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Abstract—Multi-dimensional arrays, or tensors, are increas-
ingly found in fields such as signal processing and recommender
systems. Real-world tensors can be enormous in size and often
very sparse. There is a need for efficient, high-performance
tools capable of processing the massive sparse tensors of today
and the future. This paper introduces SPLATT, a C library with
shared-memory parallelism for three-mode tensors. SPLATT
contains algorithmic improvements over competing state of
the art tools for sparse tensor factorization. SPLATT has a fast,
parallel method of multiplying a matricized tensor by a Khatri-
Rao product, which is a key kernel in tensor factorization
methods. SPLATT uses a novel data structure that exploits the
sparsity patterns of tensors. This data structure has a small
memory footprint similar to competing methods and allows
for the computational improvements featured in our work. We
also present a method of finding cache-friendly reorderings
and utilizing them with a novel form of cache tiling. To our
knowledge, this is the first work to investigate reordering
and cache tiling in this context. SPLATT averages almost 30×
speedup compared to our baseline when using 16 threads and
reaches over 80× speedup on NELL-2.

Keywords-Sparse tensors, PARAFAC, CANDECOMP, CPD,
parallel

I. INTRODUCTION

Many application domains give rise to multi-way data that
can be naturally represented via tensors. For example, in
the context of a user content tagging system, e.g., Flickr1,
Delicious2, and Mendeley3 the set of tags that a user in the
system provides to a piece of content is naturally represented
via a three-mode tensor of user-item-tag triplets. Similarly,
the three-way subject-verb-object relations that are being
extracted by the Never Ending Language Learning (NELL)
project [1] are represented via a three-mode tensor of noun-
verb-noun triplets.

This increased applicability of tensors has led to the
expanding use of tensor-based analysis techniques. The
Canonical Polyadic Decomposition (CPD) is one of the most
commonly used factorizations and has seen use in psycho-
metrics [2], signal processing [3], recommender systems [4],
and other fields. CPD, described in Section II-B, attempts
to decompose a tensor into a set of rank-one tensors. Such
a decomposition has numerous applications. For example,
in the context of the tagging system, it can be used to
recommend a set of tags to a user for a particular item or a

1http://www.flickr.com
2http://www.delicious.com
3http://www.mendeley.com

set of items given a user and their previous tags. Similarly in
the context of NELL it can be used for noun-phrase concept
discovery and to detect contextual synonyms [5].

Though the methods for computing CPD are well un-
derstood in the context of dense tensors, most recent ap-
plications of tensor decomposition involve tensors that are
extremely large and very sparse. For example, NELL has
dimensions in the tens of millions and over one-hundred mil-
lion nonzero entries. Existing approaches for dense tensors
cannot be applied to sparse datasets because their memory
consumption scales with the tensor dimensions instead of
the number of nonzeros entries. To address this need, various
approaches that deal with sparse CPD have been proposed in
recent years. The Tensor Toolbox [6] is a widely used MAT-
LAB software package and uses an efficient algorithm that is
not hindered by extreme sparsity. However, Tensor Toolbox’s
algorithm cannot easily be parallelized and as such it cannot
leverage the multiple cores in today’s multiprocessors. On
the other hand, GigaTensor [5] uses an algorithm that is
explicitly designed for large-scale parallelism but requires
more floating-point operations (FLOPs) than other methods.

This paper introduces SPLATT, a C library for operating
on three-mode tensors. Our contributions are three-fold:

1) SPLATT contains algorithmic improvements over the
state of the art tools for factoring sparse tensors.
SPLATT has a fast, parallel method of multiplying
a matricized tensor by a Khatri-Rao product, a key
kernel in tensor factorizations.

2) SPLATT uses a novel data structure that is able to
exploit the sparsity patterns of tensors. This data
structure has a small memory footprint and allows for
the computational improvements featured in our work.

3) We present a method of finding cache-friendly reorder-
ings and utilize them with a novel form of cache tiling.
To our knowledge, this is the first work to investigate
reordering and cache tiling in this context.

We evaluate SPLATT across several large datasets of vary-
ing properties and demonstrate speedup over other compet-
ing methods on each one. We evaluate our method for cache-
friendly reordering and tiling by comparing against random
orderings of our datasets. Finally, we also demonstrate near-
linear scaling of our parallel algorithm.



II. PRELIMINARIES

In this section we provide a brief background on tensors
and their notation. We then describe the Canonical Polyadic
Decomposition, a widely used tensor factorization. For more
information on tensors and their factorizations, we direct the
reader to the essential survey by Kolda and Bader [7]. For
a thorough discussion on implementation details of tensor
computations in MATLAB, see [8].

A. Tensor Notation

Tensors are the generalization of matrices to higher di-
mensions. The dimensions occupied by the tensor are called
modes. We can also say a tensor with n modes is of order
n. For example, a tensor of order three takes the shape
of a box and a tensor of order two would simply be a
matrix. In this work we focus on third-order tensors because
they are the simplest to reason about and visualize. They
also have the added advantage of minimizing clutter due
to added indexing. However, we stress that all methods
presented in this work are easily extended to work with
higher-order tensors. The simplest and perhaps most popular
data structure for representing sparse tensors is a list of
(i, j, k, v) coordinates.

