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Abstract

With recent advances in large scale sequencing technapgie have seen an exponential growth in protein sequeneaariafion. Cur-
rently, our ability to produce sequence information far-patces the rate at which we can produce structural and foneti information.
Consequently, researchers increasingly rely on companatitechniques to extract useful information from knowocttires contained in
large databases, though such approaches remain incompetsuch, unraveling the relationship between pure sequirformation and
three dimensional structure remains one of the great furetaad problems in molecular biology.

In this report we aim to show several ways in which resealmrto characterize the structural, functional and eviuoary nature of
proteins. Specifically, we focus on three common predigifoblems, secondary structure prediction, remote homp#owl fold prediction.
We describe a class of methods employing large margin @laisswith novel kernel functions for solving these problesupplemented with
a thorough evaluation study.

1 Introduction

The motivation behind the structural determination of girtg is based on the belief that structural information uliiimately
result in a better understanding of intricate biologicalgasses. Many methods exist to predict protein structutiéfetent lev-
els of granularity. Due to the interest from a wide range sésech communities in this subject matter, a biennial cditigre
The Critical Assessment for Structure Prediction (CASB}¥sesses the performance of current structure predictdnoats.
In this report we aim to show several ways in which reseasctrgrto characterize the structural, functional and evohary
nature of proteins.

Within each structural entity called a protein there lieeadf recurring substructures, and within these substrestare
smaller substructures still. As an example, consider héobag the oxygen-carrying molecule in human blood. Herobai
has four domains that come together to form its quaternamgtsire. Each domain assembles (i.e. folds) itself inddemtly
to form a tertiary structure. These tertiary structurescaraprised of multiple secondary structure elements—indggolin’s
casea helices. Alpha helices (and their counterpérsheets) have elegant repeating patterns dependent upoenseg of
amino acids. These sequences form the primary structurproftein, the smallest structural division aside from atoRhance,
the linear ordering of amino acids forms secondary strectamranging secondary structures yields tertiary stractand the
arrangement of tertiary structures forms quaternary strac (See Figure 1). Research in computational structug@igtion
concerns itself mainly with predicting secondary and aeytistructure from known experimentally determined priyrstruc-
ture. This is due to the relative ease of determining prinstrycture and the complexity involved in quaternary strret
In this chapter we provide an overview of current secondamctire prediction techniques, followed by a breakdowthef
tertiary structure prediction problem and descriptionalgbrithms for each of several more restricted problems.

1.1 Secondary Structure Prediction

A sequence of characters representing the secondarystwtta protein describes the general three-dimensional ¢ local

regions. These regions organize themselves into pattémepeatedly occurring structural fragments indepengemim the

rest of the protein. The most dominant local conformatidigodypeptide chains are alpha helices and beta sheetse Tdd

structures have a certain regularity in their form, attidouto the hydrogen bond interactions between variousuesidAn
alpha helix has a coil-like structure, whereas a beta storstists of parallel strands of residues. (See Figure 1)ddiitian to

regular secondary structure elements, irregular shapesda important part of the structure and function of prateifhese
elements are typically termed coil regions.
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Secondary structure can be divided into several typesgtihasually at least three classes (alpha-helix, coils ated $teeet)
are used. No unique method of assigning residues to a partisecondary structure state from atomic coordinatedsxis
though the most widely accepted protocol is based on the BEgERithm [25]. DSSP uses the following structural classes
H (a-helix), G B10-helix), | (7-helix), E (3-strand), B (isolateg-bridge), T (turn), S (bend), and — (other). Several other
secondary structure assignment algorithms use a redwszifmme that converts this eight-state assignment downde #tates
by assigning H and G to the helix state (H), E and B to a the dtstate (E), and the rest (I, T, S, and -) to a coil state (C).
This is the format generally used in structure databasethithe secondary structure prediction problem, the tas& learn
a model that assigns a secondary structure state to eadbeeadian input sequence in the absence of atomic coordinates

1.2 Protein Tertiary Structure

One of the biggest goals in structural bioinformatics isgresiction of the three-dimensional (3D) structure of ag@irofrom its
one-dimensional (1D) protein sequence. The goal is to betaldetermine the shape (known as a fold) that a given amido ac
sequence will adopt. The problem is further divided basedloather the sequence will adopt a new fold or bear resemblanc
to an existing fold (template) in some protein structureadlase. Fold recognition is easy when the sequence in quésti

a high degree of sequence similarity to a sequence with kretsture [7]. If the two sequences share evolutionary singe
they are said to be homologous. For such sequence pairs wieuddrthe structure for the query protein by choosing the
structure of the known homologous sequence as template.igkihown as comparative modelling.

In the case where no good template structure exists for theygone must attempt to build the protein tertiary struefaom
scratch. These methods are usually caélbdnitio methods. In a third fold prediction scenario, there may maiassarily be a
good sequence similarity with a known structure, but a stinat template may still exist for the given sequence. Toifgighis
case, if one were aware of the target structure then theyl@dtact the template using structure-structure alignmehthe
target against the entire structural database. It is irapbtb note that the target and template need not be homaogdtese
two cases define the fold prediction (homologous) and foddijotion (analogous) problems during the CASP competition

1.2.1 Comparative Modeling Comparative Modeling or homology modeling is used wheneteists a clear relation-
ship between the sequence of a query protein (unknown gta)db that of a sequence of a known structure. The most basic
approach to structure prediction for such (query) protsing perform a pairwise sequence alignment against eacieseq in
protein sequence databases. This can be accomplishedsasjngnce alignment algorithms such as Smith-Watermarof55]
sequence search algorithms (e.g. BLAST [3]). With a goodisage alignment in hand, the challenge in comparative nraglel
becomes how to best build a three-dimensional proteintsireifor a query protein using the template structure.

The heart of the above process is the selection of a suittletisral template based on sequence pair similarity. &his
followed by the alignment of query sequence to the templteetsire selected to build the backbone of the query protein
Finally the entire modeled structure is refined by loop carcsion and side-chain modeling. Several comparative hirggle
methods, more commonly known as modeler programs, havedmeatoped over the past several years [6, 13] focussing on
various parts of the problem.

