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Abstract

With recent advances in large scale sequencing technologies, we have seen an exponential growth in protein sequence information. Cur-
rently, our ability to produce sequence information far out-paces the rate at which we can produce structural and functional information.
Consequently, researchers increasingly rely on computational techniques to extract useful information from known structures contained in
large databases, though such approaches remain incomplete. As such, unraveling the relationship between pure sequence information and
three dimensional structure remains one of the great fundamental problems in molecular biology.

In this report we aim to show several ways in which researchers try to characterize the structural, functional and evolutionary nature of
proteins. Specifically, we focus on three common predictionproblems, secondary structure prediction, remote homology and fold prediction.
We describe a class of methods employing large margin classifiers with novel kernel functions for solving these problems, supplemented with
a thorough evaluation study.

1 Introduction

The motivation behind the structural determination of proteins is based on the belief that structural information willultimately
result in a better understanding of intricate biological processes. Many methods exist to predict protein structure atdifferent lev-
els of granularity. Due to the interest from a wide range of research communities in this subject matter, a biennial competition,
The Critical Assessment for Structure Prediction (CASP)1 assesses the performance of current structure prediction methods.
In this report we aim to show several ways in which researchers try to characterize the structural, functional and evolutionary
nature of proteins.

Within each structural entity called a protein there lies a set of recurring substructures, and within these substructures are
smaller substructures still. As an example, consider hemoglobin, the oxygen-carrying molecule in human blood. Hemoglobin
has four domains that come together to form its quaternary structure. Each domain assembles (i.e. folds) itself independently
to form a tertiary structure. These tertiary structures arecomprised of multiple secondary structure elements–in hemoglobin’s
case�helices. Alpha helices (and their counterpart

�
sheets) have elegant repeating patterns dependent upon sequences of

amino acids. These sequences form the primary structure of aprotein, the smallest structural division aside from atoms. Hence,
the linear ordering of amino acids forms secondary structure, arranging secondary structures yields tertiary structure, and the
arrangement of tertiary structures forms quaternary structure. (See Figure 1). Research in computational structure prediction
concerns itself mainly with predicting secondary and tertiary structure from known experimentally determined primary struc-
ture. This is due to the relative ease of determining primarystructure and the complexity involved in quaternary structure.
In this chapter we provide an overview of current secondary structure prediction techniques, followed by a breakdown ofthe
tertiary structure prediction problem and descriptions ofalgorithms for each of several more restricted problems.

1.1 Secondary Structure Prediction

A sequence of characters representing the secondary structure of a protein describes the general three-dimensional form of local
regions. These regions organize themselves into patterns of repeatedly occurring structural fragments independently from the
rest of the protein. The most dominant local conformations of polypeptide chains are alpha helices and beta sheets. These local
structures have a certain regularity in their form, attributed to the hydrogen bond interactions between various residues. An
alpha helix has a coil-like structure, whereas a beta sheet consists of parallel strands of residues. (See Figure 1). In addition to
regular secondary structure elements, irregular shapes form an important part of the structure and function of proteins. These
elements are typically termed coil regions.

1http://predictioncenter.org/
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Secondary structure can be divided into several types, though usually at least three classes (alpha-helix, coils and beta-sheet)
are used. No unique method of assigning residues to a particular secondary structure state from atomic coordinates exists,
though the most widely accepted protocol is based on the DSSPalgorithm [25]. DSSP uses the following structural classes:
H (�-helix), G (���-helix), I (�-helix), E (

�
-strand), B (isolated

�
-bridge), T (turn), S (bend), and – (other). Several other

secondary structure assignment algorithms use a reductionscheme that converts this eight-state assignment down to three states
by assigning H and G to the helix state (H), E and B to a the strand state (E), and the rest (I, T, S, and –) to a coil state (C).
This is the format generally used in structure databases. Within the secondary structure prediction problem, the task is to learn
a model that assigns a secondary structure state to each residue of an input sequence in the absence of atomic coordinates.

1.2 Protein Tertiary Structure

One of the biggest goals in structural bioinformatics is theprediction of the three-dimensional (3D) structure of a protein from its
one-dimensional (1D) protein sequence. The goal is to be able to determine the shape (known as a fold) that a given amino acid
sequence will adopt. The problem is further divided based onwhether the sequence will adopt a new fold or bear resemblance
to an existing fold (template) in some protein structure database. Fold recognition is easy when the sequence in question has
a high degree of sequence similarity to a sequence with knownstructure [7]. If the two sequences share evolutionary ancestry
they are said to be homologous. For such sequence pairs we canbuild the structure for the query protein by choosing the
structure of the known homologous sequence as template. This is known as comparative modelling.

In the case where no good template structure exists for the query, one must attempt to build the protein tertiary structure from
scratch. These methods are usually calledab initio methods. In a third fold prediction scenario, there may not necessarily be a
good sequence similarity with a known structure, but a structural template may still exist for the given sequence. To clarify this
case, if one were aware of the target structure then they could extract the template using structure-structure alignments of the
target against the entire structural database. It is important to note that the target and template need not be homologous. These
two cases define the fold prediction (homologous) and fold prediction (analogous) problems during the CASP competition.

1.2.1 Comparative Modeling Comparative Modeling or homology modeling is used when there exists a clear relation-
ship between the sequence of a query protein (unknown structure) to that of a sequence of a known structure. The most basic
approach to structure prediction for such (query) proteinsis to perform a pairwise sequence alignment against each sequence in
protein sequence databases. This can be accomplished usingsequence alignment algorithms such as Smith-Waterman [55]or
sequence search algorithms (e.g. BLAST [3]). With a good sequence alignment in hand, the challenge in comparative modeling
becomes how to best build a three-dimensional protein structure for a query protein using the template structure.

