3]6]7 7 [10[11[14]15/10]11]1415 7 |10[11[14]15/10]11]1415
8 |0][1]4]5]/0]1]4]5]0 8 |8]9]12[13[8]9 |12[13]8 8 |0|1]4]5[0]1]4]5]0
9 [2[3]6]7]2[3]6|7[2]3 9 [10[11]14]15]10[11]14|15[10[12 9(2[3]6]7]2[3]6|7]|2][3
10(0]1]4|5]0[1]4]5]0]1]4] 10 | 8] 912|138 9[12[13] 8| 9 |12] 10|89 |12]13[8] 9[12[13] 8| 9 12|
11(2]3]6|7]2]3]6]7]2]|3]6]7] 11 [10[111415/10]11[14[151011]14]15] 11 [10[11]1415/10]11[14[15]10]11]14]15]
012345678 091011 012345678 09101L 012345678 09101L
A+B+C+D+E+F+G+H [+J+K+L+M+N+O+P A+ ... +P
(d) Update matrices before fourth parallel extend-add (e) Final distribution on 16 processors

Figure 7: Four successive paradle extend-add operations (denoted by “+”) on hypothetical update matrices
for multifrontal factorization on 16 processors, numbered from 0 to 15. The number inside a box denotes the
number of the processor that owns the matrix element represented by the box.

11

Horizontal comunication

o [o]
112|3
218|912 0 1
3 (10/11|14|15 4 0 1 4 5 5 2 3 6 7
4 |0|1|4|5]|0 8 9
5(2[3]6/7]2]3 0 0
6 |8|9]12/13/8|9 |12 3 3
7 |10|11|14|15|10|11|14|1
8(?14550014550 6 8 9 12 13 7| |10 11 14 15
10 11
9 12|3(6|7]|2]3|6|7|2|3 |~ o 5
10 |89 12|13 8|9 |12[13| 8 | 9 |12| <~ Processor numbers
11 |10|11]14]15|10[11[14|15|10[11|14|15] #~ . _—
R Verti mmunication
012345678 91011 = Marixindices ertical communicatio
0 1
. 4 0 2 8 10 5 3 9 11 1
Horizontal subcubes 8 9
(0,1,4,5), (2,3,6,7), (8,9,12,13), (10,11,14,15) 0 0
3 3
Vertical subcubes 6| |12 14 4 6 7| |15 5 7 13
10 11
(0,2,8,10), (1,3,9,11), (4,6,12,14), (5,7,13,15) 0 0

Figure 8: The two communication operationsinvolved in a single eimination step (index of pivot = 0 here) of
Cholesky factorization on a 12 x 12 frontal matrix distributed over 16 processors.

supernode being processed. The communication that takes place in this phase is the standard communication
in pipelined grid-based dense Cholesky factorization [47, 35]. If the average size of thefrontal matricesist x t
during the processing of a relaxed supernode with m nodes on a g-processor subcube, then O(m) messages
of size O(t/,/Q) are passed through the grid in a pipelined fashion. Figure 8 shows the communication for
one step of dense Cholesky factorization of a hypothetical frontal matrix for q = 16. It isshownin [36] that
although this communication does not take place between the nearest neighbors on a subcube, the paths of all
communications on any subcube are conflict free with e-cube routing [46, 35] and cut-through or worm-hole
flow control. Thisisa direct consequence of the fact that a circular shift is conflict free on a hypercube with
e-cube routing. Thus, a communication pipeline can be maintained among the processors of a subcube during
the dense Cholesky factorization of frontal matrices.

3.1 Block-cyclic mapping of matrices onto processors

In the parallel multifrontal algorithm described in this section, the rows and columns of frontal and update
matrices are distributed among the processors of a subcube in acyclic manner. For example, the distribution of
amatrix with indicesfrom 0 to 11 on a 16-processor subcubeisshown in Figure 7(e). The 16 processorsform a
logical mesh. The arrangement of the processorsin thelogical meshisshownin Figure 9(a). Inthedistribution
of Figure 7(€), consecutive rows and columns of the matrix are mapped onto neighboring processors of the
logical mesh. If there are more rows and columns in the matrix than the number of processors in a row or
column of the processor mesh, then the rows and columns of the matrix are wrapped around on the mesh.
Although the mapping shown in Figure 7(€) resultsin a very good load balance among the processors, it
has a disadvantage. Notice that while performing the steps of Cholesky factorization on the matrix shown in
Figure 7(e), the computation corresponding to consecutive pivots starts on different processors. For example,
pivot 0 on processor O, pivot 1 on processor 3, pivot 2 on processor 12, pivot 3 on processor 15, and so on.
If the message startup time is high, this may lead to significant delays between the stages of the pipeline.

12

0 [o]

100

2 2]2]3

3[2]2[3]3

4 [8]8|9lo12

5 [8]8]9|9]12[12
o I 6 |10]10/11]11]14]14]15 Processor umbers
213|667 7 |10]10[11]11[14]14|15[15

g8 |ojol1|1[4al4a]5]|5|0]+ /i
g8 | 9 12 13 900114455009}

10(2]2]3]3]6]|6|7]7]|2|2|3]
10|11 | 14 | 15 11[2]2]3[3]e]6]7]7]2]2]3]3]

012345678 91011=<— Matrix indices
(@) A logical mesh of 16 processors (b) Block-cyclic mapping with 2 X 2 blocks

Figure 9: Block-cyclic mapping of a12 x 12 matrix on alogical processor mesh of 16 processors.

Furthermore, on cache-based processors, the use of BLAS-3 for €liminating multiple columns simultaneously
yields much higher performance than the use of BLAS-2 for eliminating one column at a time. Figure 9(b)
shows a variation of the cyclic mapping, called block-cyclic mapping [35], that can aleviate these problems at
the cost of some added load imbalance.

Recall that in the mapping of Figure 7(e), the least significant [log p/2] bits of a row or column index
of the matrix determine the processor to which that row or column belongs. Now if we disregard the least
significant bit, and determinethe distribution of rowsand columnsby the [log p/2] bits starting with the second
least significant bit, then the mapping of Figure 9(b) will result. In genera, we can disregard the first k least
significant bits, and arrive at a block-cyclic mapping with a block size of 2¢ x 2. The optima vaue of k
depends on the ratio of computation time and the communication latency of the parallel computer in use and
may vary from one computer to another for the same problem. In addition, increasing the block size too much
may cause too much load imbalance during the dense Cholesky steps and may offset the advantage of using
BLAS3.

3.2 Subtree-to-submesh mapping for the 2-D mesh architecture

The mapping of rows and columns described so far works fine for the hypercube network. At each level, the
update and frontal matrices are distributed on a logical mesh of processors (e.g., Figure 9(a)) such that each
row and column of this mesh is a subcube of the hypercube. However, if the underlying architecture isamesh,
then a row or a column of the logical mesh may not correspond to a row or a column of the physical mesh.
Thiswill lead to contention for communication channel s during the pipelined dense Chol esky steps of Figure 8
on a physical mesh. To avoid this contention for communication channels, we define a subtree-to-submesh
mapping in this subsection. The subtree-to-subcube mapping described in Figure 4(b) ensures that any subtree
of the relaxed supernodal elimination tree is mapped onto a subcube of the physical hypercube. This helps
in localizing communication at each stage of factorization among groups of as few processors as possible.
Similarly, the subtree-to-submesh mapping ensures that a subtree is mapped entirely within a submesh of the
physical mesh.