1.2.2 Fold Prediction (Homologous) While satisfactory methods exist to detect homologs (jmetthat share similar
evolutionary ancestry) with high levels of similarity, acately detecting homologs at low levels of sequence siityileemote
homology detection) remains a challenging problem. SoméeMmost popular approaches for remote homology prediction
compare a protein with a collection of related proteins gisirethods such as PSI-BLAST [2], protein family profiles [15]
hidden Markov models (HMMs) [30, 5], and SAM [26]. These gdes produce models that are generative, in the sense that
they build a model for a set of related proteins and then ckeeske how well this model explains a candidate protein.

In recent years, the performance of remote homology detettas been further improved through the use of methods that
explicitly model the differences between the various protemilies (classes) by building discriminative models particular,
a number of different methods have been developed that ygmrwector machines (SVM) [56] to produce results that are
generally superior to those produced by either pairwiseiesece comparisons or approaches based on generative models
provided there is sufficient training data. [19, 35, 33, 34,118, 52, 31].

1.2.3 Fold Prediction (Analogous) Occasionally a query sequence will have a native fold sindlanother known fold

in a database, but the two sequences will have no detectablargy. In many cases the two proteins will lack an evauatary
relationship as well. As the definition of this problem relan the inability of current methods to detect sequentmailarity, the

set of proteins falling into this category remains in flux. wesv methods continue to improve at finding sequential siitida

as a result of increasing database size and better teclsnitpgenumber of proteins in question decreases. Techniquesl
structures for such query sequences revolve around mguhinquery sequence on a series of template structuresricegs
known as threading [21, 20, 8]. An objective energy functimwavides a score for each alignment, and the highest-ggorin
template is chosen. Obviously, if the correct template adm¢exist in the series then the method will not produce anrate
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prediction. As a result of this limitation, predicting thteusture of proteins in this category usually falls to nevdfprediction
techniques.

1.2.4 New Fold Techniques to predict novel protein structure have coma@ Veay in recent years, though a definitive
solution to the problem remains elusive. Research in tleia aan be roughly divided into fragment assembly [24, 28288
first-principle based approaches, though occasionallywbeare combined [9]. The former attempt to assign a fragmaettit
known structure to a section of the unknown query sequertoelakter start with an unfolded conformation, usually sunded
by solvent, and allow simulated physical forces to fold thet@in as would normally happén vivo. Usually, algorithms from
either class will use reduced representations of queryep®tduring initial stages to reduce the overall complerityhe
problem.

2 Learning from Data

Supervised learning is the task of creating a function thapsna set of inputs to a particular set of outputs by examining
labelled training data. This form of learning plays a vitlerin several bioinformatic applications including piiatetructure
prediction.

Several books [11, 56, 10] cover the foundations of supedvisarning in detail. The general framework of a supervised
learning problem is as follows. Given an input domainand output domairy), learn a function mapping each element of
X to an element in domaiy. In formal terms, given some training d&at&;,Y7) ... (X,,Y,), we need to learn a function
h : X — Y mapping each objecX; € X to a classification labdt; € V.

It is assumed that there exists an underlying probabiligtrifiution D(X,Y’) over X x ). This distribution remains
unchanged for the training and test samples, but this ldigian is unknown. The training and test samples are asstorisel
drawn independently, identically distributed frab(X,Y).

Classifiers can be categorized as parametric models anmibdigin free models. Parametric models attempt to solee th
supervised learning problem by explicitly modeling thenjddistributionD(X,Y) or conditional distributiorD (Y| X) for all
X. Bayesian and Hidden Markov Models are examples of par@matdels. Distribution-free models make no attempt to
learn the distribution, but rather choose a function in &aeld hypothesis space for classification purposes. Maaged
learners like support vector machines are distributiee-frlassifiers.

2.1 Kernel Methods

Given a set of positive training exampl8s and a set of negative training examplgs, a support vector machine (SVM)
learns a classification functigf{ X) of the form

X;eSt X;€ES—

where)\;r and); are non-negative weights that are computed during traibjnmaximizing a quadratic objective function,
andK(.,.) is called thekernelfunction, which is computed over all training-set and tsttinstances. Given this function, a
new instanceX is predicted to be positive or negative depending on whefli&r) is positive or negative. In addition, the
value of f(X') can be used to obtain a meaningful ranking of a set of insgrceit represents the strength by which they are
members of the positive or negative class.

The kernel function, when computed over all pairs of tragrimstances, produces a symmetric matrix. To ensure thdityali
of a kernel, it is necessary to ensure that it satisfies Misrcenditions, which require the pairwise matrix generaigdahe
kernel function to be positive semidefinite. Formally, angdtion can be used as a kernel so long as for any numtsard any
possible set of distinct instancgX, ..., X, }, then x n Gram matrix defined bys; ; = K(X;, X;) is symmetric positive
semidefinite.

A symmetric function defined on the training set instanceslmconverted into a positive definite by adding to the diag-
onal of the training Gram matrix a sufficiently large non-atge constant [52]. For example, the constant shift emimgdd
kernelizing approach proposes the use of smallest negatjeavalue to be subtracted from the main diagonal [58].

3 Structure Prediction - Capturing the right signals

Thus far we have looked at several problems within the lacgatext of protein structure prediction. An ideal soluttorthe
structure prediction problem would correctly predict,nfronly sequence information, the complete native confaonaif a
protein in three-dimensional space. Due to the difficultg@feloping such a grand solution, decomposing the probkeseul
to good solutions to smaller parts of the problem.

In the remainder of this chapter we focus on three commonigired problems, secondary structure prediction, remote
homology and fold prediction. We also describe a class ohout employing large margin classifiers with novel kernel



functions for solving these problems.

One of the fundamental steps in building good classificatimdels is selecting features that fit the classification teesk
The input domainX for the protein structure prediction problems is the amicid aesidues and their properties.

A protein sequenc& of lengthn is represented by a sequence of characXees (aq, as, - . . ,an) such that each character
corresponds to one of the 20 standard amino acids. Quite,dfte learning and prediction algorithms segment the sexpie
into short contiguous segments calkedhers. Specifically, given a sequen&eof lengthn and a user-supplied parameter
thewmer at positioni of X (w < i < n — w) is defined to be thé2w + 1)-length subsequence & centered at positiofl
That is, thewmer containsa;, thew amino acids before, and the amino acids aftes;. We will denote this subsequence as
wmerx (4).