The heart of the above process is the selection of a suitable structural template based on sequence pair similarity. Thisis
followed by the alignment of query sequence to the template structure selected to build the backbone of the query protein.
Finally the entire modeled structure is refined by loop construction and side-chain modeling. Several comparative modeling
methods, more commonly known as modeler programs, have beendeveloped over the past several years [6, 13] focussing on
various parts of the problem.

1.2.2 Fold Prediction (Homologous) While satisfactory methods exist to detect homologs (proteins that share similar
evolutionary ancestry) with high levels of similarity, accurately detecting homologs at low levels of sequence similarity (remote
homology detection) remains a challenging problem. Some ofthe most popular approaches for remote homology prediction
compare a protein with a collection of related proteins using methods such as PSI-BLAST [2], protein family profiles [15],
hidden Markov models (HMMs) [30, 5], and SAM [26]. These schemes produce models that are generative, in the sense that
they build a model for a set of related proteins and then checkto see how well this model explains a candidate protein.

In recent years, the performance of remote homology detection has been further improved through the use of methods that
explicitly model the differences between the various protein families (classes) by building discriminative models. In particular,
a number of different methods have been developed that use support vector machines (SVM) [56] to produce results that are
generally superior to those produced by either pairwise sequence comparisons or approaches based on generative models–
provided there is sufficient training data. [19, 35, 33, 34, 17, 18, 52, 31].

1.2.3 Fold Prediction (Analogous) Occasionally a query sequence will have a native fold similar to another known fold
in a database, but the two sequences will have no detectable similarity. In many cases the two proteins will lack an evolutionary
relationship as well. As the definition of this problem relies on the inability of current methods to detect sequential similarity, the
set of proteins falling into this category remains in flux. Asnew methods continue to improve at finding sequential similarities
as a result of increasing database size and better techniques, the number of proteins in question decreases. Techniquesto find
structures for such query sequences revolve around mounting the query sequence on a series of template structures, in a process
known as threading [21, 20, 8]. An objective energy functionprovides a score for each alignment, and the highest-scoring
template is chosen. Obviously, if the correct template doesnot exist in the series then the method will not produce an accurate
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prediction. As a result of this limitation, predicting the structure of proteins in this category usually falls to new fold prediction
techniques.

1.2.4 New Fold Techniques to predict novel protein structure have come a long way in recent years, though a definitive
solution to the problem remains elusive. Research in this area can be roughly divided into fragment assembly [24, 28, 32]and
first-principle based approaches, though occasionally thetwo are combined [9]. The former attempt to assign a fragmentwith
known structure to a section of the unknown query sequence. The latter start with an unfolded conformation, usually surrounded
by solvent, and allow simulated physical forces to fold the protein as would normally happenin vivo. Usually, algorithms from
either class will use reduced representations of query proteins during initial stages to reduce the overall complexityof the
problem.

2 Learning from Data

Supervised learning is the task of creating a function that maps a set of inputs to a particular set of outputs by examining
labelled training data. This form of learning plays a vital role in several bioinformatic applications including protein structure
prediction.

Several books [11, 56, 10] cover the foundations of supervised learning in detail. The general framework of a supervised
learning problem is as follows. Given an input domain�and output domain�, learn a function mapping each element of
�to an element in domain�. In formal terms, given some training data�����������������, we need to learn a function	
���mapping each object

��
�to a classification label
��
�.

It is assumed that there exists an underlying probability distribution������over���. This distribution remains
unchanged for the training and test samples, but this distribution is unknown. The training and test samples are assumedto be
drawn independently, identically distributed from������.

Classifiers can be categorized as parametric models and distribution free models. Parametric models attempt to solve the
supervised learning problem by explicitly modeling the joint distribution������or conditional distribution������for all�

. Bayesian and Hidden Markov Models are examples of parametric models. Distribution-free models make no attempt to
learn the distribution, but rather choose a function in a selected hypothesis space for classification purposes. Marginbased
learners like support vector machines are distribution-free classifiers.

2.1 Kernel Methods

Given a set of positive training examples��and a set of negative training examples��, a support vector machine (SVM)
learns a classification function����of the form

������
�����

 !" #��$�"�%�
����&

 '" #��$�"�$ (1)

where(�� and(�� are non-negative weights that are computed during trainingby maximizing a quadratic objective function,
and)�����is called thekernelfunction, which is computed over all training-set and test-set instances. Given this function, a
new instance

�
is predicted to be positive or negative depending on whether����is positive or negative. In addition, the

value of����can be used to obtain a meaningful ranking of a set of instances, as it represents the strength by which they are
members of the positive or negative class.

The kernel function, when computed over all pairs of training instances, produces a symmetric matrix. To ensure the validity
of a kernel, it is necessary to ensure that it satisfies Mercer’s conditions, which require the pairwise matrix generatedby the
kernel function to be positive semidefinite. Formally, any function can be used as a kernel so long as for any number*, and any
possible set of distinct instances+���������,, the*�*Gram matrix defined by-�./0)�����/�is symmetric positive
semidefinite.

A symmetric function defined on the training set instances can be converted into a positive definite by adding to the diag-
onal of the training Gram matrix a sufficiently large non-negative constant [52]. For example, the constant shift embedding
kernelizing approach proposes the use of smallest negativeeigenvalue to be subtracted from the main diagonal [58].

3 Structure Prediction - Capturing the right signals

Thus far we have looked at several problems within the largercontext of protein structure prediction. An ideal solutionto the
structure prediction problem would correctly predict, from only sequence information, the complete native conformation of a
protein in three-dimensional space. Due to the difficulty ofdeveloping such a grand solution, decomposing the problem has led
to good solutions to smaller parts of the problem.