Note that in subtree-to-subcube mapping for a 2¢-processor hypercube, all level-d subtrees of the relaxed
supernodal éiminationtree are numbered in increasing order from left to right and asubtreelabeled i ismapped
onto processor i. For example, the subtree labeling of Figure 10(a) resultsin the update and frontal matrices

13

T | || A | S | R
N Y Y Y N N Y Y Y

(a) Subtree-subcube assignment of level-4 subtrees and the corresponding logical mesh for level-0 supernode

T | | | A | S | s 0w u
0 A o) [5) 23\ o [0\ 6\ /8 ho s o A ha s S

(b) Subtree-submesh assignment of level-4 subtrees and the corresponding logical mesh for level-0 supernode

Figure 10: Labeling of subtreesin subtree-to-subcube (@) and subtree-to-submesh (b) mappings.

for the supernodesin the topmost (level-0) relaxed supernode to be distributed among 16 processors as shown
in Figure9(a). The subtree-to-submesh mapping starts with a different initial labeling of the level-d subtrees.
FigurelO(b) shows this labeling for 16 processors, which will result in the update and frontal matrices of the
topmost relaxed supernode being partitioned on a4 x 4 array of processors labeled in a row-major fashion.

We now define a function map such that replacing every reference to processor i in subtree-to-subcube
mapping by areference to processor map(i, m, n) resultsin a subtree-to-submesh mapping on an m x n mesh.
We assume that both m and n are powers of two. We also assume that either m = n or m = n/2 (this
configuration maximizes the cross-section width and minimizes the diameter of an mn-processor mesh). The
function map(i, m, n) is given by the following recurrence:

map(, m,n) = i, ifi <2
map(i, m,n) = map(, 3, n), ifm=n, i< 3.
map(i,m,n) = = +map(i — =, 7,n), ifm=n,i>"=.
map(i, m,n) = mmap(, m, 3)/m| + map(, m, 3), ifm=3 1< 3.
iy

map(i, m,n) = m(lmap(— 5, m,3)/m| +1)+mapi — F, m,3), ifm= >

The above recurrence always maps a level-l relaxed supernode of a binary relaxed supernodal elimination

14

tree onto an (mn/2')-processor submesh of the mn-processor two-dimensiona mesh.

4 Analysis of Communication Overhead

In this section, we derive expressions for the communication overhead of our algorithm for sparse matrices
resulting from afinite difference operator on regular two- and three-dimensional grids. Within constant factors,
these expressions can be generalized to all sparse matrices that are adjacency matrices of graphs whose n-
node subgraphs have O(,/n)-node and O(n?3)-node separators, respectively. This is because the properties
of separators can be generalized from grids to al such graphs within the same order of magnitude bounds
[39, 38, 13]. We derive these expressions for both hypercube and mesh architectures, and also extend the
results to sparse matrices resulting from three-dimensional graphs whose n-node subgraphs have O(n?2?)-node
separators.

Theparalel multifrontal algorithm described in Section 3 incurstwo types of communicationoverhead: one
during paralel extend-add operations (Figure 7) and the other during the steps of dense Cholesky factorization
while processing the supernodes (Figure 8). Crucia to estimating the communication overhead is estimating
the sizes of frontal and update matrices at any level of the supernodal eimination tree.

Consider a+/N x +/N regular finite difference grid. We analyze thecommunication overhead for factorizing
the N x N sparse matrix associated with thisgrid on p processors. In order to simplify the analysis, we assume
a somewhat different form of nested-dissection than the one used in the actua implementation. This method
of analyzing the communication complexity of sparse Cholesky factorization has been used in [15] in the
context of a column-based subtree-to-subcube scheme. Within very small constant factors, the analysis holds
for the standard nested dissection [11] of grid graphs. We consider a cross-shaped separator (described in
[15]) consisting of 2¢/N — 1 nodes that partitions the N-node square grid into four square subgrids of size
(v'N —1)/2 x (+/N — 1)/2. We call this the level-0 separator that partitions the original grid (or the level-0
grid) into four level-1 grids. The nodes in the separator are numbered after the nodes in each subgrid have
been numbered. To number the nodes in the subgrids, they are further partitioned in the same way, and the
processisapplied recursively until all nodes of the original grid are numbered. The supernodd eliminationtree
corresponding to this ordering is such that each non-leaf supernode has four children. The topmost supernode
has 2¢/N — 1 (=~ 2+/N) nodes, and the size of the supernodes at each subsequent level of thetree ishalf of the
supernode size at the previous level. Clearly, the number of supernodes increases by a factor of four at each
level, starting with one at the top (level 0).

The nested dissection scheme described above has the following properties: (1) the size of level-l subgrids
is approximately v/N/2' x +/N/2', (2) the number of nodes in alevel-l separator is approximately 2¢/N /2,
and hence, the length of a supernode at level | of the supernodal elimination tree is approximately 2¢/N /2.
It has been proved in [15] that the number of nonzeros that ani x i subgrid can contribute to the nodes of its
bordering separators is bounded by ki?, where k = 341/12. Hence, alevel-l subgrid can contribute at most
kN /4" nonzeros to its bordering nodes. These nonzeros are in the form of the triangular update matrix that is
passed along from the root of the subtree corresponding to the subgrid to its parent in the elimination tree. The
dimensions of amatrix with adensetriangular part containing kN /4' entriesisroughly +/2kN /2 x +/2kN /2.
Thus, the size of an update matrix passed on to level | — 1 of the supernodal elimination tree from level | is
roughly upper-bounded by v/2kN /2 x +/2kN /2 for| > 1.

Thesize of alevel-l supernodeis2+/N/2'; hence, atotal of 2¢/N /2 elimination steps take place while the
computation proceeds from the bottom of alevel-I supernodetoitstop. A single elimination step on afrontal

15

matrix of size (t + 1) x (t + 1) produces an update matrix of sizet x t. Since the size of an update matrix at the
top of alevel-l supernodeis at most v/2kN /2 x +/2kN/2', the size of the frontal matrix at the bottom of the
same supernodeis upper-bounded by (v/2k+2)+v/N /2" x (v/2k+2)+/N /2. Hence, theaverage size of afrontal
matrix at level | of the supernodal elimination treeis upper-bounded by (v/2k + 1)v/N/2' x (v/2k +1)v/N/2'.
Let 2k — 1=a. Thenav/N/2' x a+/N/2" isan upper bound on the average size of afrontal matrix at level |.

We are now ready to derive expressions for the communication overhead due to the paralle extend-add
operations and the elimination steps of dense Cholesky on the frontal matrices.

4.1 Overhead in parallel extend-add

Before the computation corresponding to level | — 1 of the supernodal eliminationtree starts, aparallel extend-
add operation is performed on lower triangular portions of the update matrices of size v/2kN /2 x +/2kN /2,
each of which is distributed on a ,/p/2 x ./p/2 logical mesh of processors. Thus, each processor holds
roughly (kN/4') = (p/4) = kN/p elements of an update matrix. Assuming that each processor exchanges
roughly half of its data with the corresponding processor of another subcube, ts + t, kN/(2p) timeis spent in
communication, where ts isthe message startup time and t,, isthe per-word transfer time. Notethat thistimeis
independent of I. Since there are (log p)/2 levels at which pardlel extend-add operations take place, the tota
communication timefor these operationsis O(N/p) log p on ahypercube. The total communication overhead
dueto the parallel extend-add operationsis O(N log p) on a hypercube.