It is widely believed that a sequence of amino acids encodsaruatural signal [4], and this belief forms the underlying
premise of the protein structure prediction problem. Wagkunder this assumption, researchers have tried to enaépsu
protein sequence information in various forms for struetanalysis. One common way to incorporate more information
about the structure of a sequence is to consider similartfapédfully, therefore, related) sequences. Using mulplguence
alignments one can infer structural information about eovisd regions. Many classifiers take as input profiles cootstd
from such alignments.

The profile of a sequenc¥ of lengthn can be represented by twiox 20 matrices. The first is its position-specific scoring
matrix PSSM that is computed directly by PSI-BLAST using the scheme diesd in [2]. The rows of this matrix correspond
to the various positions itX and the columns correspond to the 20 distinct amino acide. sEigond matrix is its position-
specificfrequencymatrix PSFNM that contains the frequencies used by PSI-BLAST to deriv@\Pg. These frequencies (also
referred to agarget frequencie$38]) contain both the sequence-weighted observed frafeerfalso referred to affective
frequencie$38]) as well as the BLOSUMG62 [16] derived-pseudocounts [2]

We use the notations defined above to illustrate the macbaraing methods used for secondary structure predickomte
homology detection and fold recognition.

4 Secondary Structure Prediction

A large number of secondary structure prediction algoritimave been developed, and since their inception prediatioaracy

has been continuously improved. Many algorithms can ctlyranhieve a sustained three-state prediction accuratyirange

of 77%—78%, and combinations of them can sometimes furthprdve the accuracy by one to two percentage points. These
improvements have been well-documented [51], and aréatitrdl to an ever-expanding set of experimentally deterine
tertiary structures, the use of evolutionary informatiand to algorithmic advances.

The secondary structure prediction approaches in use watape broadly categorized into three groups: neighbosehas
model-based, and meta-predictor-based. The neighbedtzproaches [53, 14, 23] predict the secondary strucyucehti-
fying a set of similar sequence-fragments with known seaonstructure; the model-based approaches [49, 22, 44eARjloy
sophisticated machine learning techniques to learn agireglimodel trained on sequences of known structure; wietfea
meta-predictor-based approaches [12, 41] predict basedammbination of the results of various different neighbod/ar
model-based techniques. The near real-time evaluationaofyrof these methods performed by the EVA server [48] shows
that the model-based approaches tend to produce stdtjsbetter results than the neighbor-based schemes, whicfuether
improved by some of the more recently developed meta-piarei@sed approaches [41].

Historically, the most successful model-based approashasas PHD [49], PSIPRED [22], and SSPro [42], were based on
neural network (NN) learning techniques. However, in régears, a number of researchers have also developed segonda
structure prediction algorithms based on support vectahinas.

In the remainder of this section we present one such SVMehsseondary structure prediction algorithm called YASSPP
that shows exemplary performance [29].

4.1 YASSPP Overview

The overall structure of YASSPP is similar to that used by ynexisting secondary structure prediction algorithms HitéD
and PSIPRED. The approach is illustrated in Figure 2 It siasif two models, referred to dg and Lo, that are connected
together in a cascaded fashion. The model assigns to each position a weight for each of the theeenslary structure
elements{C, E, H}, which are provided as input to the, model to predict the actual secondary structure class di eac
position. TheL; model treats each position of the sequence as an indepgméeinttion problem, and the purpose of the
model is to determine the structure of a position by takirig account the predicted structure of adjacent positioAs&SSPP

splits the training set equally between theand L, models. ) ) . ) . )
Both theL; andL, models consist of three binary SVM cIassifie{Mlc/C, Mf/E, MlH/H} and{MQC/C, Mf/E, MQH/H},

respectively) trained to predict whether or not a positielobgs to a particular secondary structure state or not¢ne-vs-rest
models). The output values of tiig model are the raw functional outputs of these binary clasiﬁi.e.,Mlc/C, MIE/E, and
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Figure 2: The general architecture of YASSPP’s learningnéaork

MlH/H), whereas the predicted secondary state ofithenodel corresponds to the state whose corresponding bitesyifer
achieves the maximum value. That is, )
Predicted state- argmax (MZ/7). )
ze{C,E,H}

During training, for each positiohthat belongs to one of the three secondary structure siadesc{asses) of a sequence
X, the input to the SVM is 42w + 1)-length subsequenaemer of X. The proper value for the parameteris determined
experimentally. During secondary structure predictiosinailar approach is used to construcivener around each position
of aquerysequenceX with unknown secondary structure.

4.2 Input Sequence Coding

For the input sequence coding there are two different apgpesafor theL; model and two different approaches for the
model. L,’s first coding scheme represents eagler = as a(2w + 1) x 20 matrix P,,, whose rows are obtained directly
from the rows of the PSSM for each position. The second costthgme augments this PSSM-based representation by adding
another(2w + 1) x 20 matrix B,, whose rows are the rows of the BLOSUM®62 matrix correspanthreach position’s amino
acid. These schemes are referred asRteand theP B coding schemes, respectively.

By augmenting thevmer coding scheme to contain both PSSM- as well as BLOSUM62¢ebadermation, the SVM can
learn a model that is also partially based on the non-posgecific information. This information will remain validen in
cases in which PSI-BLAST could not or failed to generateexdralignments.

The two coding schemes for thie, model are derived from the corresponding coding schemds, diy including the
predictions computed h¥; s three binary classifiers. This is done by adding anof@er+ 1) x 3 matrix S,,whose columns
store the raw functional predictions of thIC/C, MIE/E, andMlH/H models, respectively. Thus, the first coding scheme
consists of matrice®, andS,, and the second coding scheme consists of maffigeB,,, and.S,. These coding schemes are
novel compared to the existing methods.