In this work we denote tensors as X and matrices as
A. We write the element in coordinate (i, j, k) of X as
X (i, j, k). Unless otherwise stated, the sparse tensor X is of
dimension I×J×K and has m nonzeros. We use the colon
notation of MATLAB, in which a colon in the place of an
index represents all members of that mode. For example,
A(:, r) is column r of the matrix A.

Fibers are a building block of tensors. Fibers are the
result of holding all but one index constant. The fibers of a
matrix are its rows and columns. In a third-order tensor, its
added fibers are referred to as tubes. Two possible fibers are
X (i, j, :) and X (i, :, k). A slice of a tensor is the result of
holding all but two indices constant. The result is a matrix
and two possible slices are X (i, :, :) and X (:, j, :).

Two essential operations on matrices used in the CPD
are the Hadamard product and the Khatri-Rao product.
The Hadamard product, denoted A ∗ B, is the element-wise
multiplication of A and B. The element (i, j) of A ∗ B is
A(i, j)B(i, j). A and B must match in dimension for the
Hadamard product to exist. The Khatri-Rao product, denoted
A � B, is defined in terms of the Kronecker product

A � B = [a1 ⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn] .

A and B must have matching column dimension for their
Khatri-Rao product to be defined. If A is I×J and B is
M×J , then A�B is IM×J . Figure 1 illustrates the Khatri-
Rao product of two small matrices.

A tensor can be matricized, or unfolded, into a matrix
along any of its modes. In the mode-n matricization, the
mode-n fibers are used to form the columns of the resulting
matrix. The mode-n unfolding of X is denoted as X(n). If X

B =

[
b11 b12
b21 b22

]

C =

 c11 c12
c21 c22
c31 c32

 C � B =


c11b11 c12b12
c11b21 c12b22
c21b11 c22b12
c21b21 c22b22
c31b11 c32b12
c31b21 c32b22


Figure 1: The Khatri-Rao product of two matrices.

is of dimension I×J×K, then X(1) is of dimension I×JK.
Figure 2 demonstrates the unfolding of a small tensor.

X (:, :, 1) =

[
1 2 3
4 5 6

]
X (:, :, 2) =

[
7 8 9
10 11 12

]
X(1) =

[
1 2 3 7 8 9
4 5 6 10 11 12

]

X(2) =

 1 4 7 10
2 5 8 11
3 6 9 12


X(3) =

[
1 4 2 5 3 6
7 10 8 11 9 12

]
Figure 2: The matricizations of an (2×3×2) tensor.

B. Canonical Polyadic Decomposition

CPD is an extension of the Singular Value Decomposition
(SVD) to tensors. In the SVD, a matrix M is decomposed
into the summation F rank-one matrices, where F can
either be the rank of M or some smaller integer if a low-
rank approximation is desired. The SVD is most commonly
written in terms of three matrices M = UΣVᵀ, where U
and V are unitary, Σ is a diagonal matrix of scaling factors,
and the ith rank-one matrix is the outer product of ui and vi.
Often, Σ is absorbed by scaling A and M is instead written
as M = ABᵀ.

CPD extends this concept to factor a tensor into the
summation of F rank-one tensors. A rank-one tensor of
order n is the outer product of n vectors. Determining the
exact rank of a tensor is NP-hard [9] and we are almost
always interested in F � max(I, J,K) for sparse tensors.
When computing the rank-F CPD of a third-order tensor,
we wish to find factor matrices A ∈ RI×F , B ∈ RJ×F ,
and C ∈ RK×F . A, B, and C are typically dense regardless
of the sparsity of X . The matricizations of X can also be
defined in terms of its CPD,

X(1) ≈ A(C�B)ᵀ, X(2) ≈ B(C�A)ᵀ, X(3) ≈ C(B�A)ᵀ.

The method of Alternating Least Squares (ALS) is the
most commonly used algorithm for computing the CPD. In



each iteration we first fix B and C and solve for Â via

Â = min
Â
||X(1) − Â(C � B)ᵀ||2F .

The least squares problem is minimized by

Â = X(1)(C � B)(CᵀC ∗ BᵀB)†,

where M† is the pseudo-inverse of M. (CᵀC ∗ BᵀB) is an
F×F matrix, so computing its pseudo-inverse is a minor
computation relative to X(1)(C�B). Once Â is computed, B̂
and Ĉ are then solved for similarly. The process is repeated
until convergence.

C. Matricized Tensor Times Khatri-Rao Product

We denote M = X(1)(C � B) as MTTKRP (matricized
tensor times Khatri-Rao product). MTTKRP is executed once
per mode per iteration of ALS. For simplicity of notation
and space, we only write MTTKRP in terms of operating on
the first mode. We define M to have I rows and B and C
to have J and K rows, respectively. M, B and C all have
F columns.

MTTKRP is often the bottleneck of computing the CPD.
Even though M is only an I×F matrix, C � B is a
dense JK×F matrix which can occupy significantly more
memory than X . The size and the cost of forming C � B
is prohibitive for all but the smallest sparse tensors. An
efficient MTTKRP implementation is essential for large-scale
tensor operations and C � B cannot by explicitly formed in
practice.

III. RELATED WORK

Over the years a number of approaches have been devel-
oped for computing the MTTKRP. The most efficient of these
methods operate in O(m) time, but differ in implementation
difficulty, cache utilization, and opportunities for parallelism.