4.2 Overhead in factorization steps

We have shown earlier that the average size of a frontal matrix at level | of the supernodal eimination treeis
bounded by a+/N/2' x a+/N/2, where o = /341/6 — 1. This matrix is distributed on a ,/p/2 x /p/2
logical mesh of processors. Asshown in Figure 8, there are two communication operationsinvol ved with each
elimination step of dense Cholesky. Theaverage size of amessageis (a+/N/2') +(,/p/2) =a/N/p. Itcanbe
shown [47, 35] that in a pipelined implementationon a ,/q x ,/q mesh of processors, the communication time
for s elimination steps with an average message size of mis O(ms). The reason isthat although each message
must goto O(,/q) processors, messages correspondingto O(,/q) elimination stepsare active simultaneouslyin
different parts of the mesh. Hence, each message effectively contributesonly O(m) to the total communication
time. In our case, a level | of the supernodal elimination tree, the number of steps of dense Cholesky is
2¢/N/2. Thus the total communication time at level | is a/N/p x 2¢/N/2' = O((N//P)(1/2)). The
total communication time for the elimination steps at top (log p)/2 levels of the supernodal elimination treeis
O((N/\/ﬁ)z,'i%‘ P~1(1/2')). Thishas an upper bound of O(N/,/P). Hence, the total communication overhead
dueto the elimination stepsis O(p x N//P) = O(N./P).

Theparale multifrontal algorithmincurs an additional overhead of emptyingthe pipelinelog p times(once
before each paralel extend-add) and then refilling it. It can be easily shown that this overhead is O(N) each
time the pipeline restarts. Hence, the overall overhead due to restarting the pipelinelog p timeis O(N log p),
which is smaller in magnitude than the O(N ,/p) communication overhead of the dense Cholesky elimination

steps.

16

4.3 Communication overhead for 3-D problems

The anaysis of the communication complexity for the sparse matrices arising out of three-dimensiona finite
element problems can be performed aong the lines of the analysis for the case of two-dimensiona grids.
Consider an N2 x N3 x N3 grid that is recursively partitioned into eight subgrids by a separator that
consists of three orthogonal N2 x N/ planes. The number of nonzerosthat ani x i x i subgrid contributes
to the nodes of its bordering separators is O(i%) [15]. At level |, due to | bisections, i is no more than
N¥/3/2' As aresult, an update or a frontal matrix at level | of the supernodal elimination tree will contain
O(N#3/24) entries distributed among p/8' processors. Thus, the communication time for the parallel extend-
add operation at level | is O(N*2/(2 p)). Thetotal communicationtimefor all parallel extend-add operations
is O((N*3/p)x,%%P*(1/2')), whichis O(N*3/p). For the dense Cholesky elimination steps at any level, the
message sizeis O(N?3/,/p). Since there are 3N?3/4' nodesin alevel-l separator, the total communication
time for the elimination stepsis O((N4/3/\/E)E,'i%‘ PL(1/4')), whichis O(N*3/./P).

Hence, the total communication overhead due to paralel extend-add operations is O(N#/®) and that due
to the dense Cholesky elimination steps is O(N*3,/p). As in the 2-D case, these asymptotic expressions
can be generalized to sparse matrices resulting from three-dimensional graphs whose n-node subgraphs have
O(n%3)-node separators. This classincludesthe linear systems arising out of three-dimensional finite element
problems.

44 Communication overhead on a mesh

The communication overhead due the dense Cholesky elimination steps is the same on both the mesh and the
hypercube architectures because the frontal matrices are distributed on alogical mesh of processors. However,
the parallel extend operations use the entire cross-section bandwidth of a hypercube, and the communication
overhead due to them will increase on a mesh due to channel contention.

Recall from Section 4.1 that the communication time for parallel extend-add at any level is O(N/p) on
a hypercube. The extend-add is performed among groups of p/4' processors at level | of the supernodal
elimination tree. Therefore, at level |, the communication time for parallel extend-add ona ,/p/2' x /p/2
submesh is O(N/(2',/p)). The total communication time for al the levels is O((N/\/ﬁ)z,'i%‘ P~11/2Y).
This has an upper bound of O(N/,/P), and the upper bound on the corresponding communication overhead
term is O(N,/p). Thisis the same as the total communication overhead for the elimination steps. Hence,
for two-dimensiona problems, the overal asymptotic communication overhead is the same for both mesh and
hypercube architectures.

The communication time on a hypercube for the parallel extend-add operation at level | is O(N*3/
(2'p)) for three-dimensional problems (Section 4.3). The corresponding communication time on a mesh
would be O(N*3/(4,/p). The total communication time for al the parallel extend-add operations is
O((N“”/ﬁ)i,'i%‘ P~L(1/4")), which is O(N*3/./P). Asin the case of two-dimensional problems, this is
asymptotically equa to the communication time for the elimination steps.

5 Scalability Analysis

The scaability of a paradle algorithm on a parallel architecture refers to the capacity of the agorithm-
architecture combination to effectively utilize an increasing number of processors. In this section we use the
isoefficiency metric [35, 37, 17] to characterize the scalability of our algorithm. The isoefficiency function

17

of a combination of a parallel algorithm and a parallel architecture relates the problem size to the number
of processors necessary to maintain a fixed efficiency or to deliver speedups increasing proportionally with
increasing number of processors.

5.1 Theisoefficiency metric of scalability analysis

Let W be the size of a problem in terms of the total number of basic operations required to solve a problem
on a serial computer. For example, W = O(N?) for multiplying a dense N x N matrix with an N-vector.
The seria run time of a problem of size W is given by Ts = t.W, where t; is the time to perform a single
basic computation step. If Tp is the parallel run time of the same problem on p processors, then we define
an overhead function T, as pTp — Ts. Both Ty and T, are functions of W and p, and we often write them
as Tp(W, p) and To(W, p), respectively. The efficiency of a paralel system with p processors is given by
E = Ts/(Ts+ To(W, p)). If apardle system is used to solve a problem instance of afixed size W, then the
efficiency decreases as p increases. Thisis because the total overhead To(W, p) increases with p. For many
parald systems, for afixed p, if the problem size W is increased, then the efficiency increases because for a
given p, To(W, p) grows slower than O(W). For these parallel systems, the efficiency can be maintained at a
desired value (between 0 and 1) for increasing p, provided W isalsoincreased. We call such systemsscalable
parald systems. Note that for a given parallel algorithm, for different paralel architectures, W may have to
increase at different rateswith respect to p in order to maintain afixed efficiency. Asthe number of processors
are increased, the smaller the growth rate of problem size required to maintain a fixed efficiency, the more
scalablethe parallel systemis.
Giventhat E = 1/(1+ To(W, p)/(t:W)), in order to maintain afixed efficiency, W should be proportiona
to T,(W, p). In other words, the following relation must be satisfied in order to maintain afixed efficiency:
W = ZT,(W,),)

C
wheree = E/(1 — E) isaconstant depending on the efficiency to be maintained. Equation (1) isthe centra
relation that is used to determine the isoefficiency function of a parallel algorithm-architecture combination.
This is accomplished by abstracting W as a function of p through algebraic manipulations on Equation (1).
If the problem size needs to grow as fast as fe (p) to maintain an efficiency E, then fe(p) is defined as the
isoefficiency function of the parallel algorithm-architecture combination for efficiency E.

5.2 Scalability of the parallel multifrontal algorithm

It iswell known [13] that the total work involved in factoring the adjacency matrix of an N-node graph with
an O(+/N)-node separator using nested dissection ordering of nodes is O(N'%). We have shown in Section 4
that the overall communication overhead of our schemeis O(N,/p). From Equation 1, afixed efficiency can
be maintained if and only if N** o« N/P, or /N o /p, or N*> = W o p*°. In other words, the problem
size must be increased as O(p'®) to maintain a constant efficiency as p isincreased. In comparison, alower
bound on the isoefficiency function of Rothberg and Gupta's scheme [57, 18] with a communication overhead
of at least O(N,/plog p) is O(p*>(log p)®). The isoefficiency function of any column-based scheme is at
least O(p®) because the total communication overhead has a lower bound of O(Np). Thus, the scalability of
our algorithm is superior to that of the other schemes.