In the remainder of this chapter we focus on three common prediction problems, secondary structure prediction, remote
homology and fold prediction. We also describe a class of methods employing large margin classifiers with novel kernel
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functions for solving these problems.
One of the fundamental steps in building good classificationmodels is selecting features that fit the classification taskwell.

The input domain
�

for the protein structure prediction problems is the amino acid residues and their properties.
A protein sequence

�
of length*is represented by a sequence of characters

�0��������������such that each character
corresponds to one of the 20 standard amino acids. Quite often, the learning and prediction algorithms segment the sequence
into short contiguous segments called�mers. Specifically, given a sequence

�
of length*and a user-supplied parameter�,

the����at position�of
�

(�	�
*��) is defined to be the���
��-length subsequence of
�

centered at position�.
That is, the����contains��, the�amino acids before, and the�amino acids after��. We will denote this subsequence as
��������.

It is widely believed that a sequence of amino acids encodes astructural signal [4], and this belief forms the underlying
premise of the protein structure prediction problem. Working under this assumption, researchers have tried to encapsulate
protein sequence information in various forms for structure analysis. One common way to incorporate more information
about the structure of a sequence is to consider similar (andhopefully, therefore, related) sequences. Using multiplesequence
alignments one can infer structural information about conserved regions. Many classifiers take as input profiles constructed
from such alignments.

The profile of a sequence
�

of length*can be represented by two*���matrices. The first is its position-specific scoring
matrix PSSM�that is computed directly by PSI-BLAST using the scheme described in [2]. The rows of this matrix correspond
to the various positions in

�
and the columns correspond to the 20 distinct amino acids. The second matrix is its position-

specificfrequencymatrix PSFM�that contains the frequencies used by PSI-BLAST to derive PSSM�. These frequencies (also
referred to astarget frequencies[38]) contain both the sequence-weighted observed frequencies (also referred to aseffective
frequencies[38]) as well as the BLOSUM62 [16] derived-pseudocounts [2].

We use the notations defined above to illustrate the machine learning methods used for secondary structure prediction, remote
homology detection and fold recognition.

4 Secondary Structure Prediction

A large number of secondary structure prediction algorithms have been developed, and since their inception predictionaccuracy
has been continuously improved. Many algorithms can currently achieve a sustained three-state prediction accuracy inthe range
of 77%–78%, and combinations of them can sometimes further improve the accuracy by one to two percentage points. These
improvements have been well-documented [51], and are attributed to an ever-expanding set of experimentally determined
tertiary structures, the use of evolutionary information,and to algorithmic advances.

The secondary structure prediction approaches in use todaycan be broadly categorized into three groups: neighbor-based,
model-based, and meta-predictor-based. The neighbor-based approaches [53, 14, 23] predict the secondary structure by identi-
fying a set of similar sequence-fragments with known secondary structure; the model-based approaches [49, 22, 44, 42],employ
sophisticated machine learning techniques to learn a predictive model trained on sequences of known structure; whereas the
meta-predictor-based approaches [12, 41] predict based ona combination of the results of various different neighbor and/or
model-based techniques. The near real-time evaluation of many of these methods performed by the EVA server [48] shows
that the model-based approaches tend to produce statistically better results than the neighbor-based schemes, which are further
improved by some of the more recently developed meta-predictor-based approaches [41].

Historically, the most successful model-based approachessuch as PHD [49], PSIPRED [22], and SSPro [42], were based on
neural network (NN) learning techniques. However, in recent years, a number of researchers have also developed secondary
structure prediction algorithms based on support vector machines.

In the remainder of this section we present one such SVM-based secondary structure prediction algorithm called YASSPP
that shows exemplary performance [29].

4.1 YASSPP Overview

The overall structure of YASSPP is similar to that used by many existing secondary structure prediction algorithms likePHD
and PSIPRED. The approach is illustrated in Figure 2 It consists of two models, referred to as��and��, that are connected
together in a cascaded fashion. The��model assigns to each position a weight for each of the three secondary structure
elements+�����,, which are provided as input to the��model to predict the actual secondary structure class of each
position. The��model treats each position of the sequence as an independentprediction problem, and the purpose of the��
model is to determine the structure of a position by taking into account the predicted structure of adjacent positions. YASSPP
splits the training set equally between the��and��models.

Both the��and��models consist of three binary SVM classifiers (+���
��

� ������� ������� ,
and+���

��
� ������� ������� ,

,
respectively) trained to predict whether or not a position belongs to a particular secondary structure state or not (i.e., one-vs-rest

models). The output values of the��model are the raw functional outputs of these binary classifiers (i.e.,
������ ,

������ , and
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Figure 2: The general architecture of YASSPP’s learning framework

������ ), whereas the predicted secondary state of the��model corresponds to the state whose corresponding binary classifier
achieves the maximum value. That is,

Predicted state0������
����.�.���

������ �� (2)

During training, for each position�that belongs to one of the three secondary structure states (i.e., classes) of a sequence�
, the input to the SVM is a���
��-length subsequence����of

�
. The proper value for the parameter�is determined

experimentally. During secondary structure prediction, asimilar approach is used to construct a����around each position�
of aquerysequence

�
with unknown secondary structure.

4.2 Input Sequence Coding

For the input sequence coding there are two different approaches for the��model and two different approaches for the��
model. ��’s first coding scheme represents each�����as a���
�����matrix	�, whose rows are obtained directly
from the rows of the PSSM for each position. The second codingscheme augments this PSSM-based representation by adding
another���
�����matrix
�, whose rows are the rows of the BLOSUM62 matrix corresponding to each position’s amino
acid. These schemes are referred as the	and the	
coding schemes, respectively.