A. Sparse Tensor-Vector Products

Each column of M is a linear combination of the fibers
of X with columns of B and C. MTTKRP can be formulated
as a series of F tensor-vector products [8]. Using tensor-
vector products is the chosen method for several major
MATLAB implementations such as Tensor Toolbox [6] and
Tensorlab [10].

A three-mode tensor requires two tensor-vector products
per column of M. A temporary array t of size m is used to
“stretch” the vectors B(:, f) and C(:, f) to map to nonzeros
of X . For each column f , the two tensor-vector products are
performed at once and stored within t. Once t is filled, we
need to “shrink” it to a vector of length I . This essentially
sums all of the entries of t that correspond to nonzeros
X (i, :, :) and stores the result as M(i, f). Algorithm 1
presents pseudocode for computing tensor-vector products.

Using sparse tensor-vector products uses 3mF FLOPs
(2mF for the initial products and mF for the accumula-
tion steps) and m intermediate memory words for t. Each

Algorithm 1 MTTKRP via Sparse Tensor-Vector products.
Input: nonzeros of X and respective I , J , and K indices
Output: M

for f ← 0 to F do
for z ← 0 to m do . Vector products

t[z]← vals[z]B(indJ [z], f)C(indK[z], f)
end for
for z ← 0 to m do . Accumulate M(:, f)

M(indI[z], f)←M(indI[z], f) + t[z]
end for

end for

nonzero can be processed in parallel during the “stretch”
stage because a nonzero will only modify a single element
of t. The accumulation step does not have this guarantee,
however, and must be executed serially. An advantage of this
method is that X does not require any special data structure
and it can be implemented in just a few lines of code in
MATLAB.

For a more in-depth overview of various tensor products,
we refer the reader to the work of Bader and Kolda [8], [7].

B. GigaTensor

GigaTensor [5] is a parallel CPD-ALS algorithm devel-
oped for the MapReduce [11] paradigm. GigaTensor utilizes
the massive parallelism of MapReduce by reformulating
MTTKRP as a series of Hadamard products. There are no
dependencies during a Hadamard product and each element
of the output can be computed in parallel.

GigaTensor avoids the construction of C�B by separately
computing the contributions of B(:, f) and C(:, f) with X(1)

via two Hadamard products. After computing the separate
contributions, the results are combined via a third Hadamard
product. The resulting matrix N has the same sparsity pattern
as X(1) and each nonzero entry N(i, y) is equal to

N(i, y) = X(1)(i, y)B(y%J, f)C(y/J, f). (1)

After computing the entries of N, the rows of the resulting
matrix are summed to form a column of M. The total process
requires 5mF FLOPs and m+max(J,K) intermediate
memory.

C. DFacTo

DFacTo [12] is a recent algorithm designed for distributed
tensor factorization. DFacTo uses an efficient MTTKRP al-
gorithm that is posed as a series of sparse matrix-vector
multiplications (SpMVs). M is computed one column at a
time and each column is formed by two SpMVs. DFacTo
first forms Xᵀ

(2), an IK×J sparse matrix whose rows consist
of the mode-2 fibers of X . When forming column M(:, f)
we first compute Xᵀ

(2)B(:, f) and store the result in the vals
field of Mr, an I×K sparse matrix. Finally, we compute



MrC(:, f) and store the result in M(:, f). The process is
repeated for each of the F columns.

DFacTo requires (2m+P+1) memory words to store
X , where P is the number of non-empty mode-2 fibers.
An additional (2P+I+1) words are required to store Mr

for a total memory footprint of (2m+I+3P+2) words.
DFacTo executes MTTKRP in 2F (m+P ) FLOPs. DFacTo
consists entirely of SpMV operations and therefore can take
advantage of a wealth of existing research that can be applied
to an efficient parallel implementation.

IV. SPLATT

We developed an alternative algorithm for MTTKRP which
uses a novel data structure for representing tensors. Our
algorithm computes entire rows of M at a time and as a result
only requires a single traversal of the sparse tensor structure.
Our work is realized in the form of SPLATT, a C library for
three-mode tensors with shared-memory parallelism. In this
section we first show a derivation of our algorithm and an
analysis of its data structure and computational performance.
We discuss its generalization to an arbitrary number of
modes and lastly discuss its parallelization.

A. Derivation

Let us briefly assume that X is dense, and so each row
of X(1) has exactly JK nonzeros. If we start from (1),

M(i, f) =

JK∑
z=0

X(1)(i, z)B(z%J, f)C(z/J, f)

M(i, :) =

JK∑
z=0

X(1)(i, z)(B(z%J, :) ∗ C(z/J, :)) (2)

=

K∑
k=0

J∑
j=0

X (i, j, k)(B(j, :) ∗ C(k, :)) (3)

M(i, :) =

K∑
k=0

C(k, :) ∗
J∑

j=0

X (i, j, k)B(j, :) (4)

First, we rewrite (1) to operate on a row of M. Next, we
break the columns of X(1) into J and K components to
arrive at (3). Finally, we are able to factor out the inner
multiplication of C(k, :) and reach the more efficient solu-
tion (4). The factored C term saves F (J−1) multiplications
per X (i, :, k) fiber. If X is sparse and fiber X (i, :, k) has
Ĵ nonzeros, then F (Ĵ−1) FLOPs are saved, resulting in a
total 2F (m+P ) FLOPs.

Figure 3 illustrates SPLATT when operating with a single
column. The algorithm that follows from (4) is straightfor-
ward. Algorithm 2 details the work for a single slice of X .