It iseasy to show that the scal ability of our algorithmis O(p*®) even for the sparse matrices arising out of
three-dimensional finite element grids. The problem sizeinthe case of an N x N sparse matrix resulting from a

18

three-dimensional gridis O(N?) [15]. We have shown in Section 4.3 that the overall communication overhead
inthiscaseis O(N*3,/p). To maintain afixed efficiency, N? oc N*3_/p, or N#3 o /P, or N = W o< p'/>.
A lower bound on the i soefficiency function for dense matrix factorization is © (p*®°) [35, 36] if the number
of rank-1 updates performed by the serial agorithmis proportional to the rank of the matrix. The factorization
of asparse matrix derived from an N-node graph with an S(N)-node separator involvesadense S(N) x S(N)
matrix factorization. S(N) is ©(+/N) and ®(N%3) for two- and three-dimensiona constant node-degree
graphs, respectively. Thus, the complexity of the dense portion of factorization for these two types of matrices
is®(N®) and ® (N?), respectively, which is of the same order as the computation required to factor the entire
sparse matrix [13, 15]. Therefore, theisoefficiency function of sparse factorization of such matricesis bounded
from below by the isoefficiency function of dense matrix factorization, which is ® (p'®). Aswe have shown
earlier in this section, our algorithm achieves thislower bound for both two- and three-dimensional cases.

5.3 Scalability with respect to memory requirement

We have shown that the problem size must increase in proportion to p-° for our agorithm to achieve a fixed
efficiency. As the overall problem size increases, so does the overall memory requirement. For an N-node
two-dimensiona constant node-degree graphs, the size of the lower triangular factor L is ®(N logN) [13].
For afixed efficiency, W = N5 o p°, which impliesN o« p and NlogN o« plogp. Asaresult, if we
increase the number of processors while solving bigger problems to maintain a fixed efficiency, the overal
memory requirement increases at the rate of ®(plog p) and the memory requirement per processor increase
logarithmically with respect to the number of processors.

In the three-dimensional case, size of the lower triangular factor L is ® (N*3) [13]. For afixed efficiency,
W = N2 o p*®, whichimpliesN o p¥4and N*2 o« p. Hence, in this case the overall memory requirement
increases linearly with the number of processors and the per-processor memory requirement is constant for
maintaining a fixed efficiency. It can be easily shown that for the three-dimensional case, the isoefficiency
function should not be of ahigher order than © (p*®) if speedups proportional to the number of processors are
desired without increasing the memory requirement per processor. To the best of our knowledge, the algorithm
described in Section 3 is the only parallel agorithm for sparse Cholesky factorization with an isoefficiency
function of ® (p*®).

6 An Improvement for Better Load Balance

We implemented the parallel multifrontal agorithm described in Section 3 on the nCUBE 2 parallel computer.
The detailed experimental performance and scalability results of this implementation have been presented
in [25]. Table 1 shows the results of factoring some matrices from the Harwell-Boeing collection of sparse
matrices [6]. These results show that our algorithm can deliver good speedups on hundreds of processors for
practical problems. Spectral nested dissection [50, 51, 52] was used to order these matrices.

The agorithm presented in Section 3 relies on the ordering algorithm to yield a balanced elimination tree.
Imbalancesin the elimination tree result in alossin the efficiency of the paralel implementation. For example,
the two subtrees of the top level relaxed supernode might require different amount of computation. Therefore,
onehalf of the processorsworking onthe smaller subtreewill beidleafter processing their subtree until the other
half finishes the bigger subtree. Since subtree-to-subcube mapping is recursively applied in each subcube, the
load imbalance at each level accumulates. In fact, in the results shown in Table 1, nearly half of the efficiency

19

Matrix: BCSSTK29; N =13992; NNZ = 2174.46 thousand; FLOP = 609.08 million

p 1 2 4 8 16 32 64 128 256 512 1024
Time | 704.0 359.7 212.9 11045 55.06 31.36 19.22 12.17 7.667 4.631 3.119
Speedup 1.00 1.96 331 6.37 12.8 22.5 36.6 57.9 91.8 152.6 225.6

Efficiency | 100.0% 97.9% 82.7% 79.7% 79.9% 70.2% 57.2% 45.2% 35.9% 29.8% 22.0%

Matrix: BCSSTK31; N =35588; NNZ = 6458.34 thousand; FLOP = 2583.6 million

P 1 2 4 8 16 32 64 128 256 512 1024
Time | 3358.0* 1690.7 924.6 503.0 2620 1343 73.57 42.02 24.58 14.627 9.226
Speedup 1.00 1.99 3.63 6.68 12.8 25.0 45.6 79.9 136.6 229.6 364.2

Efficiency | 100.0% 99.3% 90.8% 83.4% 80.1% 78.1% 71.3% 624% 534% 448% 35.6%

Table 1: Experimental results on an nCUBE-2 for factoring some sparse symmetric positive definite matrices
resulting from 3-D problemsin structural engineering. All times are in seconds. The suffix “*” indicates run
time estimated by timing the computation on two processors.

loss is due to load imbalance and the rest due to communication. We have experimentally shown in [25] that
the overhead due do load imbal ance tends to saturate as the number of processorsincrease and, therefore, does
not affect the asymptotic scalability of the algorithm. However, load imbalance puts an upper bound on the
achievable efficiency and resultsin a significant performance penalty.

In this section, we describe an algorithm that minimizes this drawback of a subtree-to-subcube mapping.
Thismapping assignsgroupsof subtreesto processor subcubes; hence, we call it subforest-to-subcube mapping.

6.1 Subforest-to-subcubemapping

In subforest-to-subcube mapping, we assign many subtrees of the elimination tree to each processor subcube.
These trees are chosen in such a way that the total amount of work assigned to each subcube is as equa as
possible. The best way to describe this partitioning scheme is via an example. Consider the elimination tree
shownin Figure 11. Assumethat it takes atotal of 100 time unitsto factor the entire sparse matrix. Each node
in the tree is marked with the number of time units required to factor the subtree rooted at this particular node
(including the time required to factor the node itself). For instance, the subtree rooted at node B requires 65
units of time, while the subtree rooted at node F requires only 18.

Asshownin Figure 11(b), the subtree-to-subcube mapping scheme will assign the computation associated
with the top supernode A to al the processors, the subtree rooted at B to haf the processors, and the
subtree rooted at C to the remaining half of the processors. Since, these subtrees require different amount of
computation, this particular partition will lead to load imbalances. Since 7 time units of work (corresponding
to the node A) is distributed among al the processors, this factorization takes at least 7/ p units of time. Now
each subcube of p/2 processors independently works on each subtree. The timerequired for these subcubesto
finish is lower-bounded by the time to perform the computation for the larger subtree (the one rooted at node
B). Even if we assumethat all subtrees of B are perfectly balanced, computation of the subtree rooted at B by
p/2 processors will take at least 65/(p/2) time units. Thus, an upper bound on the efficiency of this mapping
isonly 100/(p(7/p + 65/(p/2))) ~ .73. Now consider the following mapping scheme: The computation
associated with supernodes A and B is assigned to al the processors. The subtrees rooted at E and C are
assigned to half of the processors, while the subtree rooted at D is assigned to the remaining processors. In

20

(b) Elimination tree of (a) partitioned
using subtree-to-subcube

(a) Top 2 levels of a partial elimination tree (c) Elimination tree of (b) partitioned

using subforest-to-subcube

l:l Distributed to all the processors l:l Distributed to one half of processors - Distributed to the other half of processors

Figure 11: Thetop two levels of an eliminationtreeisshownin (a). The subtree-to-subcube mapping is shown
in (b), the subforest-to-subcube mapping is shown in (c).

this mapping scheme, thefirst half of the processors are assigned 43 time units of work, while the other half is
assigned 45 time units. The upper bound on theis 100/(p(12/p + 45/(p/2)))) ~ 0.98, which is a significant
improvement over the earlier bound of .73.