By augmenting the����coding scheme to contain both PSSM- as well as BLOSUM62-based information, the SVM can
learn a model that is also partially based on the non-position specific information. This information will remain valid even in
cases in which PSI-BLAST could not or failed to generate correct alignments.

The two coding schemes for the��model are derived from the corresponding coding schemes of��by including the
predictions computed by��’s three binary classifiers. This is done by adding another���
����matrix��,whose columns

store the raw functional predictions of the
������ ,

������ , and
������ models, respectively. Thus, the first coding scheme

consists of matrices	�and��, and the second coding scheme consists of matrices	�,
�, and��. These coding schemes are
novel compared to the existing methods.

4.3 Profile-Based Kernel Functions

YASSPP shows a methodology for designing and evaluation various kernel functions for use by binary SVM classifiers of the
��and��models. It develops kernel functions that are derived by combining a normalized second-order kernel, in which the
contribution of each position decreases based on how far away it is from the central residue, along with an exponential function.

The general structure of the kernel functions used in YASSPPis given by
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where�and�are two�mers,)������is given by

)������0��)������
���)��������� (4)

and)��������is a kernel function that depends on the choice of the particular input coding scheme�	, and for each one of the
	,	
,	�, and	
�coding schemes is defined as follows:


#���$
� � ����
��'�

����$�������$������� $ (5)


�#� ��$
� � 
#���$
������
��'�

����$�������$������� $ (6)


�#���$
� � 
#���$
����
���
��'�

����$�������$������� $ (7)


��#� ��$
� � 
�#� ��$
����
���
��'�

����$�������$������� � (8)

The various terms involving the rows of the	,
, and�matrices (e.g.,	�� �
�	!"� �
�) correspond to the dot-products of the
rows corresponding to the

 
th positions of the�mers (indexed from��to


�). We do not delve into the various characteristics
that are coded in the constructions of the kernel functions but direct the reader to the report [29] for further details.

4.4 Performance Evaluation

For assessing the performance of YASSPP a wide variety of datasets were used. A thorough parameter study was done to
study the impact of the various coding schemes, kernel choices and the best parameters. We show some of the comparative
performance study results for YASSPP.

The prediction accuracy is assessed using four widely used performance measures. These are the three-state per-residue
accuracy (#$), the segment overlap measure (SOV), the per-state Matthews correlation coefficients (

��������), and the
information index (Info).#$ is a measure of the overall three-state prediction accuracyand is defined as the percentage of
residues whose structural class is predicted correctly [49]. The SOV is a segment-level measure of the overall prediction
accuracy. This measure is initially introduced in [50] and subsequently refined in [54]. Matthews correlation coefficients [37]
provide a per-state measure of prediction performance and for a particular state�
+�����,it is given by

��0 %�*��&�'���%
�
&���%�
'���*�
&���*�
'��� (9)

where%�is the number of correctly predicted residues in state�,*�is the number of residues that were correctly rejected (true
negatives),&� is the number of residues that were incorrectly rejected (false negatives), and'� is the number of residues that
were incorrectly predicted to be in state�(false positives). Finally, the information index [49] is an entropy-related measure that
merges the observed and the predicted state-specific accuracy measures into a single number with all these elements contributing
equally.

Table 1 compares the performance achieved by YASSPP againstthat achieved by PHDpsi [44], PSIPRED [22], SAM-
T99sec [27], PROFsec [47], SCRATCH [42], SSPro4 [42], and SABLE2 [43]. These schemes represent some of the best
performing schemes currently evaluated by the EVA server, and their results were obtained directly from EVA. Since EVA did
not use all the methods to predict all the sequences of EVAc4,Table 1 presents four different sets of results for YASSPP(�()
and YASSPP(*�(*)(indicated by the superscripts 1–4), each obtained by averaging the various performance assessment
methods over the common subset. These common subsets contained 165, 134, 86, and 115 sequences, respectively.

These results show that both YASSPP(�()and YASSPP(*�(*)achieve better prediction performance than that achieved
by any of the other schemes across all the different performance assessment measures. In particular, for the entire dataset,
YASSPP(*�(*)achieves a#$score of 79.34%, which is 1.7 percentage points higher than the second best-performing
scheme in terms of#$(SAM-T99sec), and an SOV score of 78.65%, which is 2.6 percentage points higher than the second
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Table 1: Performance on the EVAc4 dataset.

Scheme #$ SOV Info
�� �� ��

PHDpsi 74.52 70.69 0.346 0.529 0.685 0.665
PSIPRED 77.62 76.05 0.375 0.561 0.735 0.696
SAM-T99sec 77.64 75.05 0.385 0.578 0.721 0.675
PROFsec 76.54 75.39 0.378 0.562 0.714 0.677�
YASSPP(�() 78.35 77.20 0.407 0.589 0.746 0.708

ErrSig 0.86 1.21 0.015 0.015 0.021 0.017�
YASSPP(*�(*) 79.34 78.65 0.419 0.608 0.747 0.722

ErrSig 0.82 1.16 0.015 0.015 0.021 0.016

SCRATCH 75.75 71.38 0.357 0.545 0.690 0.659�
YASSPP(�() 78.39 77.69 0.406 0.586 0.750 0.711

ErrSig 0.97 1.36 0.016 0.017 0.023 0.018�
YASSPP(*�(*) 79.31 78.75 0.416 0.602 0.751 0.722

ErrSig 0.94 1.29 0.016 0.017 0.023 0.018

SSPro4 77.96 72.73 0.385 0.559 0.711 0.696$
YASSPP(�() 79.21 78.60 0.418 0.590 0.749 0.723

ErrSig 1.19 1.67 0.021 0.023 0.030 0.022$
YASSPP(*�(*) 80.03 79.00 0.430 0.605 0.751 0.736