4.3 Profile-Based Kernel Functions

YASSPP shows a methodology for designing and evaluatianwskernel functions for use by binary SVM classifiers of the

L, and L, models. It develops kernel functions that are derived byliomg a normalized second-order kernel, in which the

contribution of each position decreases based on how fay tgefrom the central residue, along with an exponentiaktion.
The general structure of the kernel functions used in YASSRfZen by
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wherez andy are twowmers, K1 (z, y) is given by
K(z,y) = K(z,9) + (K(@,9))%, 4)

andi’s*(z, y) is a kernel function that depends on the choice of the pédatidnput coding schemes, and for each one of the
P, PB, PS,andPBS coding schemes is defined as follows:

j=w

o = 3 PG, ;
Pt

K = ;lé(w,y)f]iw%i’tf'(m, (6)

ch(:c,y) = I;E(:v,y)Jrv_j:w %Slil(]’)’ v

Ky = 7§<x,y)+vfw %ﬁyf]) v

The various terms involving the rows of tf#& B, and.S matrices (e.g.P.(j,:)P;(j,:)) correspond to the dot-products of the
rows corresponding to thgh positions of thevmers (indexed from-w to +w). We do not delve into the various characteristics
that are coded in the constructions of the kernel functiartgllvect the reader to the report [29] for further details.

4.4 Performance Evaluation

For assessing the performance of YASSPP a wide variety asdts were used. A thorough parameter study was done to
study the impact of the various coding schemes, kernel es@nd the best parameters. We show some of the comparative
performance study results for YASSPP.

The prediction accuracy is assessed using four widely useidmmance measures. These are the three-state pereresidu
accuracy @s), the segment overlap measure (SOV), the per-state Madtihewelation coefficients(des, Cg, Cg), and the
information index (Info). Q3 is a measure of the overall three-state prediction accuaadyis defined as the percentage of
residues whose structural class is predicted correctly. [A%e SOV is a segment-level measure of the overall prexticti
accuracy. This measure is initially introduced in [50] anbdsequently refined in [54]. Matthews correlation coeffitsg37]
provide a per-state measure of prediction performanceamal particular statec {C, E, H} it is given by

PiTi — U;i0;

Ci= ,
V(P +i+u)(pi + 0i)(n; +u;i)(ni +0;)

©)

wherep; is the number of correctly predicted residues in siatg is the number of residues that were correctly rejected (true
negatives)u; is the number of residues that were incorrectly rejectelddfaegatives), and; is the number of residues that
were incorrectly predicted to be in stat@alse positives). Finally, the information index [49] is entropy-related measure that
merges the observed and the predicted state-specific agauemsures into a single number with all these elementsilbotihg
equally.

Table 1 compares the performance achieved by YASSPP adhatsachieved by PHDpsi [44], PSIPRED [22], SAM-
T99sec [27], PROFsec [47], SCRATCH [42], SSPro4 [42], andBBB2 [43]. These schemes represent some of the best
performing schemes currently evaluated by the EVA servet their results were obtained directly from EVA. Since EVA d
not use all the methods to predict all the sequences of EVFaldle 1 presents four different sets of results for YASSPPs
and YASSPR g pps (indicated by the superscripts 1-4), each obtained by giregahe various performance assessment
methods over the common subset. These common subsetnenht&5, 134, 86, and 115 sequences, respectively.

These results show that both YASSRBs and YASSPR 5, pps achieve better prediction performance than that achieved
by any of the other schemes across all the different perfocmassessment measures. In particular, for the entireedata
YASSPR-51ppgs achieves aQ; score of 79.34%, which is 1.7 percentage points higher theansécond best-performing
scheme in terms af)3 (SAM-T99sec), and an SOV score of 78.65%, which is 2.6 peacgnpoints higher than the second



Table 1: Performance on the EVAc4 dataset.

Scheme Q3 SOV Info Cc Cg Cy
PHDpsi 7452 70.69 0.346 0.529 0.685 0.665
PSIPRED 77.62 76.05 0.375 0.561 0.735 0.696
SAM-T99sec 77.64 75.05 0.385 0.578 0.721 0.675
PROFsec 76.54 75.39 0.378 0.562 0.714 0.677
YASSPR, ps 78.35 77.20 0.407 0.589 0.746 0.708
ErrSig 0.86 1.21 0.015 0.015 0.021 0.017
'YASSPR:-5.pps 79.34 78.65 0.419 0.608 0.747 0.722
ErrSig 0.82 1.16 0.015 0.015 0.021 0.016
SCRATCH 75.75 71.38 0.357 0.545 0.690 0.659
2YASSPP-, ps 78.39 77.69 0.406 0.586 0.750 0.711
ErrSig 0.97 1.36 0.016 0.017 0.023 0.018
2YASSPP-p.pps 79.31 78.75 0.416 0.602 0.751 0.722
ErrSig 0.94 1.29 0.016 0.017 0.023 0.018
SSPro4 7796 72.73 0.385 0.559 0.711 0.696
3YASSPR, ps 79.21 78.60 0.418 0.590 0.749 0.723
ErrSig 1.19 1.67 0.021 0.023 0.030 0.022
3YASSPR-5.pps 80.03 79.00 0.430 0.605 0.751 0.736
ErrSig 1.18 1.68 0.022 0.024 0.030 0.022
SABLE2 76.85 73.55 0.376 0.546 0.725 0.682
1YASSPR, ps 78.70 78.09 0.417 0.596 0.766 0.715
ErrSig 1.00 1.42 0.018 0.018 0.025 0.019
1YASSPRp.pps 79.85 79.71 0.432 0.615 0.768 0.730
ErrSig 0.97 1.39 0.018 0.019 0.025 0.019

YASSPR pg uses theP + PSS input coding and the YASSR, ps

uses theP B + PBJS input coding and were obtained using= 7 (i.e.,
wmers of size 15). ThéYASSPP are the averages over the set of se-
quences in common with PHDpsi, PSIPRED, SAM-T99sec, andiRRO
sec. The?YASSPP are the averages over the set of sequences in com-
mon with SCRATCH. Thé YASSPP are the averages over the set of se-
guences in common with SSPro4. TRHEASSPP are the averages over
the set of sequences in common with SABLE2.



Table 2: Comparative performance of YASSPP against other
secondary structure prediction servers.