The above example illustrates the basic ideas behind the new mapping scheme. The general mapping
algorithmisoutlined in Figure 12.

Thetree partitioning algorithm uses a set C that contains the unassigned nodes of the eliminationtree. The
agorithm inserts the root of the elimination tree into C, and then it calls the routine Elpart that recursively
partitions the elimination tree. Elpart partitions C into two parts, L and R and checks if this partitioning is
acceptable. If yes, thenit assigns L to haf of the processors, and R to the remaining half, and recursively calls
Elpart to perform the partitioning in each of these halves. If the partitioningis not acceptable, then one node of
C (i.e, node = select(C)) isassigned to al the p processors, nodeis deleted from C, and the children of node
are inserted into the C. The agorithm then continues by repeating the whole process. The above description
provides a high level overview of the subforest-to-subcube partitioning scheme. However, a number of details
need to be clarified. In particular, we need to specify how the select, halfsplit, and acceptable procedures
work.

Selection of anodefrom C There are two different ways® of defining the procedure select(C).
e Oneway isto select anode whose subtree requires the largest number of operations to be factored.
e The second way isto select anode that requires the largest number of operationsto factor it.

Thefirst method favors nodes whose subtrees require significant amount of computation. Thus, by selecting
such a node and inserting its children in C we may get a good partitioning of C into two halves. However,
this approach can assign nodes with relatively small computation to all the processors, causing poor efficiency
in the factorization of these nodes. The second method guarantees that the selected node has more work, and
thus its factorization can achieve higher efficiency when it is factored by al p processors. However, if the
subtrees attached to this node are not large, then thismay not lead to agood partitioning of C in later steps. In
particular, if the root of the subtree having most of the remaining work, requires little computation (e.g., single

3Note, that the information required by these methods (the amount of computation to eliminate a node, or the total amount of
computation associated with a subtree), can be easily obtained during the symbolic factorization phase.

21

1. Partition(T, p) /* Partition thetree T, among p processors. */
2. C={}

3. Addroot(T)intoC

4. Elpat(C, T, p)

5. End Partition

Elpart(C, T, p)

if (p==1) return

done=fase

while (done == false)
10. hafsplit(C, L, R)
11. if (acceptable(L, R))

© o N

12. Elpart(L, T, p/2)
13. Elpart(R, T, p/2)
14. done = true

15. dse

16. node = select(C)

17. delete(C, node)

18. node=> p /* Assignnodeto all p processors */
19. Insert into C the children of nodein T

20. endwhile

21. End Elpart

Figure 12: The subforest-to-subcube partitioning agorithm.

node supernode), then the root of this subtree will not be selected for expansion until very late, leading to too
many nodes being assigned at al the processors.

Another possibility is to combine the above two schemes and apply each one in dternate steps. This
combined approach eliminates most of the limitations of the above schemes while retaining their advantages.
This isthe scheme we used in the experiments described in Section 7.

So far we considered only the floating point operations when we were referring to the number of operations
required to factor a subtree. On systems where the cost of each memory access relative to a floating point
operation is relatively high, a more accurate cost model will also take the cost of each extend-add operation
into account. The total number of memory accesses required for extend-add can be easily computed from the
symbolic factorization of the matrix.

Splitting The Set C In each step, the partitioning agorithm checks to seeif it can split the set C into two
roughly equal halves. The ability of the halfsplit procedure to find a partition of the nodes (and consequently
create two subforests) is crucial to the overall ability of this partitioning al gorithm to balance the computation.
Fortunately, thisis atypica bin-packing problem, and even though, bin-packing is NP complete, a number of

22

good approximate algorithms exist [49]. The use of bin-packing makesit possibleto baance the computation
and to significantly reduce the load imbalance.

Acceptable Partitions A partition is acceptable if the percentage difference in the amount of work in the
two partsislessthan asmall constant . If € ischosen to be high (eg., € > 0.2), then the subforest-to-subcube
mapping becomes similar to the subtree-to-subcube mapping scheme. If € is chosen to be too small, then most
of the nodes of the elimination tree will be processed by all the processors, and the communication overhead
during the dense Cholesky factorization will become too high. For example, consider the task of factoring
two n x n matrices A and B on p-processor square mesh or a hypercube using a standard algorithm that uses
two-dimensiona partitioning and pipelining. If each of the matrices isfactored by all the processors, then the
total communication time for factoring the two matricesis n?/,/p [35]. If Aand B are factored concurrently
by p/2 processors each, then the communicationtimeisn?/(2./p/2) whichissmaller. Thusthevalue of € has
to be chosen to strike a good balance between these two conflicting goa's of minimizing load imbalance and
the communication overhead in individua factorization steps. For the experiments reported in Section 7, we
used € = 0.05.

Impact on Communication Overhead Note that the communication overhead of subforest-to-subcube
mapping is somewhat higher than that of subtree-to-subcube mapping. Thisisis mainly because subforest-to-
subcube mapping results in smaller frontal matrices being mapped onto larger groups of processor. However,
we have proved in [23] that the asymptotic bounds on the communication overhead of subforest-to-subcube
mapping are the same as those of subtree-to-subcube mapping. Therefore, the algorithm described in this
section isequally scalable asthe one discussed in 3. The actual impact on the performance depends on theratio
of communication and computation speeds of the parallel computer being used. Faster communication relative
to computation will permit asmaller value of ¢ to be used, resulting in a finer load balance.

7 Experimental Results

We implemented our new parallel sparse multifrontal algorithm on a 1024-processor Cray T3D parallel com-
puter. Each processor on the T3D is a 150 Mhz Dec Alpha chip, with peak performance of 150 MF ops for
64-bit operations (double precision). However, the peak performance of most level three BLAS routines is
around 50 MFops. The processors are interconnected via a three dimensional torus network that has a peak
unidirectional bandwidth of 150 MBytes per second, and a very small latency. Even though the memory
on T3D is physicaly distributed, it can be addressed globally. That is, processors can directly access (read
and/or write) other processor’'s memory. T3D providesalibrary interface to thiscapability called SHMEM. We
used SHMEM to develop a lightweight message passing system. Using this system we were able to achieve
unidirectional datatransfer rates up to 70 MBytes per second. Thisis significantly higher than the 35 MBytes
channel bandwidth usually obtained when using T3D’s PV M.

For the computation performed during the dense Cholesky factorization, we used single-processor imple-
mentation of BLAS primitives. These routines are part of the standard scientific library on T3D, and they have
been fine tuned for the Alpha chip. The new algorithm was tested on matrices from avariety of sources. Four
matrices (BCSSTK 30, BCSSTK 31, BCSSTK 32, and BCSSTK33) come from the Boeing-Harwell matrix set.
MAROS-R7 isfrom alinear programming problem taken from NETLIB. COPTER2 comes from amodel of a

23

helicopter rotor. CUBE35isa35 x 35 x 35 regular three-dimensional grid. NUG15 isfrom alinear program-
ming problem derived from a quadratic assignment problem obtained from AT&T. In al of our experiments,
we used spectral nested dissection [50] to order the matrices. The factorization algorithms described in this
paper will work well with any type of nested dissection. In[21, 22, 20, 32, 31], we show that nested dissection
orderings with proper selection of separators can yield better quality orderings that traditional heuristics, such
as, the multiple minimum degree heuristic.

The performance obtained by this algorithm in some of these matricesis shown in Table 2. The operation
count shows only the number of operations required to factor the nodes of the elimination tree.

Figure 13 graphically represents the data shown in Table 2. Figure 13(a) shows the overall performance
obtained versus the number of processors, and is similar in nature to a speedup curve. Figure 13(b) shows the
per processor performance versus the number of processors, and reflects reduction in efficiency as p increases.
Since al these problems run out of memory on one processor, the standard speedup and efficiency could not be
computed experimentally.