ErrSig 1.18 1.68 0.022 0.024 0.030 0.022

SABLE2 76.85 73.55 0.376 0.546 0.725 0.682
�
YASSPP(�() 78.70 78.09 0.417 0.596 0.766 0.715

ErrSig 1.00 1.42 0.018 0.018 0.025 0.019
�
YASSPP(*�(*) 79.85 79.71 0.432 0.615 0.768 0.730

ErrSig 0.97 1.39 0.018 0.019 0.025 0.019

YASSPP(�()uses the	
	�input coding and the YASSPP(*�(*)
uses the	

	
�input coding and were obtained using�0�(i.e.,
�mers of size 15). The

�
YASSPP are the averages over the set of se-

quences in common with PHDpsi, PSIPRED, SAM-T99sec, and PROF-
sec. The

�
YASSPP are the averages over the set of sequences in com-

mon with SCRATCH. The
$
YASSPP are the averages over the set of se-

quences in common with SSPro4. The
�
YASSPP are the averages over

the set of sequences in common with SABLE2.
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Table 2: Comparative performance of YASSPP against other
secondary structure prediction servers.

RS126 Dataset

Scheme #$ SOV Info
�� �� ��

PSIPRED 81.01 76.24 0.45 0.65 0.70 0.77
PHD 76.92 72.57 0.38 0.57 0.63 0.73
Prof 76.95 71.70 0.38 0.58 0.63 0.73
SSPro 77.01 70.24 0.38 0.58 0.61 0.72
YASSPP(�() 79.81 74.41 0.42 0.61 0.70 0.76

ErrSig 0.80 1.28 0.02 0.02 0.02 0.02
YASSPP(*�(*) 80.29 75.65 0.43 0.61 0.70 0.75

ErrSig 0.79 1.25 0.02 0.02 0.02 0.02

CB513 Dataset

Scheme #$ SOV Info
�� �� ��

PSIPRED 79.95 76.48 0.43 0.63 0.68 0.76
PHD 77.61 74.98 0.39 0.59 0.65 0.73
Prof 77.13 73.74 0.39 0.58 0.64 0.73
SSPro 79.07 74.39 0.42 0.61 0.65 0.76
YASSPP(�() 80.52 77.39 0.45 0.62 0.70 0.74

ErrSig 0.40 0.60 0.01 0.01 0.01 0.01
YASSPP(*�(*) 80.99 77.86 0.45 0.63 0.70 0.75

ErrSig 0.39 0.60 0.01 0.01 0.01 0.01

YASSPP(�() uses the	
	� input coding and the
YASSPP(*�(*)uses the	

	
�input coding. Both
schemes use�mers of length 15 (�0�

). The results for
PSIPRED, PHD, Prof, and SSPro were obtained from [46].
ErrSig is the significant difference margin for each score (to dis-
tinguish between two methods) and is defined as the standard
deviation divided by the square root of the number of proteins
(�
���

).

best performing scheme in terms of SOV (PSIPRED).
Table 2 compares the performance achieved by YASSPP’s production server with that achieved by other model-based servers

such as PSIPRED, PHD, Prof, and SSPro [46]. These results show that the performance achieved by YASSPP(�()and
YASSPP(*�(*)is in general higher than that achieved by the other servers.YASSPP(*�(*)’s performance is one to four
percentage points higher in terms of#$and SOV. The only exception is the RS126 dataset for which PSIPRED achieves some-
what better prediction performance than either YASSPP(�()or YASSPP(*�(*)(PSIPRED achieves a#$score of 81.01
vs 80.29 for YASSPP(*�(*)). However, as measured byErrSig, this performance difference is not statistically significant.
Also, as was the case with the previous results, YASSPP(*�(*)achieves better prediction performance than that achievedby
YASSPP(�().

5 Remote Homology and Fold Prediction

Both remote homology detection and fold recognition are central problems in computational biology and bioinformatics, with
the aim of classifying protein sequences into structural and functional groups or classes.

Pairwise sequence comparison methods (e.g., sequence alignment algorithms like Smith-Waterman [55] and sequence
database search tools like BLAST [1]) are able to detect homologous sequences with a high percentage sequence identity.
However, as the percent identity between sequence pairs decreases, the problem of finding the correct homologous pairs be-
comes increasingly difficult.

Some of the better performing schemes in this domain use profile information to compare a query protein with a collection
of related proteins. Profiles for a sequence can be defined in terms of a multiple sequence alignment of a query sequence
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with its statistically significant homologs (as computed byPSI-BLAST [2]) or in the form of hidden markov model (HMM)
states [30, 5]. The models built in this fashion are examplesof generative models.

The current state-of-the-art methods employ discriminative based modelling techniques and have a large advantage over
generative models in this domain. Support vector machines have been the popular choice of discriminative learners.

One of the early attempts at using a feature-space-based approach is the SVM-Fisher method [19], in which a profile HMM
model is estimated on a set of proteins belonging to the positive class. This HMM is then used to extract a vector representation
for each protein. Another approach is the SVM-pairwise scheme [35], which represents each sequence as a vector of pairwise
similarities between all sequences in the training set. A relatively simpler feature space that contains all possible short subse-
quences ranging from 3–8 amino acids (�mers) is explored in a series of papers (Spectrum kernel [33], Mismatch kernel [34],
and Profile kernel [31]). All three of these methods represent a sequence

�
as a vector in this simpler feature space, but differ

in the scheme they employ to actually determine if a particular dimension&(i.e.,�mer) has a non-zero weight in
�

’s vector or
not. The Spectrum kernel considers&to be present if

�
contains&as a substring, the Mismatch kernel considers&to be present

if
�

contains a substring that differs with&in at most a predefined number of positions (i.e., mismatches), whereas the Pro-
file kernel considers&to be present if

�
contains a substring whose PSSM–based ungapped alignment score with&is above

a user-supplied threshold. An entirely different feature space is explored by the SVM-Isites [17] and SVM-HMMSTR [18]
methods that take advantage of a set of local structural motifs (SVM-Isites) and their relationships (SVM-HMMSTR).