RS126 Dataset

Scheme Q3 SOV Info Co Cg Cg
PSIPRED 81.01 76.24 0.45 0.65 0.70 0.77
PHD 76.92 7257 0.38 0.57 0.63 0.73
Prof 76.95 71.70 0.38 0.58 0.63 0.73
SSPro 77.01 70.24 0.38 0.58 0.61 0.72
YASSPP 4 pg 79.81 74.41 0.42 0.61 0.70 0.76
ErrSig 0.80 1.28 0.02 0.02 0.02 0.02
YASSPR-g.pps 80.29 75.65 0.43 0.61 0.70 0.75
ErrSig 0.79 1.25 0.02 0.02 0.02 0.02
CB513 Dataset
Scheme Q3 SOV Info Cc Cg Cg
PSIPRED 79.95 76.48 0.43 0.63 0.68 0.76
PHD 77.61 7498 0.39 0.59 0.65 0.73
Prof 77.13 73.74 0.39 0.58 0.64 0.73
SSPro 79.07 74.39 0.42 0.61 0.65 0.76
YASSPR 4 ps 80.52 77.39 0.45 0.62 0.70 0.74
ErrSig 0.40 0.60 0.01 0.01 0.01 0.01
YASSPR-g.pps 80.99 77.86 0.45 0.63 0.70 0.75
ErrSig 0.39 0.60 0.01 0.01 0.01 0.01

YASSPR-, pgs uses theP 4+ PS input coding and the
YASSPR-p.pps Uses thePB + PBS input coding. Both
schemes usavmers of length 15« = 7). The results for
PSIPRED, PHD, Prof, and SSPro were obtained from [46].
ErrSig is the significant difference margin for each scavel{$-
tinguish between two methods) and is defined as the standard
deviation divided by the square root of the number of pratein

(@/VN).

best performing scheme in terms of SOV (PSIPRED).

Table 2 compares the performance achieved by YASSPP’s gtiodiserver with that achieved by other model-based sgrver
such as PSIPRED, PHD, Prof, and SSPro [46]. These resultg gtad the performance achieved by YASSRBs and
YASSPR-5. pgs is in general higher than that achieved by the other serY&SSPR-5, pps’S performance is one to four
percentage points higher in terms@§ and SOV. The only exception is the RS126 dataset for whicPRED achieves some-
what better prediction performance than either YASSPPs or YASSPR-5 pps (PSIPRED achieves @3 score of 81.01
vs 80.29 for YASSPPgs.pps). However, as measured IBrrSig, this performance difference is not statistically sigrifit
Also, as was the case with the previous results, YASSPR s achieves better prediction performance than that achieyed
YASSPP, ps.

5 Remote Homology and Fold Prediction

Both remote homology detection and fold recognition ardre¢éproblems in computational biology and bioinformatiesth
the aim of classifying protein sequences into structurdlfanctional groups or classes.

Pairwise sequence comparison methods (e.g., sequencenalig algorithms like Smith-Waterman [55] and sequence
database search tools like BLAST [1]) are able to detect hogons sequences with a high percentage sequence identity.
However, as the percent identity between sequence pairsates, the problem of finding the correct homologous pairs b
comes increasingly difficult.

Some of the better performing schemes in this domain usdeoformation to compare a query protein with a collection
of related proteins. Profiles for a sequence can be definegrimstof a multiple sequence alignment of a query sequence



with its statistically significant homologs (as computedRfyl-BLAST [2]) or in the form of hidden markov model (HMM)
states [30, 5]. The models built in this fashion are examplegnerative models.

The current state-of-the-art methods employ discrimiealiased modelling techniques and have a large advantage ove
generative models in this domain. Support vector machiaes heen the popular choice of discriminative learners.

One of the early attempts at using a feature-space-basedambps the SVM-Fisher method [19], in which a profile HMM
model is estimated on a set of proteins belonging to theigesitass. This HMM is then used to extract a vector repredemt
for each protein. Another approach is the SVM-pairwise sah35], which represents each sequence as a vector of pairwi
similarities between all sequences in the training set. latikely simpler feature space that contains all possihtatssubse-
guences ranging from 3-8 amino acidsners) is explored in a series of papers (Spectrum kerne] Bi3match kernel [34],
and Profile kernel [31]). All three of these methods repreaesequence& as a vector in this simpler feature space, but differ
in the scheme they employ to actually determine if a paricdimension (i.e., kmer) has a non-zero weight iX’s vector or
not. The Spectrum kernel considerto be present i containsu as a substring, the Mismatch kernel considets be present
if X contains a substring that differs within at most a predefined number of positions (i.e., mismajchédsereas the Pro-
file kernel considers, to be present ifX contains a substring whose PSSM-based ungapped alignowatwithw is above
a user-supplied threshold. An entirely different featysace is explored by the SVM-Isites [17] and SVM-HMMSTR [18]
methods that take advantage of a set of local structurafsn@WVM-Isites) and their relationships (SVM-HMMSTR).

An alternative to measuring pairwise similarity througha-groduct of vector representations is to calculate ari@kp
protein similarity measure. The recently developed LA#&method [52] represents one such example direct kernel
function This scheme measures the similarity between a pair of ipregquences by taking into account all the optimal
gapped local alignment scores between all possible subsegs of the pair. The experiments presented in [52] shotv tha
this kernel is superior to previously developed schemesdbanot take into account sequence profiles and that the lbvera
classification performance improves by taking into accalimiossible local alignments.

5.1 Profile-Based Kernel Functions

Recently, a set of direct profile-based kernel functionsvamveloped and tested to show very good performance [48]fif&h
class, referred to as window-based, determines the sityilz@tween a pair of sequences by combining ungapped atghm
scores of fixed-length subsequences. The second, referesddcal alignment-based, determines the similarity betva pair
of sequences using Smith-Waterman alignments and a positiependent affine gap model, optimized for the charastiesi
of the scoring system. Both kernel classes utilize profitesstructed automatically via PSI-BLAST and employ a pretiile
profile scoring scheme that extend a recently introducefil@adignment method [38].