Number of Processors

Problem n | A |L| OPC 16 32 64 128 | 256 512 1024
PILOT87 2030 122550 504060 240M 032 | 044 | 0.73 | 1.05
MAROS-R7 | 3136 330472 1345241 720M 048 | 0.83 | 141 | 214 | 3.02 | 4.07 4.48

FLAP 51537 | 479620 | 4192304 940M 048 | 0.75 | 1.27 | 1.85 | 287 | 3.83 | 425
BCSSTK33 | 8738 | 291583 | 2295377 | 1000M 049 | 076 | 1.30 | 1.94 | 290 | 4.36 | 6.02
BCSSTK30 | 28924 | 1007284 | 5796797 | 2400M 148 | 242 | 359 | 556 | 7.54
BCSSTK31 | 35588 | 572914 | 6415883 | 3100M 080 | 145 | 248 | 397 | 6.26 | 7.93
BCSSTK32 | 44609 | 985046 | 8582414 | 4200M 151 | 263 | 416 | 691 | 890

COPTER2 55476 | 352238 | 12681357 | 9200M 064 | 110 | 194 | 331 | 576 | 955 | 14.78
CUBE35 42875 | 124950 | 11427033 | 10300M || 0.67 | 1.27 | 226 | 3.92 | 6.46 | 10.33 | 15.70
NUG15 6330 | 186075 | 10771554 | 29670M 432 | 754 | 1253 | 19.92

Table 2: The performance of sparse direct factorization on Cray T3D. For each problem the table contains the
number of equations n of the matrix A, the original number of nonzerosin A, the nonzeros in the Cholesky
factor L, the number of operations required to factor the nodes, and the performance in gigaflops for different
number of processors.

The highest performance of 19.9 GFlops was obtained for NUG15, which is a fairly dense problem.
Among the sparse problems, a performance of 15.7 GFlops was obtained for CUBES35, which is a regular
three-dimensiona problem. Nearly as high performance (14.78 GFlops) was aso obtained for COPTER2
which isirregular. Since both problems have similar operation count, this shows that our algorithm performs
equally well in factoring matrices arising in irregular problems. Focusing our attention on the other problems
shown in Table 2, we see that even on smaller problems, our agorithm performs quite well. For example,
BCSSTK 33 was able to achieve 2.90 GFlops on 256 processors and BCSSTK 30 achieved 3.59 GF ops.

To further illustrate how various components of our algorithm work, we have included a breakdown of
the various phases for BCSSTK 31 and CUBE35 in Table 3. This table shows the average time spent by all
the processors in the local computation and in the distributed computation. Furthermore, we break down the
time taken by distributed computation into two major phases, (a) dense Cholesky factorization, (b) extend-add
overhead. Thelatter includesthe cost of performing the extend-add operation, splitting the stacks, transferring

24

MFlops/Processor

20

T T T T T
PILOT87
gl
18 5
i
BCSSTK30 -&-
16 | BCSSTK31 -*--
BCSSTK32 -o-- 1
COPTER2*+ |
14 L CUBE35 .= |
-7 NUGI5 »—
12+ -
%]
Q.
o
L 10 -
2
o
8 %
6 4
4t oy
2 — '/, -
1 1 1 1 1
3264 128 256 512 1024
Processors
45 T T T T T
\ PILOT87 ——
" MAROS-R7 —+--
40 B FLAP -8--]
o BCSSTK33 -
LA BCSSTK30 -&-
Vo BCSSTK3L -*--
Sl BCSSTK32 -0~
COPTER2 -+
‘ CUBE35 - -
NUG15 »—

128

256

512
Processors

1024

Figure 13: Plot of the performance of the parallel sparse multifrontal algorithm for various problems on Cray
T3D. Thefirst plot showstota Gigaflops obtained and the second one shows Megaflops per processor.

25

the stacks, and idling due to load imbalancesin the subforest-to-subcube partitioning. Note that the figuresin
this table are averages over al processors, and they should be used only as an approximate indication of the
time required for each phase.

A number of interesting observations can be made from this table. First, as the number of processors
increases, the time spent processing the loca tree in each processor decreases substantially because the
subforest assigned to each processor becomes smaller. This trend is more pronounced for three-dimensional
problems, because they tend to have fairly shallow trees. The cost of the distributed extend-add phase decreases
amost linearly as the number of processorsincreases. Thisisconsistent with the analysis presented in 4, since
the overhead of distributed extend-add is O((nlog p)/p). Since the expression for the time spent during the
extend-add steps a so includes the idling due to load imbalance, the almost linear decrease a so shows that the
load imbalance is quite small.

Thetime spent in distributed dense Chol esky factorization decreases as the number of processorsincreases.
Thisreduction is not linear with respect to the number of processorsfor two reasons: (a) the ratio of communi-
cation to computation during the dense Cholesky factorization stepsincreases, and (b) for afixed size problem
load imbalances due to the block cyclic mapping becomes worse as p increases.

For reasons discussed in Section 3.1, we distributed the frontal matrices in a block-cyclic fashion. To get
good performance on Cray T3D out of level three BLA Sroutines, we used ablock size of sixteen (block sizes of
less than sixteen result in degradation of level 3 BLAS performance on Cray T3D) For small problems, such a
large block size resultsin asignificant load imbal ance within the dense factorization phase. Thisload imbalance
becomes worse as the number of processors increases. However, as the size of the problem increases, both
the communication overhead during dense Cholesky and the load imbal ance due to the block cyclic mapping
becomes less significant. The reason is that larger problems usualy have larger frontal matrices at the top
levels of the elimination tree, so even large processor grids can be effectively utilized to factor them. This
isillustrated by comparing how the various overheads decrease for BCSSTK31 and CUBE35. For example,
for BCSSTK 31, the factorization on 128 processors is only 48% faster compared to 64 processors, while for
CUBES3S5, the factorization on 128 processors is 66% faster compared to 64 processors.

Distributed Computation
p Loca Comp. Factorization Extend-Add
BCSSTK31 | 64 0.17 134 0.58
128 0.06 0.90 0.32
256 0.02 0.61 0.18
CUBE35 64 0.15 3.74 0.71
128 0.06 2.25 0.43
256 0.01 144 0.24

Table 3: A break-down of the various phases of the sparse multifrontal algorithm for BCSSTK 31 and CUBESS.
Each number represents time in seconds.

To see the effect of the choice of ¢ in the overadl performance of the sparse factorization algorithm we
factored BCSSTK 31 on 128 processorsusing € = 0.4 and ¢ = 0.0001. Using these valuesfor ¢ we obtained a
performance of 1.18 GFlopswhen € = 0.4, and 1.37 GFopswhen ¢ = 0.0001. In either case, the performance
is worse than the 2.48 GFops obtained for ¢ = 0.05. When ¢ = 0.4, the mapping of the elimination tree to
the processors resembles that of the subtree-to-subcube allocation. Thus, the performance degradation is due

26

to the elimination tree load imbaance. When ¢ = 0.0001, the elimination tree mapping assigns alarge number
of nodesto all the processors, leading to poor performance during the dense Cholesky factorization.

8 Concluding Remarks

In this paper, we anaytically and experimentally demonstrate that scalable parallel implementations of direct
methodsfor solving large sparse systems are possible. We describe an implementation on Cray T3D that yields
up to 20 GFlops on medium-size problems. We use the isoefficiency metric [35, 37, 17] to characterize the
scalability of our algorithms. We show that the i soefficiency function of our dgorithmsis O(p*®) on hypercube
and mesh architectures for sparse matrices arising out of both two- and three-dimensiona problems. We also
show that O(p'®) is asymptoticaly the best possible isoefficiency function for a parallel implementation of
any direct method for solving a system of linear equations, either sparse or dense. 1n [59], Schreiber concludes
that it is not yet clear whether sparse direct solvers can be made competitive at al for highly (p > 256) and
massively (p > 4096) parale computers. We hope that, through this paper, we have given an affirmative
answer to at least a part of the query.