An alternative to measuring pairwise similarity through a dot-product of vector representations is to calculate an explicit
protein similarity measure. The recently developed LA-Kernel method [52] represents one such example of adirect kernel
function. This scheme measures the similarity between a pair of protein sequences by taking into account all the optimal
gapped local alignment scores between all possible subsequences of the pair. The experiments presented in [52] show that
this kernel is superior to previously developed schemes that do not take into account sequence profiles and that the overall
classification performance improves by taking into accountall possible local alignments.

5.1 Profile-Based Kernel Functions

Recently, a set of direct profile-based kernel functions were developed and tested to show very good performance [45]. The first
class, referred to as window-based, determines the similarity between a pair of sequences by combining ungapped alignment
scores of fixed-length subsequences. The second, referred to as local alignment-based, determines the similarity between a pair
of sequences using Smith-Waterman alignments and a position independent affine gap model, optimized for the characteristics
of the scoring system. Both kernel classes utilize profiles constructed automatically via PSI-BLAST and employ a profile-to-
profile scoring scheme that extend a recently introduced profile alignment method [38].

One way of computing the profile-to-profile scores would be totake the dot product between the profile columns for the two
positions, shown in Equation 10

������$���
���
���PSSM���$���PSSM���$��$ (10)

Another example of such a scoring function [45] is given by Equation 11. This particular scoring function captures the
similarity between the two profile positions using both the position specific scoring matrices and position specific frequency
matrices. This scoring function can be defined as,

������$�� �
���
���PSFM���$��PSSM���$���
���
���PSFM���$��PSSM���$��$

(11)

5.1.1 Smith-Waterman based Kernel Functions As explained in section 2.1, the choice of kernel function plays a
critical role in the performance of a classifier. A simple Smith-Waterman based alignment scoring scheme can be used as a
kernel function provided steps are followed to ensure its validity–specifically, that it follows Mercer’s conditions.

The Smith-Waterman based kernel computes the similarity between a pair of sequences
�

and
�

by finding an optimal
alignment between them that optimizes a particular scoringfunction. Given two sequences

�
and

�
of lengths*and	,

respectively, the SW-PSSM kernel computes their similarity as the score of the optimal local alignment. In this alignment,
the similarity between two sequence positions is determined using the profile-to-profile scoring scheme of Equation 11,and a
position independent affine gap model.

Within this local alignment framework, the similarity score between a pair of sequences depends on the gap-opening (go)
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and gap-extension (ge) costs, and the intrinsic characteristics of the profile-to-profile scoring scheme. A scoring system whose
average score is positive will tend to produce very long alignments, potentially covering segments of low biologicallyrelevant
similarity. On the other hand, if the scoring system cannot easily produce alignments with positive scores, then it may fail to
identify any non-empty similar subsequences. In order to obtain meaningful local alignments, the scoring scheme that is used
should produce alignments whose score must on average be negative with the maximum score being positive [55].

To ensure that the SW-PSSM kernel can correctly account for the characteristics of the scoring system, the profile-to-profile
scores calculated from Equation 11 are modified by adding a constant value. This scheme, commonly referred to aszero-
shifting [57], ensures that the resulting alignments have scores that are negative on the average, while allowing for positive
maximum scores.

5.1.2 Window-based Kernel Functions The local alignment based kernels capture the similarity between sequence
pairs by combining the ungapped alignment scores of����subsequences between the various positions of the sequences.
Based on the combination of fixed and varied length�mers for different pair positions between sequences, [45] introduces
three novel window-based kernel functions.

The ungapped alignment score between two�mers is computed using the profile-to-profile scoring methodof Equation 11
as follows:

�����������$���
��

��'�
��������$����� (12)

The All Fixed-width�mers (AF-PSSM) kernel computes the similarity between a pair of sequences
�

and
�

by adding-up
the alignment scores of all possible�mers between

�
and
�

that have a positive ungapped alignment score. Specifically, if the
ungapped alignment score between two�mers at positions�and

 
of
�

and
�

, respectively is denoted by���'���.���� �,
*and	are the lengths of

�
and
�

, respectively, and
�	is the set of all possible����-pairs of

�
and
�

with a positive
ungapped alignment score, i.e, 
������������$���������������������$��
��$ (13)

for�
�
�
*��and�
�
 
	��, then the AF-PSSM kernel computes the similarity between
�

and
�

as

AF-PSSM��������
�	��������	�����������

�����������$��� (14)

The Best Fixed-width�mer (BF-PSSM) kernel improves on the AF-PSSM kernel by selecting a subset
��	of

�	(as defined
in Equation 13) such that (i) each position of

�
and each position of

�
is present in at most one����-pair and (ii) the sum

of the�scores of the selected pairs is maximized. Given
��	, the similarity between the pair of sequences is then computed as

follows:

BF-PSSM��������
�	���������	�������������

�����������$��� (15)

The relation between
��	and

�	can be better understood if the possible����-pairs in
�	are viewed as forming an*�	

matrix, whose rows correspond to the positions of
�

, columns to the positions of
�

, and values correspond to their respective
�scores. Within this context,

��	corresponds to a matching of the rows and columns [40] whose weight is high (bipartite graph
matching problem). Since the selection forms a matching, each position of

�
(or
�

) contributes a single����in Equation 15,
and as such, eliminates the multiplicity present in the AF-PSSM kernel. At the same time, the BF-PSSM kernel attempts to
select thebest�mers for each position.