Algorithm 2 SPLATT

Input: Slice X (i, :, :)
Output: Row M(i, :)

M(i, :)← 0
for all unique k ∈ X (i, :, :) do . Each X (i, :, k) fiber

accum(:)← 0 . F×1 vector for accumulation
for all j ∈ X (i, :, k) do

accum(:)← accum(:) +X (i, j, k)B(j, :)
end for
M(i, :)←M(i, f) + C(k, f)accum(:)

end for

I

J
K

X

J

B

K

C

Figure 3: SPLATT: The dashed blue line shows the fiber of X
and its inner product with a column of B. The inner product
is then scaled by the circled value of C.

B. Storage Scheme and Computational Complexity

SPLATT represents sparse tensors in a hierarchical, fiber-
centric fashion. Each mode is stored as a list of slices.
Each slice in turn contains a list of fibers represented
as sparse vectors. Slices are stored in a structure that is
very similar to a compressed sparse row (CSR) matrix.
However, since slices are often extremely sparse, empty
fibers should consume no storage overhead. Each fiber is
also accompanied by a fiber id (fid) which specifies its K
coordinate index.

Let X have P mode-2 fibers. SPLATT uses m floating-
point numbers and m integers to store each nonzero value
and its j coordinate. Analogous to rows of a CSR matrix,
(P+1) integers are required to store the start indices for the
fibers and one integer is used for each fid. Finally, (I+1)
integers are used to mark the start indices of each slice. The
total memory footprint of X is (2m+I+P+2) words. The
only additional memory is used to store the F inner products
that are used to update M(i, :). SPLATT uses 2F (m+P )
FLOPs which is identical to DFacTo.

We note that storage requirements for SPLATT and
DFacTo are similar. Both are ultimately focused on a repre-
sentation of the sparse fibers in X . However, SPLATT only
needs to store F additional floating-point numbers during
computation and does not need the 2P memory words used
to store Mr that DFacTo requires. Additionally, SPLATT



exhibits memory access patterns that have better spatial
locality because the sparse structure of X is traversed only
once and each nonzero value is used in F multiplications
after being fetched from memory. This is a result of the row-
oriented approach taken by SPLATT, which to our knowledge
is the first of its kind in the sparse tensor community.

The decision to factor out C instead of B in (4) was
arbitrary. Deciding which term to factor can greatly impact
storage and computational performance. The decision is
most relevant when the dimensions of the X are not equal.
By storing fibers along the longer mode, we are able to
minimize the number of stored fibers and increase the
average fiber length. The benefit of this scheme is twofold:
we reduce the amount of memory required to store the tensor
and reduce the number of FLOPs due to a larger number
of factored multiplications. Section VII-A demonstrates the
benefits of selecting the best mode to factor.

C. Extensions to Higher-Order Tensors

While the body of this work is dedicated to three-mode
tensors, our algorithm is easily extended to operate on
tensors with four or more modes. If X is an n-mode tensor,
then MTTKRP in the first mode becomes

M = X(1)(A(n) � A(n−1) � · · ·� A(2)).

The block structure in the Khatri-Rao product becomes more
pronounced as n increases. SPLATT is able to exploit this
block structure by factoring out a new set of multiplications
per mode. Let X be an n-mode tensor with dimensions
I1×I2× . . .×In. Our algorithm for MTTKRP in the first
mode is formulated as

M(i1, :) =

In∑
in=0

A(n)(in, :) ∗
In−1∑

in−1=0

A(n−1)(in−1, :)

· · ·
I3∑

i3=0

A(3)(i3, :)∗

(
I2∑

i2=0

X (i1, i2, . . . , in−1, in)A(2)(i2, :)

)
.

The Khatri-Rao product operates on n−1 modes, requir-
ing F (n−2) words of intermediate memory. The last mode
does not need intermediate memory because it writes to M
directly. Like before, fibers of X are used for inner products
with A(2), which are then scaled by the corresponding row
of A(3) and so on.

When forming each of the n representations of X , we
must choose an ordering of the remaining n−1 modes. As
discussed in Section IV-B, arranging the modes to minimize
the number of fibers (and maximize the average fiber length)
can have a significant impact on the storage and computa-
tion required. This is achieved by sorting modes by their
dimension such that the shortest modes correspond to outer
loops and the longest mode corresponds to the direction that
X stores its fibers.

D. Parallelization

The parallel version of SPLATT uses a task decomposition
on the rows of M. Since the computation of M(i, :) requires
only the nonzeros in slice X (i, :, :), the mode-1 slices of
X can be distributed among processes. All process write
to distinct rows of M and thus parallel execution requires
no locks or synchronization. Each process requires only F
words of additional storage to accumulate inner products.
Since F � m this method is memory scalable.

The unstructured sparsity pattern of X poses the issue
of potential load imbalance. The nonzeros of X are rarely
distributed in a uniform fashion. For example, the number
of nonzeros across the slices in NELL can vary by several
orders of magnitude. A static decomposition of rows can
assign hugely disproportionate amounts of work to the
processes, resulting in severe load imbalance and reduced
scalability. Therefore, SPLATT uses dynamic load balancing
when distributing tasks to processes.

V. OPTIMIZING FOR CACHE PERFORMANCE

In addition to the algorithmic improvements used by
SPLATT, we present a method of achieving further speedup
by efficiently utilizing the CPU memory hierarchy through
means of reordering and cache blocking.