One way of computing the profile-to-profile scores would bat@ the dot product between the profile columns for the two
positions, shown in Equation 10

20
Sx,v(i,5) = > _ PSSMx (i, k) x PSSM/ (4, k), (10)
k=1
Another example of such a scoring function [45] is given byw&ipn 11. This particular scoring function captures the
similarity between the two profile positions using both thwsifion specific scoring matrices and position specific Uy
matrices. This scoring function can be defined as,

20
Sxy(i,j) = PSFMx(i,k) PSSM(j,k) +
k=1
20
> PSFMy (j, k) PSSM (i, k),
k=1
11)

5.1.1 Smith-Waterman based Kernel Functions As explained in section 2.1, the choice of kernel functicaypla
critical role in the performance of a classifier. A simple 8miVaterman based alignment scoring scheme can be used as a
kernel function provided steps are followed to ensure itslitg—specifically, that it follows Mercer’s conditions.

The Smith-Waterman based kernel computes the similaritydsn a pair of sequences andY by finding an optimal
alignment between them that optimizes a particular scdiungtion. Given two sequences andY of lengthsn andm,
respectively, the SW-PSSM kernel computes their simjlag the score of the optimal local alignment. In this alignme
the similarity between two sequence positions is deterdhirging the profile-to-profile scoring scheme of Equationatid a
position independent affine gap model.

Within this local alignment framework, the similarity sedbetween a pair of sequences depends on the gap-opgang (

10



and gap-extensiorg€) costs, and the intrinsic characteristics of the profilgitofile scoring scheme. A scoring system whose
average score is positive will tend to produce very longratignts, potentially covering segments of low biologicadiievant
similarity. On the other hand, if the scoring system canmailg produce alignments with positive scores, then it naalyt
identify any non-empty similar subsequences. In order tainbmeaningful local alignments, the scoring scheme thased
should produce alignments whose score must on average htveegith the maximum score being positive [55].

To ensure that the SW-PSSM kernel can correctly accounhéocharacteristics of the scoring system, the profile-tdHger
scores calculated from Equation 11 are modified by addingnataat value. This scheme, commonly referred taze®-
shifting [57], ensures that the resulting alignments have scord¢satieanegative on the average, while allowing for positive
maximum scores.

5.1.2 Window-based Kernel Functions The local alignment based kernels capture the similaritween sequence
pairs by combining the ungapped alignment scoresmakr subsequences between the various positions of the seguence
Based on the combination of fixed and varied lengthers for different pair positions between sequences, [tspduces
three novel window-based kernel functions.

The ungapped alignment score between twoers is computed using the profile-to-profile scoring methiEquation 11
as follows:

wscorex,y (i,7) = Z Sx,y(t+k,j+k). 12)
k=—w

The All Fixed-widthwmers (AF-PSSM) kernel computes the similarity between aqgdaequenceX andY by adding-up
the alignment scores of all possihleners betweerX andY that have a positive ungapped alignment score. Specifidaihe
ungapped alignment score between tnmers at positions andj of X andY’, respectively is denoted hyscorex,y (¢, 7),
n andm are the lengths oX andY’, respectively, an@,, is the set of all possiblemer-pairs of X andY with a positive
ungapped alignment score, i.e,

Pw = {(wmerx (i), wmery (j)) | wscorex,y (3,5) > 0}, (13)

forw+1<i<n-—wandw+1<j<m— w,thenthe AF-PSSM kernel computes the similarity betw&esandY as

AF-PSSMy,v (w) = » _ wscorex,v (i, j)- 14

(wmerx (i),wmery (1)) EPw

The Best Fixed-widthumer (BF-PSSM) kernel improves on the AF-PSSM kernel by sielga subseP,, of P,, (as defined
in Equation 13) such that (i) each positionX¥fand each position df is present in at most onemer-pair and (ii) the sum
of thewscores of the selected pairs is maximized. Gi&p the similarity between the pair of sequences is then coaapas
follows:

BF-PSSMk,y (w) = » wscorex,y (i, 7). (15)
(wmer(X,i),wmer(Y,j)) P,

The relation betweeR,, andP,, can be better understood if the possiblaer-pairs inP,, are viewed as forming amx m
matrix, whose rows correspond to the positionsxgfcolumns to the positions &f, and values correspond to their respective
wscores. Within this contexE,, corresponds to a matching of the rows and columns [40] whesghwis high (bipartite graph
matching problem). Since the selection forms a matchingh easition ofX (orY") contributes a singlemer in Equation 15,
and as such, eliminates the multiplicity present in the ASWM! kernel. At the same time, the BF-PSSM kernel attempts to
select thebestwmers for each position.

In fixed-width wmer-based kernels the width of themers is fixed for all pairs of sequences and throughout thieeent
sequence. As a result,qf is set to a relatively high value, it may fail to identify pthé@ scoring subsequences whose length
is smaller tharkw + 1, whereas if it is set too low, it may fail to reward sequeneg&gpthat have relatively long similar
subsequences.

The Best Variable-widthvmer (BV-PSSM) kernel overcomes this problem by using végiddngthwmers. It is derived
from the BF-PSSM kernel, where, for a given a user-supplietihnmw, the BV-PSSM kernel considers the set of all possible
wmer-pairs whose length ranges from one to a maximume.,

Prw=P1U...UPy, (16)
From this setP;. ,, the BV-PSSM kernel uses the greedy scheme employed by BMR8Select a subseP; ,, of
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wmer-pairs that form a high weight matching. The similarity betm the pair of sequences is then computed as follows:

BV-PSSMx,y (w) = Z wscorex,y (4,7). a7

(wmer(X,i),wmer(Y,j))eP;

Since for each position aX (andY’), P;_,, is constructed by including the highest scorinmer for i that does not conflict
with the previous selections, this scheme can automatisalkect the highest scoringmer whose length can vary from one
up tow; thus, achieving the desired effect.

Table 3: Comparison against different schemes for the
superfamily-level classification problem.