In fixed-width����-based kernels the width of the�mers is fixed for all pairs of sequences and throughout the entire
sequence. As a result, if�is set to a relatively high value, it may fail to identify positive scoring subsequences whose length
is smaller than

��
�, whereas if it is set too low, it may fail to reward sequence-pairs that have relatively long similar
subsequences.

The Best Variable-width�mer (BV-PSSM) kernel overcomes this problem by using variable length�mers. It is derived
from the BF-PSSM kernel, where, for a given a user-supplied width�, the BV-PSSM kernel considers the set of all possible
����-pairs whose length ranges from one to a maximum�, i.e.,



������


������
�$ (16)

From this set
��   	the BV-PSSM kernel uses the greedy scheme employed by BF-PSSM to select a subset

���   	of

11



����-pairs that form a high weight matching. The similarity between the pair of sequences is then computed as follows:

BV-PSSM��������
�	���������	�����������������

�����������$��� (17)

Since for each position of
�

(and
�

),
���   	is constructed by including the highest scoring����for �that does not conflict

with the previous selections, this scheme can automatically select the highest scoring����whose length can vary from one
up to�; thus, achieving the desired effect.

Table 3: Comparison against different schemes for the
superfamily-level classification problem.

Kernel ROC ROC50 mRFP

SVM-Fisher 0.773 0.250 0.204
SVM-Pairwise 0.896 0.464 0.084
LA-eig(

�0���) 0.923 0.661 0.064
LA-eig(

�0���) 0.925 0.649 0.054
LA-ekm(

�
= 0.5) 0.929 0.600 0.052

SVM-HMMSTR-Ave – 0.640 0.038
SVM-HMMSTR-Max – 0.618 0.043
SVM-HMMSTR-Hybrid – 0.617 0.048
Mismatch 0.872 0.400 0.084
Profile(4,6) 0.974 0.756 0.013
Profile(5,7.5) 0.980 0.794 0.010

AF-PSSM(2) 0.978 0.816 0.013
BF-PSSM(2) 0.980 0.854 0.015
BV-PSSM(2) 0.973 0.855 0.018
SW-PSSM(3.0,0.750,1.50) 0.9820.904 0.015
AF-GSM(6) 0.926 0.549 0.048
BF-GSM(6) 0.934 0.669 0.053
BV-GSM(6) 0.930 0.666 0.052
SW-GSM(B62,5.0,1,0.5) 0.948 0.711 0.039

The SVM-Fisher, SVM-Pairwise, LA-Kernel, and Mismatch re-
sults were obtained from [52]. The SVM-HMMSTR results
were obtained from [18]and correspond to the best-performing
scheme (the authors did not report ROC values). The Profile
results were obtained locally by running the publicly available
implementation of the scheme obtained from the authors. The
ROC50 value of the best performing scheme has been under-
lined.

5.2 Performance Evaluation

The fold prediction algorithms can be evaluated using the sets of sequences obtained from the SCOP database [39]. The
SCOP database is a manually curated protein structure database assigning proteins into hierarchically defined classes. The fold
prediction problem in the context of SCOP can be defined as assigning a protein sequence to its correct fold. On a similar basis
the remote homology problem can be defined as predicting the correct superfamily for a protein.

To evaluate the above techniques, remote homology detection is simulated by formulating it as a superfamily classification
problem within the context of the SCOP database. The same dataset and classification problems2 have been used in a number
of earlier studies [35, 18, 52] allowing for direct comparisons of the relative performance of the various schemes. The data

2The dataset and classification problem definitions are available at http://www.cs.columbia.edu/compbio/svm-pairwise.
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Figure 3: Comparison of the different SVM-based methods forremote homology detection on the SCOP 1.53 benchmark
dataset. The graph plots the total number of families for which a given method exceeds the ROC-50 score threshold along the
x-axis.

consists of 4352 sequences from SCOP version 1.53 extractedfrom the Astral database, grouped into families and superfamilies.
The dataset is processed so that it does not contain any sequence pairs with an

�
-value threshold smaller than

�����. For each
family, the protein domains within the family are considered positive test examples, and protein domains within the superfamily
but outside the family are considered positive training examples. This yields 54 families with at least 10 positive training
examples and 5 positive test examples. Negative examples for the family are chosen from outside of the positive sequences’
fold, and are randomly split into training and test sets in the same ratio as the positive examples.

Employing the same dataset and overall methodology as in remote homology detection, we simulate fold detection by
formulating it as a fold classification problem within the context of SCOP’s hierarchical classification scheme. In thissetting,
protein domains within the same superfamily are consideredpositive test examples, and protein domains within the samefold
but outside the superfamily are considered positive training examples. This yields 23 superfamilies with at least 10 positive
training and 5 positive test examples. Negative examples for the superfamily are chosen from outside of the positive sequences’
fold and split equally into test and training sets3. Since the positive test and training instances are membersof different
superfamilies within the same fold, this new problem is significantly harder than remote homology detection, as the sequences
in the different superfamilies do not have any apparent sequence similarity [39]. The quality of these methods is evaluated by
using the receiver operating characteristic (ROC) scores,the ROC50 scores, and the median rate of false positives (mRFP).