A. Tensor Reordering

Permuting the indices within one or more modes, or
reordering, can lead to significant performance gains as
it can potentially improve cache utilization by exploiting
spatial and temporal locality. Figure 4 illustrates a tensor
before and after reordering.

The goal of reordering a sparse tensor is to group nonzeros
into semi-dense regions. Nonzeros form a sequence of
semi-dense cuboids along the super-diagonal after an ideal
reordering. Dense regions are attractive because they offer
increased cache performance while accessing B and C.
Consider the execution of SPLATT along the first mode.
The mode-2 indices in a fiber determine which rows of
B are accessed and the constant mode-3 index determines
the accessed row of C. Consecutive mode-2 indices result
in an unstrided access pattern that offers spatial locality
in memory and can effectively utilize hardware prefetching
mechanisms. If the accessed portion of B is sufficiently small
and there are shared mode-2 indices in nearby fibers, the
required portions of B will still reside in cache. Additionally,
as other slices are processed we can also see the same reuse
in C due to repeated mode-3 indices.

In this work we identify two methods of reordering sparse
tensors. The first is based on the partitioning of a graph
that models the interactions between slices of each mode
of X . This method is mode-independent because a single
reordering is used for each mode of computation. The second
method is based on the partitioning of a hypergraph that
models the memory accesses to M, B, and C. Unlike the




0 3 0 3 0 0 0 0 2 0 0 2
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 2 0 0 2
0 3 0 3 0 0 0 0 0 0 0 0


(a)

3 3 0 0 0 0 0 0 0 0 0 0
3 3 0 0 0 2 2 0 0 0 0 0
0 0 0 0 0 2 2 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1


(b)

Figure 4: A tensor (a) before reordering and (b) after
reordering.

tripartite graph model, the hypergraphs are specific to a given
mode (mode-dependent) and thus multiple reorderings are
needed.

1) Mode-Independent Reorderings: The objective of a
mode-independent reordering is to find a single tensor per-
mutation that results in improved execution time regardless
of which mode MTTKRP is being performed on. We achieve
this goal by permuting modes of the tensor such that indices
with high levels of similarity are adjacent.

We draw from the bipartite graph model for reordering
sparse matrices [13]. Suppose X is an n-mode tensor
with dimensions I1×I2× . . .×In. We construct an n-partite
graph whose vertex sets are of cardinalities I1×I2× . . .×In.
Nonzero X (i1, i2, . . . , in) generates a clique that connects
nodes i1, i2, . . . , in. Using this scheme, edge (ia, ib) will be
created every time a nonzero is processed with indices ia
and ib appearing together. To account for this we weight
edges based on the number of times they are generated. For
example, when X has three modes the resulting graph is
tripartite and edge (i, k) has weight equal to the number
of nonzeros in the X (i, :, k) fiber. Figure 5 shows a small
tensor and its corresponding graph.

After generating a tensor’s graph, a graph partitioner is
used to create a partitioning. The graph is next relabeled
such that vertices in the same partition are given consecutive
labels. Finally, we generate a reordered tensor from the
relabeled graph.

2) Mode-Dependent Reorderings: Mode-dependent re-
orderings offer further opportunities for optimization at
the cost of additional work during the reordering stage.
When operating within a certain mode we know precisely
which memory accesses will result from the tensor’s sparsity
pattern.

Our hypergraph model is an extension of the column-
net model originally used for parallel sparse matrix-vector
multiplication [14]. Fibers are our unit of work and are
analogous to rows in a sparse matrix. Fibers are mapped

[
α β 0 0
0 γ 0 δ

]
(a)

αβ

γ

δii1

i i2

ij1

i
j2

ik1

i
k2

(b)

i1 i2

j1 k1 j2 k2

2 2

2

(c)

Figure 5: (a) X , a 2×2×2 tensor. (b) X mapped to a mode-
1 hypergraph whose nodes are the X (i, :, k) fibers. Filled
nodes are hyperedges. (c) X mapped to a tripartite graph
with unlisted weights assumed to be unit.

to vertices in the hypergraph. Each mode emits as many
hyperedges as its own dimension. A three-mode tensor will
have I+J+K hyperedges. Each hyperedge connects all
fibers that its corresponding index can be found within.
For example, if fiber X (i, :, k) has three nonzeros, then
that vertex will be connected by five hyperedges. Two
connections will come from the i and k indices and the final
three will come from each nonzero mode-2 index found in
the fiber.

Our goal is to model memory accesses as hyperedges.
The number of partitions in which a hyperedge is found
(or, its connectivity) exactly models the number of times
that its corresponding row in M, B, or C must be fetched
from memory. Thus, by minimizing the connectivity of all
hyperedges (known as the sum of external degrees), we
minimize the number of total memory accesses.

We partition the hypergraph to induce a reordering of the
tensor. Fibers (vertices) are relabeled such that fibers in the
same partition are given consecutive labels. Relabeling a
fiber means to relabel all indices found in its nonzero entries.
Indices are not unique to fibers and so we ensure that we
only label an index the first time it is encountered. Consider
fibers stored along the second mode. Mode-1 and mode-3
indices determine the order in which fibers are processed.
This affects temporal locality because it allows fibers with
similar sparsity pattern to be processed nearby in time.
Relabeled mode-2 indices affect spatial locality and allow
a fiber and its neighbors to access consecutive rows of B.