The process of obtaining adirect solution of asparse system of linear equationsof theform Ax = b consists
of the following four phases: Ordering, which determines permutation of the coefficient matrix A such that
the factorization incurs low fill-in and is numericaly stable; Symbolic Factorization, which determines
the structure of the triangular matrices that would result from factorizing the coefficient matrix resulting from
the ordering step; Numerical Factorization, which is the actual factorization step that performs arithmetic
operations on the coefficient matrix A to performs arithmetic operations on the coefficient matrix A to produce
alower triangular matrix L and an upper triangular matrix U ; and Solution of Triangular Systems, which
produces the solution vector x by performing forward and backward eliminations on the triangular matrices
resulting from numerical factorization. Numerical factorization is the most time-consuming of these four
phases. However, in order to maintain the scalability of the entire solution process and to get around single-
processor memory constraints, the other three phases need to be paraléeized as well. We have developed
paralld agorithmsfor the other phases that are tailored to work in conjunction with the numerical factorization
algorithm. In[33], wedescribean efficient parallel a gorithm for determining fill-reducing orderingsfor parallel
factorization of sparse matrices. Thisagorithm, while performing the ordering in parallel, also distributesthe
data among the processors in way that the remaining steps can be carried out with minimum data-movement.
At the end of the paralel ordering step, the parallel symbolic factorization algorithm described in [19] can
proceed without any redistribution. 1n [19, 26], we present efficient parallel agorithms for solving the upper
and lower triangular systems. The experimental resultsin[19, 26] show that the data mapping scheme described
in Section 3 works well for triangular solutions. We hope that the work presented in this paper, along with
[19, 26, 33] will enable the development of efficient practical parallel solvers for a broad range of scientific
computing problems.

References

[1] Cleve Ashcraft. The domain/segment partition for the factorization of sparse symmetric positive definite matrices.
Technical Report ECA-TR-148, Boeing Computer Services, Seattle, WA, 1990.

27

[2] Cleve Ashcraft. The fan-both family of column-based distributed cholesky factorization algorithms. In A. George,
John R. Gilbert, and J. W.-H. Liu, editors, Graph Theory and Sparse Matrix Computations. Springer-Verlag, New
York, NY, 1993.

[3] Cleve Ashcereft, S. C. Eisengtat, J. W.-H. Liu, and A. H. Sherman. A comparison of three column based distributed
sparse factorization schemes. Technical Report YALEU/DCS/RR-810, Ya e University, New Haven, CT, 1990. Also
appears in Proceedings of the Fifth SSAM Conference on Paralldl Processing for Scientific Computing, 1991.

[4] J. M. Conroy. Perallel nested dissection. Parallel Computing, 16:139-156, 1990.

[5] J. M. Conroy, S. G. Kratzer, and R. F. Lucas. Multifrontal sparse solvers in message passing and data paralle
environments - a comparitive study. In Proceedings of PARCO, 1993.

[6] lainS. Duff, R. G. Grimes, and J. G. Lewis. Users guidefor the Harwell-Boeing sparse matrix collection (release).
Technical Report TR/PA/92/86, Research and Technology Division, Boeing Computer Services, Seattle, WA, 1992.

[7] lain S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. ACM
Transactions on Mathematical Software, 9:302—-325, 1983.

[8] K. A. Gdlivan, R. J. Plemmons, and A. H. Sameh. Parale agorithms for dense linear algebra computations.
SAM Review, 32(1):54-135, March 1990. Also appears in K. A. Gallivan et d. Parallel Algorithms for Matrix
Computations. SIAM, Philadelphig, PA, 1990.

[9] G. A. Geist and E. G.-Y. Ng. Task scheduling for parallel sparse Cholesky factorization. International Journal of
Parallel Programming, 18(4):291-314, 1989.

[10] G. A. Geist and C. H. Romine. LU factorization algorithms on distributed-memory multiprocessor architectures.
SIAM Journal on Scientific and Statistical Computing, 9(4):639-649, 1988. Also available as Technica Report
ORNL/TM-10383, Oak Ridge National Laboratory, Oak Ridge, TN, 1987.

[11] A. George. Nested dissection of aregular finite-element mesh. S/AM Journal on Numerical Ananlysis, 10:345-363,
1973.

[12] A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng. Sparse Cholesky factorization on a local memory
multiprocessor. SAM Journal on Scientific and Statistical Computing, 9:327-340, 1988.

[13] A.Georgeand J. W.-H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[14] A. George, J. W.-H. Liu, and E. G.-Y. Ng. Communication reduction in parallel sparse Cholesky factorization on a
hypercube. In M. T. Heath, editor, Hypercube Multiprocessors 1987, pages 576-586. SIAM, Philadel phia, PA, 1987.

[15] A. George, J. W.-H. Liu, and E. G.-Y. Ng. Communication results for parallel sparse Cholesky factorization on a
hypercube. Parallel Computing, 10(3):287-298, May 19809.

[16] John R. Gilbert and Robert Schreiber. Highly parallel sparse Cholesky factorization. SI/AM Journal on Scientific and
Satistical Computing, 13:1151-1172, 1992.

[17] Ananth Grama, Anshul Gupta, and Vipin Kumar. |soefficiency: Measuring the scalability of parallel algorithmsand
architectures. |EEE Parallel and Distributed Technology, 1(3):12-21, August, 1993. Also available as Technica
Report TR 93-24, Department of Computer Science, University of Minnesota, Minneapolis, MN.

[18] Anoop Guptaand Edward Rothberg. An efficient block-oriented approach to parallel sparse Cholesky factorization.
In Supercomputing ' 93 Proceedings, 1993.

[19] Anshul Gupta Analysisand Design of ScalableParallel Algorithmsfor Scientific Computing. PhD thesis, University
of Minnesota, Minneapolis, MN, 1995.

28

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Anshul Gupta. Fast and effective algorithms for graph partitioning and sparse matrix reordering. Technical Report
(Number to be assigned), IBM T. J. Watson Research Center, Yorktown Heights, NY, 1996.

Anshul Gupta. Graph partitioning based sparse matrix ordering algorithms for interior-point methods. Technical
Report RC 20467 (90480), IBM T. J. Watson Research Center, Yorktown Heights, NY, May 21, 1996. Submitted for
publicationin SAM Journal on Optimization.

Anshul Gupta. WGPP: Watson graph partitioning (and sparse matrix ordering) package: Users manual. Technical
Report RC 20453 (90427), IBM T. J. Watson Research Center, Yorktown Heights, NY, May 6, 1996. Also available
at http://www.cs.umn.edu/Research/ibm-cluster/refs'WGPP_Users_Manual .ps.Z.

Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable parallel algorithmsfor sparse matrix factorization.
Technical Report 94-63, Department of Computer Science, University of Minnesota, Minneagpolis, MN, 1994. To
appear in |EEE Transactionson Parallel and Distributed Systems, 1997. Postscript file available viaanonymous FTP
from the site ftp://ftp.cs.umn.edu/users’kumar.

Anshul Gupta and Vipin Kumar. Performance properties of large scale pardlel systems. Journal of Parallel and
Distributed Computing, 19:234-244, 1993. Also available as Technical Report TR 92-32, Department of Computer
Science, University of Minnesota, Minneapolis, MN.