Kernel ROC ROC50 mRFP
SVM-Fisher 0.773 0.250 0.204
SVM-Pairwise 0.896 0.464 0.084
LA-eig(8 = 0.2) 0.923 0.661 0.064
LA-eig(8 = 0.5) 0.925 0.649 0.054
LA-ekm(3 = 0.5) 0.929 0.600 0.052
SVM-HMMSTR-Ave — 0.640 0.038
SVM-HMMSTR-Max — 0.618 0.043
SVM-HMMSTR-Hybrid — 0.617 0.048
Mismatch 0.872 0.400 0.084
Profile(4,6) 0.974 0.756 0.013
Profile(5,7.5) 0.980 0.794 0.010
AF-PSSM(2) 0.978 0.816 0.013
BF-PSSM(2) 0.980 0.854 0.015
BV-PSSM(2) 0.973 0.855 0.018
SW-PSSM(3.0,0.750,1.50) 0.98R.904 0.015

AF-GSM(6) 0.926 0.549 0.048
BF-GSM(6) 0.934 0.669 0.053
BV-GSM(6) 0.930 0.666 0.052

SW-GSM(B62,5.0,1,0.5) 0.948 0.711 0.039

The SVM-Fisher, SVM-Pairwise, LA-Kernel, and Mismatch re-
sults were obtained from [52]. The SVM-HMMSTR results
were obtained from [18]and correspond to the best-perfogmi
scheme (the authors did not report ROC values). The Profile
results were obtained locally by running the publicly aablié
implementation of the scheme obtained from the authors. The
ROCS50 value of the best performing scheme has been under-
lined.

5.2 Performance Evaluation

The fold prediction algorithms can be evaluated using the eEsequences obtained from the SCOP database [39]. The
SCOP database is a manually curated protein structureataa@ssigning proteins into hierarchically defined classes fold
prediction problem in the context of SCOP can be defined agrasg a protein sequence to its correct fold. On a similaiha
the remote homology problem can be defined as predictingatreat superfamily for a protein.

To evaluate the above techniques, remote homology deteisteimulated by formulating it as a superfamily classifmat
problem within the context of the SCOP database. The sanasetzand classification problefitsave been used in a number
of earlier studies [35, 18, 52] allowing for direct comparis of the relative performance of the various schemes. ake d

2The dataset and classification problem definitions areatailat http://www.cs.columbia.edu/compbio/svm-paievi
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Figure 3: Comparison of the different SVM-based methodsréonote homology detection on the SCOP 1.53 benchmark
dataset. The graph plots the total number of families forchiai given method exceeds the ROC-50 score threshold aleng th
X-axis.

consists of 4352 sequences from SCOP version 1.53 extrfaotedhe Astral database, grouped into families and supeélitss.
The dataset is processed so that it does not contain anyrsegjpairs with ar-value threshold smaller tha®—2°. For each
family, the protein domains within the family are considepesitive test examples, and protein domains within thedamily
but outside the family are considered positive trainingneples. This yields 54 families with at least 10 positive rimag
examples and 5 positive test examples. Negative exampldéeddamily are chosen from outside of the positive sequ&nce
fold, and are randomly split into training and test sets angame ratio as the positive examples.

Employing the same dataset and overall methodology as imteefmomology detection, we simulate fold detection by
formulating it as a fold classification problem within thentext of SCOP’s hierarchical classification scheme. In $kiging,
protein domains within the same superfamily are considpositive test examples, and protein domains within the datde
but outside the superfamily are considered positive tngirixamples. This yields 23 superfamilies with at least 1€itpe
training and 5 positive test examples. Negative examplethéosuperfamily are chosen from outside of the positiveiseges’
fold and split equally into test and training sétsSince the positive test and training instances are mendfedsfferent
superfamilies within the same fold, this new problem is gigantly harder than remote homology detection, as the esecgs
in the different superfamilies do not have any apparenteecgl similarity [39]. The quality of these methods is evadday
using the receiver operating characteristic (ROC) scthesROC50 scores, and the median rate of false positives BRhRF

Table 3 and Table 4 compare the performance of the variongkiemctions developed in this paper against that achibyed
a number of previously developed schemes for the supesfaartd fold-level classification problems, respectivetytie case
of the superfamily-level classification problem, the parfance is compared against SVM-Fisher [19], SVM-Pairwig,[
and different instances of the LA-Kernel [52], SVM-HMMSTRY], Mismatch [34], and Profile [31].

The results in these tables show that both the window- aral Elggnment-based kernels derived from sequence profiles
(i.e., AF-PSSM, BF-PSSM, BV-PSSM, and SW-PSSM) lead toltesinat are in general better than those obtained by egistin
schemes. The performance advantage of these direct kesgeéater over existing schemes that rely on sequenceiatarn

3The classification problem definitions are available at:Htjwinfo.cs.umn.edu/supplements/remote-homology/.
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Figure 4: Comparison of the different SVM-based method$diol detection on the SCOP 1.53 benchmark dataset. The graph
plots the total number of superfamilies for which a givenimetexceeds the ROC-50 score threshold along the x-axis.

alone (e.g., SVM-Pairwise, LA-Kernels), but still remagignificant when compared against schemes that eithettlgitake

into account profile information (e.g., SVM-Fisher, Prdfite utilize higher-level features derived by analyzing sece-
structure information (e.g., SVM-HMMSTR). Also, the reélat advantage of profile-based methods over existing schésne
greater for the much harder fold-level classification peabbver the superfamily-level classification problem. Bamaple, the
SW-PSSM scheme achieves ROC50 values that are 13.8% arfid Bét&r than the best values achieved by existing schemes
for the superfamily- and fold-level classification probmespectively.

To get a better understanding of the relative performantleeofarious schemes across the different classes, Figamed 8
plot the number of classes whose ROC50 are greater thanrathreshold that ranges from 0 to 1. Specifically, Figure 3x&ho
the results for the remote homology detection problem, ed®figure 4 shows the results for the fold detection problem
(Note that these figures contain only results for the scheéhatsve are able to run locally.) These results show that mfile-
based methods lead to higher ROC50 values for a greater mwhbksses than either the Profile or LA-kernels, espsaciall
for larger ROC50 values (e.g. in the range of 0.6 to 0.95)oAtlse SW-PSSM tends to consistently outperform the regteof t
profile-based direct kernel methods.