A clear drawback of a mode-dependent reordering is
the need to construct and partition a hypergraph for each
mode. Fortunately, much of this cost is mitigated due to
the ordering of modes done by SPLATT. Recall that SPLATT
stores fibers along the mode with the largest dimension.
Consider a tensor of dimensions I×J×K and I<J<K.
SPLATT will store fibers along the third mode for the first



two modes of computation. During the third mode, fibers
will be stored along the second mode because it has the
next largest dimension. The only difference in execution
between the first and second modes is the order in which
fibers are processed. Thus, the hypergraphs of the first and
second modes will be identical except for the labels of
mode-1 and mode-2 hyperedges. A consequence is that a
partitioning of one hypergraph will be equally suited for
the other. Therefore, only partitionings of the mode-1 and
mode-3 hypergraphs are needed for a complete reordering.
This observation extends to tensors of higher modes as well.
Irrespective of the number of modes, only two partitionings
are needed: one generated by the longest mode and one
generated by any other mode.

B. Cache Blocking over Sparse Tensors

The extremely large dimensions that sparse tensors often
exhibit are prohibitive to memory performance, even with
a good reordering. Assume that fibers run along the second
mode and are defined by a unique (i, k) pair. Long fibers
will fetch enough of the rows of B to evict cache lines that
would otherwise be reused in other nearby fibers. In order
to maximize data reuse, we used cache blocking.

Our method of blocking over a sparse tensor during
MTTKRP is a generalization of the blocking used for matrix-
vector multiplication. We seek to define three-dimensional
tiles over the sparsity pattern of X . If a tile has dimension
I ′×J ′×K ′ then accesses to M, B, and C are limited to
a maximum of I ′, J ′, and K ′ rows, respectively. Thus,
by carefully selecting tile dimensions such that the entire
working set fits in CPU cache we can increase reuse of M,
B, and C.

Tiling over a sparse tensor is not a trivial task. An
implementation that statically assigns nonzeros to tiles based
on their coordinates and the tile dimensions will result in
mostly empty or near-empty tiles due to the high levels
of sparsity present. Additionally, most datasets feature un-
structured sparsity patterns that can result in tiles of wildly
varying density. We propose a method of growing tiles to
adapt to the sparsity pattern of a given tensor.

First, we divide the mode-1 slices into sets of size I ′. We
call a set of slices a layer. Since empty slices can be trivially
removed from the dataset, we assume that they are either
not present or are rare enough such that we may statically
assign slice i to layer i/I ′. The sparsity pattern of each
layer may differ dramatically and thus each layer is given
an independent tiling.

We proceed one layer at a time. Within each layer we first
construct the set of mode-3 indices present. We divide the
indices into sets of size K ′ and arrange the X (i, :, k) fibers
into tubes, each with a maximum of I ′ mode-1 indices and
K ′ mode-3 indices. Each tube must be tiled independently
due to their varying sparsity patterns.

Finally, within each tube we construct the set of mode-2
indices that are present. This set is used to divide the tube
into tiles with I ′ + J ′ +K ′ unique indices. If we choose
dimensions so that F (I ′ + J ′ +K ′) floating point numbers
can comfortably fit in cache, and the ordering of X provides
regions which are relatively dense, then we have effectively
increased reuse in M, B, and C.

All of the fibers within a slice are no longer adjacent in
memory after tiling. Consequently, parallel execution within
a layer is difficult because writes to the same row of M can
occur at any time. We identify two methods of modifying
SPLATT to execute over a tiled tensor. The first method is
to distribute the tiled layers among threads and prevent race
conditions while avoiding synchronization or atomics. The
drawback of distributing entire layers is that the working
set of each tile is now local to individual threads. The data
reused between threads will be limited to similarities in spar-
sity pattern between layers. The second method of tiling is a
cooperative scheme. Each thread uses its own I ′×F matrix
of scratch space to accumulate writes to M. All threads
execute concurrently within a tile but must synchronize at
the end of each layer. After the synchronization, threads
cooperate to do a summation of the scratch matrices. Since
we operate in a shared address space we are able to evenly
distribute the I ′ rows of scratch space among threads and
do a reduction with only a synchronization at the end.

VI. EXPERIMENTAL METHODOLOGY

A. Experimental Setup

SPLATT was implemented in C with double precision
floating-point numbers and 64-bit integers. SPLATT uses
OpenMP for shared memory parallelism. All source code
is available for download4. Load balance is achieved by
OpenMP’s dynamic scheduling with a chunksize of 16.
Experiments were carried out on an HP ProLiant BL280c
G6 blade server with dual 8-core E5-2670 Xeon processors
running at 2.6 GHz. Source code was compiled with GCC
4.8.0 using optimization level O2. For all experiments we
used F = 10.

B. Datasets

We evaluated our method across several datasets of vary-
ing properties. Table I is a summary of the mentioned
datasets.

The Netflix dataset is taken from the Netflix Prize com-
petition [15]. The dataset forms a user-item-time ratings
tensor. Two datasets come from the Never Ending Language-
Learning (NELL) project [1] which is freely available. Both
tensors represent noun-verb-noun triplets. NELL-1 is the
complete, extremely sparse dataset and NELL-2 is a smaller,
more dense version in which the infrequent items have been
pruned. BrainQ [16] is derived from fMRI measurements of

4http://cs.umn.edu/˜shaden/software/



Table I: Summary of datasets.