Table 3 and Table 4 compare the performance of the various kernel functions developed in this paper against that achievedby
a number of previously developed schemes for the superfamily- and fold-level classification problems, respectively. In the case
of the superfamily-level classification problem, the performance is compared against SVM-Fisher [19], SVM-Pairwise [35],
and different instances of the LA-Kernel [52], SVM-HMMSTR [18], Mismatch [34], and Profile [31].

The results in these tables show that both the window- and local alignment-based kernels derived from sequence profiles
(i.e., AF-PSSM, BF-PSSM, BV-PSSM, and SW-PSSM) lead to results that are in general better than those obtained by existing
schemes. The performance advantage of these direct kernelsis greater over existing schemes that rely on sequence information

3The classification problem definitions are available at http://bioinfo.cs.umn.edu/supplements/remote-homology/.
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Figure 4: Comparison of the different SVM-based methods forfold detection on the SCOP 1.53 benchmark dataset. The graph
plots the total number of superfamilies for which a given method exceeds the ROC-50 score threshold along the x-axis.

alone (e.g., SVM-Pairwise, LA-Kernels), but still remainssignificant when compared against schemes that either directly take
into account profile information (e.g., SVM-Fisher, Profile) or utilize higher-level features derived by analyzing sequence-
structure information (e.g., SVM-HMMSTR). Also, the relative advantage of profile-based methods over existing schemes is
greater for the much harder fold-level classification problem over the superfamily-level classification problem. For example, the
SW-PSSM scheme achieves ROC50 values that are 13.8% and 81.8% better than the best values achieved by existing schemes
for the superfamily- and fold-level classification problems, respectively.

To get a better understanding of the relative performance ofthe various schemes across the different classes, Figures 3and 4
plot the number of classes whose ROC50 are greater than a given threshold that ranges from 0 to 1. Specifically, Figure 3 shows
the results for the remote homology detection problem, whereas Figure 4 shows the results for the fold detection problem.
(Note that these figures contain only results for the schemesthat we are able to run locally.) These results show that our profile-
based methods lead to higher ROC50 values for a greater number of classes than either the Profile or LA-kernels, especially
for larger ROC50 values (e.g. in the range of 0.6 to 0.95). Also, the SW-PSSM tends to consistently outperform the rest of the
profile-based direct kernel methods.

In addition, the results for the BF-GSM, BV-GSM, and SW-GSM kernels that rely on the BLOSUM scoring matrices show
that these kernel functions are capable of producing results that are superior to all of the existing non-profile-based schemes. In
particular, the properly optimized SW-GSM scheme is able toachieve significant improvements over the best LA-Kernel-based
scheme (7.6% higher ROC50 value) and the best SVM-HMMSTR-based scheme (15.1% higher ROC50 value).

From the evaluation of direct profile-based kernels for foldclassification, three major observations can be made. First, as
was the case with a number of studies on the accuracy of protein sequence alignment [38, 57, 36], the proper use of sequence
profiles leads to dramatic improvements in the overall ability to detect remote homologs and identify proteins that share the
same structural fold. Second, kernel functions that are constructed by directly taking into account the similarity between the
various protein sequences tend to outperform schemes that are based on a feature-space representation (where each dimension
of the space is constructed as one of�-possibilities in a�-residue long subsequence or using structural motifs (Isites) in the
case of SVM-HMMSTR). This is especially evident by comparing the relative advantage of the window-based kernels over
the Profile kernel. Third, time-tested methods for comparing protein sequences based on optimal local alignments (as well as
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Table 4: Comparison against different schemes for the fold-
level classification problem.

Kernel ROC ROC50 mRFP

LA-eig(
�0���) 0.847 0.212 0.129

LA-eig(
�0���) 0.771 0.172 0.193

Profile(4,6) 0.912 0.305 0.071
Profile(5,7.5) 0.924 0.314 0.069

AF-PSSM(4) 0.911 0.374 0.067
BF-PSSM(4) 0.918 0.414 0.060
BV-PSSM(4) 0.941 0.481 0.043
SW-PSSM(3.0,0.750,2.0) 0.9360.571 0.054
AF-GSM(6) 0.770 0.197 0.217
BF-GSM(6) 0.822 0.240 0.157
BV-GSM(7) 0.845 0.244 0.133
SW-GSM(B62,5,1.0,0.5) 0.826 0.223 0.176

The results for the LA-Kernel were obtained using the pub-
licly available kernel matrices that are available at the author’s
website. The Profile results were obtained locally by running
the publicly available implementation of the scheme obtained
from the authors. The ROC50 value of the best performing
scheme has been underlined.

global and local-global alignments), when properly optimized for the classification problem at hand, lead to kernel functions
that are in general superior to those based on either short subsequences (e.g., Spectrum, Mismatch, Profile, or window-based
kernel functions) or local structural motifs (e.g., SVM-HMMSTR). The fact that these widely used methods produce good
results in the context of SVM-based classification is reassuring as to the validity of these approaches and their abilityto capture
biologically relevant information.

6 Concluding Remarks

Predicting protein structure from primary sequence information is a challenging problem that has attracted and continues to
attract attention from several fields of research. The current challenges within this problem stem from two factors. First, we
still do not have a complete understanding of the basic physical principles that govern protein folding. Second, the number
of experimentally resolved 3D protein structures remains small compared to the number of known proteins. Despite these
obstacles, recent advances in applying machine learning toevolutionary analysis have significantly improved the quality of
current structural predictions.

In this chapter we provided a brief overview of some of these machine learning techniques. Specifically, we examined
the design of state-of-the-art kernel functions within a discriminative learning framework for secondary structure prediction,
remote homology detection and fold recognition. We have given a flavor of string kernels along with the use of evolutionary
information in our methods. Hopefully, increasingly better solutions to subproblems within complete structure prediction will
lead to an accurate method for native fold prediction from sequence.
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