Anshul Gupta and Vipin Kumar. A scalable parallel algorithm for sparse matrix factorization. Technical Report
94-19, Department of Computer Science, University of Minnesota, Minneapolis, MN, 1994. A short version appears
in Supercomputing ' 94 Proceedings. TR available in users/kumar at anonymous FTP site ftp.cs.umn.edu.

Anshul Gupta and Vipin Kumar. Paralle agorithmsfor forward and back substitution in direct solution of sparse
linear systems. In Supercomputing ' 95 Proceedings, December 1995.

M. T. Heath, E. G.-Y. Ng, and Barry W. Peyton. Perallel agorithmsfor sparselinear systems. SAM Review, 33:420—
460, 1991. Also appearsin K. A. Gallivan et al. Parallel Algorithmsfor Matrix Computations. SIAM, Philadel phia,
PA, 1990.

M. T. Heath and Padma Raghavan. Distributed solution of sparse linear systems. Technical Report 93-1793,
Department of Computer Science, University of Illinois, Urbana, 1L, 1993.

LaurieHulbert and Earl Zmijewski. Limitingcommunicationinparallel sparse Cholesky factorization. S AM Journal
on Scientific and Statistical Computing, 12(5):1184-1197, September 1991.

George Karypis, Anshul Gupta, and Vipin Kumar. Parallel formulation of interior point a gorithms. Technical Report
94-20, Department of Computer Science, University of Minnesota, Minneapolis, MN, April 1994. A short version
appears in Supercomputing ' 94 Proceedings.

GeorgeKarypisand Vipin Kumar. Analysisof multilevel graph partitioning. Technical Report TR 95-037, Department
of Computer Science, University of Minnesota, 1995.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
Technical Report TR 95-035, Department of Computer Science, University of Minnesota, 1995.

George Karypisand Vipin Kumar. Parallel multilevel graph partitioning. Technical Report TR 95-036, Department
of Computer Science, University of Minnesota, 1995.

S. G.Kratzer and A. J. Cleary. Sparse matrix factorization on simd parallel computers. In A. George, John R. Gilbert,
and J. W.-H. Liu, editors, Graph Theory and Sparse Matrix Computations. Springer-Verlag, New York, NY, 1993.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parallel Computing: Design and
Analysis of Algorithms. Benjamin/Cummings, Redwood City, CA, 1994,

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Solutions Manual for Introduction to Parallel
Computing. Benjamin/Cummings, Redwood City, CA, 1994.

29

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Vipin Kumar and Anshul Gupta. Analyzing scalability of parallel algorithmsand architectures. Journal of Parallel
and Distributed Computing, 22(3):379-391, 1994. Also available as Technical Report TR 91-18, Department of
Computer Science Department, University of Minnesota, Minnegpolis, MN.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM Journal on Numerical Analysis,
16:346-358, 1979.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied Mathematics,
36:177-189, 1979.

J. W.-H. Liu. The multifrontal method for sparse matrix solution: Theory and practice. Technica Report CS-90-04,
York University, Ontario, Canada, 1990. Also appearsin S AM Review, 34:82-109, 1992.

Robert F. Lucas. Solving planar systemsof equationson distributed-memory multiprocessors. PhD thesis, Department
of Electrical Engineering, Stanford University, Palo Alto, CA, 1987.

Robert F. Lucas, Tom Blank, and Jerome J. Tiemann. A paralldl solutionmethod for large sparse systems of equations.
| EEE Transactions on Computer Aided Design, CAD-6(6):981-991, November 1987.

F. Manne. Load Balancing in Parallel Sparse Matrix Computations. PhD thesis, University of Bergen, Norway,
1993.

Mo Muand John R. Rice. A grid-based subtree-subcube assignment strategy for solving partid differentia equations
on hypercubes. SIAM Journal on Scientific and Statistical Computing, 13(3):826-839, May 1992.

Vijay K. Naik and M. Patrick. Data traffic reduction schemes Chol esky factorization on aynchronous multi processor
systems. In Supercomputing’ 89 Proceedings, 1989. Also available as Technica Report RC 14500, IBM T. J. Watson
Research Center, Yorktown Heights, NY.

S. F. Nugent. The iPSC/2 direct-connect communications technology. In Proceedings of the Third Conference on
Hypercubes, Concurrent Computers, and Applications, pages 51-60, 1988.

Dianne P. O'Leary and G. W. Stewart. Assignment and scheduling in parallel matrix factorization. Linear Algebra
and its Applications, 77:275-299, 1986.

V. Pan and J. H. Reif. Efficient paralel solution of linear systems. In 17th Annual ACM Symposium on Theory of
Computing, pages 143-152, 1985.

ChristosH. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization, Algorithmsand Complexity. Prentice
Hall, 1982.

Alex Pothen, H. D. Simon, and K.-P. Liou. Partioning sparce matrices with eigenvectors of graphs. SIAM Journal
of Mathematical Analysis and Applications, 11(3):430-452, 1990.

Alex Pothen, H. D. Simon, and Lie Wang. Spectral nested dissection. Technical Report 92-01, Computer Science
Department, Pennsylvania State University, University Park, PA, 1992,

Alex Pothen, H. D. Simon, Lie Wang, and Stephen T. Bernard. Towards a fast implementation of spectral nested
dissection. In Supercomputing ' 92 Proceedings, pages 42-51, 1992.

Alex Pothen and Chunguang Sun. Distributed multifrontal factorization using clique trees. In Proceedings of the
Fifth S AM Conference on Parallel Processing for Scientific Computing, pages 34—40, 1991.

Roland Pozo and Sharon L. Smith. Performanceeval uation of theparal lel multifrontal methodin adistributed-memory
environment. In Proceedings of the Sxth SSAM Conference on Parallel Processing for Scientific Computing, pages
453-456, 1993.

PadmaRaghavan. Distributed sparsematrix factorization: QRand Cholesky factorizations. PhD thesis, Pennsylvania
State University, University Park, PA, 1991.

30

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

Edward Rothberg. Performance of panel and block approaches to sparse Chol esky factorization on the iPSC/860 and
Paragon systems. |n Proceedings of the 1994 Scalable High Performance Computing Conference, May 1994.

Edward Rothberg and Anoop Gupta. An efficient block-oriented approach to parallel sparse Cholesky factorization.
In Supercomputing ' 92 Proceedings, 1992.

Edward Rothberg and Robert Schreiber. Improved load distribution in parallel sparse Cholesky factorization. In
Supercomputing ' 94 Proceedings, 1994.

Robert Schreiber. Scalability of sparse direct solvers. Technica Report RIACS TR 92.13, NASA Ames Research
Center, Moffet Field, CA, May 1992. Also appearsin A. George, John R. Gilbert, and J. W.-H. Liu, editors, Sparse
Matrix Computations: Graph Theory Issues and Algorithms (An IMA Workshop Volume). Springer-Verlag, New
York, NY, 1993.

B. Sped pening. The generalized e ement method. Technical Report UIUCDCS-R-78-946, Department of Computer
Science, University of Illinois, Urbana, IL, November 1978.

Chunguang Sun. Efficient paralel solutions of large sparse SPD systems on distributed-memory multiprocessors.
Technical Report CTC92TR102, Advanced Computing Research Institute, Center for Theory and Simulation in
Science and Engineering, Cornell University, Ithaca, NY, August 1992.

Sesh Venugopa and Vijay K. Naik. Effects of partitioning and scheduling sparse matrix factorization on communi-
cation and load balance. In Supercomputing ' 91 Proceedings, pages 866-875, 1991.

P. H. Worley and Robert Schreiber. Nested dissection on a mesh connected processor array. In Arthur Wouk, editor,
New Computing Environments. Parallel, Viector, and Systolic, pages 8-38. SIAM, Philadel phia, PA, 1986.

31