Dataset I J K nnz density
Netflix 480K 18K 2K 100M 5.4e-06
NELL-1 4M 4M 25M 144M 3.1e-13
NELL-2 15K 15K 30K 77M 1.3e-05
BrainQ 60 70K 9 11M 2.9e-01
Delicious 532K 17M 2.5M 140M 6.1e-12

nnz is the number of nonzero entries in the dataset. density
is defined by nnz/(I×J×K).

Table II: Difference in storage requirements and runtime for
the mode-1 slices of each dataset.

Storage (Improvement) Time (Speedup)
Dataset Short Long Short Long
Netflix 7.75 5.02 (1.54×) 8.77 6.02 (1.45×)
NELL-1 11.91 8.88 (1.34×) 25.74 19.83 (1.29×)
NELL-2 4.32 3.69 (1.17×) 3.18 2.78 (1.14×)
BrainQ 0.54 0.50 (1.08×) 0.28 0.31 (0.90×)
Delicious 9.28 8.23 (1.12×) 17.66 15.61 (1.13×)

Short and Long refer to SPLATT using fibers along the short or the
long mode, respectively. Storage is measured in gigabytes. Runtime is
the average time in seconds to perform an execution of SPLATT in all
three modes. Storage and runtime for Short is measured relative to Long.
No cache tiling is used. × denotes improvement over Short.

brain activity. Its three modes are noun-voxel-human subject.
BrainQ is an interesting dataset because its dimensions
are relatively small, resulting in a tensor several orders of
magnitudes more dense than the other tensors studied in this
work. Delicious is a user-item-tag dataset originally crawled
by Görlitz et al. [17] and is also available for download.

VII. RESULTS

A. Effects of Fiber Direction Selection

SPLATT chooses at runtime which direction to store fibers
in each of its modes. For example, the slices of the first mode
can either have fibers that run along the second or third mode
and the slices of the second mode will follow either the first
or third mode. This is analogous to determining whether the
sparse matrix representing each slice is stored in a row or
column major format. Each fiber comes with some storage
overhead and the number of saved FLOPs is dependent on
the number of nonzeros per fiber. When there is a large
disparity between the dimensions of X , choosing to have
fewer, longer fibers is beneficial.

We evaluated this optimization on each of our datasets
and present results in Table II. SPLATT requires less memory
when storing fibers along the longer dimensions for all tested
datasets. Additionally, faster runtimes are exhibited on all
datasets except BrainQ, in which shorter fibers had a 1.10×
speedup. Speedup peaked at 1.45× on Netflix.

B. Effects of Tensor Reordering and Cache Tiling

To evaluate our methods of improving cache performance
we measured runtime of SPLATT across orderings and tile
sizes. The baseline is a randomly permuted tensor without

Table III: Effects of Tensor Reordering.

Time (Speedup)
Dataset Random Mode-Independent Mode-Dependent
Netflix 6.02 5.26 (1.14×) 5.43 (1.10×)
NELL-1 19.83 17.83 (1.11×) 17.55 (1.12×)
NELL-2 2.78 2.61 (1.06×) 2.60 (1.06×)
Delicious 15.61 13.10 (1.19×) 12.51 (1.24×)

Runtime is the average time to perform a serial execution of SPLATT
across all three modes. When reordering, the number of partitions was
scaled from 32 to 1024 and the best result used. Time is measured in
seconds. × denotes speedup over a random ordering.

Table IV: Effects of Cache Tiling.

Time (Speedup)
Thds SPLATT tiled MI+tiled MD+tiled
1 8.14 (1.0×) 8.90 (0.9×) 8.70 (1.0×) 9.18 (0.9×)
2 4.73 (1.7×) 4.88 (1.7×) 4.37 (1.9×) 4.52 (1.8×)
4 2.54 (3.2×) 2.58 (3.2×) 2.29 (3.6×) 2.35 (3.5×)
8 1.42 (5.7×) 1.41 (5.8×) 1.26 (6.5×) 1.26 (6.4×)
16 0.90 (9.0×) 0.85 (9.5×) 0.74 (11.0×) 0.75 (10.8×)

Time is measured in seconds and averaged across all datasets. Thds is
the number of threads used. MI and MD are mode-independent and mode-
dependent reorderings, respectively. When reordering, the number of parti-
tions was scaled from 32 to 1024 and the best result used. × denotes speedup
over a random ordering without tiling.

tiling. Since reordering will only offer speedup on very
sparse tensors, we omitted BrainQ from the reordering ex-
periments. Times reported are the average time of executing
SPLATT with one thread across all three modes. Results are
shown in Table III. Delicious saw the largest benefit and
reached 1.24× speedup after a mode-dependent reordering.

We found that reordering alone is not sufficient for
maximizing performance. On all datasets, the best parallel
speedups were found using a combination of reordering and
cache tiling. The best results that we achieved using 16
threads are shown in Table IV. Note that these configurations
are the most scalable configurations and not necessarily the
fastest at small numbers of threads. This is because tiling
increases arithmetic operations and the memory footprint of
the tensor due to fibers being split across boundaries. After
tiling we found the runtimes of mode independent and mode
dependent reorderings to be similar, with mode-independent
reorderings slightly faster.

Datasets with modes of relatively small dimension
(BrainQ, Netflix, and NELL-2) saw benefit from cooperative
tiling with up to a 1.22× speedup on BrainQ compared
to traditional tiling. The number of synchronizations and
reductions scale with the mode dimensions and thus large
datasets such as NELL-1 and Delicious saw impaired scal-
ability when using cooperative tiling. We experimentally
found that tiles of dimension 2048×2048×4096 gave the
best performance when executing cooperatively and tiles of
dimension 32×1024×1024 gave the best performance when
distributing entire layers to threads.



C. Parallel Scaling Results

We evaluated SPLATT against three competitor algorithms:
sparse tensor-vector products (‘TVec’), GigaTensor, and
DFacTo. TVec and GigaTensor were implemented in C and
optimized to the best of our ability. DFacTo is written in
C++ and has been made freely available by the authors [18].
DFacTo is a distributed code and uses MPI for parallelism.
During our scalability study we ran with all MPI ranks on
a single machine and omitted communication costs from
our timings. Each of the competitor methods are column-
oriented approaches and thus we used a column-major layout
for the factor matrices when evaluating competitors. SPLATT
uses a row-major layout for the factor matrices. Tensors start
from a random ordering and SPLATT does not have cache
tiling enabled. Speedup reported is based off the average
time to execute MTTKRP across all three modes, which
simulates an iteration of ALS. We scale from one to sixteen
processors and measure speedup relative to the serial runtime
of TVec.

Figure 6 shows the mean speedup across all datasets. On
average, SPLATT is 3.7× faster than our baseline and scales
to be 29.8× faster with 16 threads. SPLATT exhibits the best
performance on NELL-2, reaching 81× speedup. Figure 7 il-
lustrates scaling on NELL-2. Near-linear scaling is achieved
on all but one dataset, BrainQ. BrainQ’s low dimension,
especially in the third mode, limits the parallelism that
SPLATT can exploit (Figure 8). SPLATT extracts parallelism
from the slices of each mode and thus any processes beyond
the number of slices are necessarily idle during computation.
Despite the limited scalability on BrainQ, SPLATT is still
able to significantly outperform competitor methods across
a wide range of nonzero densities.

VIII. CONCLUSIONS

Tensors are becoming increasingly important in today’s
data analysis and there is a real need for highly optimized
sparse tensor tools. In this work we introduced SPLATT, a C
library for parallel sparse tensor computations with a highly
optimized method of computing MTTKRP. We presented a
method of reordering sparse tensors and cache tiling to
improve data locality and by using a novel data structure
were able to improve cache reuse and achieve serial and
parallel speedup across a variety of datasets. On average,
SPLATT is over 3× faster than our baseline using one thread
and scales to average 29× faster at 16 threads.

A challenging characteristic of many tensor computations
is the modal nature of the problem. SPLATT, DFacTo, and
GigaTensor all require a separate representation of the tensor
for each mode. Ravindran et al. [19] recently introduced
efficient algorithms for performing MTTKRP in all three
modes that collectively use only a single representation of
the tensor. Our future work includes adapting SPLATT to this
model investigating memory-scalable algorithms for tensor
factorization in the context of distributed systems.
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Figure 6: Average speedup over serial Tensor-Vector Prod-
ucts (‘TVec’). SPLATT+mem indicates that reordering and
tiling are used.
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[9] J. Håstad, “Tensor rank is np-complete,” Journal of Algo-
rithms, vol. 11, no. 4, pp. 644–654, 1990.

[10] L. Sorber, M. Van Barel, and L. De Lathauwer. (2014, Jan.)
Tensorlab v2.0. [Online]. Available: http://www.tensorlab.net/

[11] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[12] J. H. Choi and S. Vishwanathan, “Dfacto: Distributed fac-
torization of tensors,” in Advances in Neural Information
Processing Systems, 2014, pp. 1296–1304.

[13] B. Hendrickson and T. G. Kolda, “Partitioning rectangular
and structurally unsymmetric sparse matrices for parallel
processing,” SIAM Journal on Scientific Computing, vol. 21,
no. 6, pp. 2048–2072, 2000.

[14] U. V. Catalyurek and C. Aykanat, “Hypergraph-partitioning-
based decomposition for parallel sparsemmatrix vector mul-
tiplication,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 10, no. 7, pp. 673–693, 1999.

[15] J. Bennett and S. Lanning, “The netflix prize,” in Proceedings
of KDD cup and workshop, vol. 2007, 2007, p. 35.

[16] T. M. Mitchell, S. V. Shinkareva, A. Carlson, K.-M. Chang,
V. L. Malave, R. A. Mason, and M. A. Just, “Predicting
human brain activity associated with the meanings of nouns,”
science, vol. 320, no. 5880, pp. 1191–1195, 2008.

[17] O. Görlitz, S. Sizov, and S. Staab, “Pints: peer-to-peer infras-
tructure for tagging systems.” in IPTPS, 2008, p. 19.

[18] J. H. Choi and S. Vishwanathan. (2015,
Jan.) Dfacto source code. [Online]. Available:
http://web.ics.purdue.edu/˜choi240/index.html

[19] N. Ravindran, N. D. Sidiropoulos, S. Smith, and G. Karypis,
“Memory-efficient parallel computation of tensor and matrix
products for big tensor decomposition,” in Proceedings of the
Asilomar Conference on Signals, Systems, and Computers,
2014.