In addition, the results for the BF-GSM, BV-GSM, and SW-GSe#riels that rely on the BLOSUM scoring matrices show
that these kernel functions are capable of producing iethdt are superior to all of the existing non-profile-basgeemes. In
particular, the properly optimized SW-GSM scheme is abkctueve significant improvements over the best LA-Kerresdal
scheme (7.6% higher ROC50 value) and the best SVM-HMMST$ethacheme (15.1% higher ROC50 value).

From the evaluation of direct profile-based kernels for fdlksification, three major observations can be made., Eisst
was the case with a number of studies on the accuracy of pre¢gjuence alignment [38, 57, 36], the proper use of sequence
profiles leads to dramatic improvements in the overall gbith detect remote homologs and identify proteins thateshiae
same structural fold. Second, kernel functions that aretcocted by directly taking into account the similarity Wween the
various protein sequences tend to outperform schemesrthhtiaed on a feature-space representation (where eachsiime
of the space is constructed as onekgfossibilities in ak-residue long subsequence or using structural motifedyin the
case of SVM-HMMSTR). This is especially evident by compgrthe relative advantage of the window-based kernels over
the Profile kernel. Third, time-tested methods for comgagrotein sequences based on optimal local alignments (hsisve
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Table 4: Comparison against different schemes for the fold-
level classification problem.

Kernel ROC ROC50 mRFP
LA-eig(B = 0.2) 0.847 0.212 0.129
LA-eig(B = 0.5) 0.771 0.172 0.193
Profile(4,6) 0.912 0.305 0.071
Profile(5,7.5) 0.924 0.314 0.069
AF-PSSM(4) 0.911 0.374 0.067
BF-PSSM(4) 0.918 0.414 0.060
BV-PSSM(4) 0.941 0.481 0.043
SW-PSSM(3.0,0.750,2.0) 0.936.571 0.054

AF-GSM(6) 0.770 0.197 0.217
BF-GSM(6) 0.822 0.240 0.157
BV-GSM(7) 0.845 0.244 0.133

SW-GSM(B62,5,1.0,0.5) 0.826 0.223 0.176

The results for the LA-Kernel were obtained using the pub-
licly available kernel matrices that are available at thinats
website. The Profile results were obtained locally by rugnin
the publicly available implementation of the scheme oladin
from the authors. The ROCS50 value of the best performing
scheme has been underlined.

global and local-global alignments), when properly optied for the classification problem at hand, lead to kernettfans

that are in general superior to those based on either shoseguences (e.g., Spectrum, Mismatch, Profile, or windased
kernel functions) or local structural motifs (e.g., SVM-WAMTR). The fact that these widely used methods produce good
results in the context of SVM-based classification is re@sguas to the validity of these approaches and their alidityapture
biologically relevant information.

6 Concluding Remarks

Predicting protein structure from primary sequence infition is a challenging problem that has attracted and coedirio
attract attention from several fields of research. The otrkallenges within this problem stem from two factors.sgiwe

still do not have a complete understanding of the basic phj/girinciples that govern protein folding. Second, the ham

of experimentally resolved 3D protein structures remamalscompared to the number of known proteins. Despite these
obstacles, recent advances in applying machine learniegdtutionary analysis have significantly improved the duaif
current structural predictions.

In this chapter we provided a brief overview of some of theseme learning techniques. Specifically, we examined
the design of state-of-the-art kernel functions within scdiminative learning framework for secondary structuredgction,
remote homology detection and fold recognition. We havemyia flavor of string kernels along with the use of evolutignar
information in our methods. Hopefully, increasingly betielutions to subproblems within complete structure poain will
lead to an accurate method for native fold prediction frogqusace.

Acknowledgment

This work was supported by NSF EIA-9986042, ACI-0133468;0431135, NIH RLM008 713A, the Army High Performance
Computing Research Center contract number DAAD19-01-2408nd by the Digital Technology Center at the University of
Minnesota.

References

[1] S. F. Altschul, W. Gish, E. W. Miller, and D. J. Lipman. Ba$ocal alignment search toalournal of Molecular Biology
215:403-410, 1990.

15



[2] S. F. Altschul, L. T. Madden, A. A. Schffer, J. Zhang, Z.attg, W. Miller, and D. J. Lipman. Gapped blast and psi-blast:
a new generation of protein database search progrilondeic Acids Researc25(17):3389-402, 1997.

[3] Stephen Altschul, Warren Gish, Webb Miller, Eugene Myeand David Lipman. Basic local alignment search tool.
Journal of Molecular Biology215:403—410, 1990.

[4] C. Anfinsen. Principles that govern the folding of protehains.Science181:223-230, 1973.

[5] P.Baldi, Y. Chauvin, T. Hunkapiller, and M. McClure. Hidn markov models of biological primary sequence infororati
PNAS 91:1053-1063, 1994.

[6] P. A. Bates and M. J. E Sternberg. Model building by corgmar at casp3: Using expert knowledge and computer
automation.Proteins: Structure, Functions and Geneti8sA7 —54, 1999.

[7] P. Bourne and H. Weissidstructural Bioinformatics John Wiley & Sons, 2003.

[8] J. U.Bowie, R. Luethy, and D. Eisenberg. A method to iffgmrotein sequences that fold into a known three-dimemelio
structure.Science253:797-815, 1991.

[9] K. M. S. Misura C. A. Rohl, C. E. M. Strauss and D. Baker. temo structure prediction using rosettélethods in
Enzymology383:66—93, 2004.

[10] Michael Collins. Parameter estimation for statidtjgzarsing models: Theory and practice of distribution-fireethods. In
New Developments in Parsing Technolpggges 1-38. Kluwer, 2001.

[11] Nello Cristianini and John Shawe-TayloAn Introduction to Support Vector Machine€ambridge University Press,
Cambridge, UK, 2000.

[12] J. A. Cuff and G. J. Barton. Evaluation and improvementaltiple sequence methods for protein secondary stractur
prediction.PROTEINS: Structure, Function, and Geneti84:508-519, 1999.

[13] A. Fiser, R. K. Do, and A.Sali. Modeling of loops in protestructures Protein Scienced:1753 — 1773, 2000.

[14] D. Frishman and P. Argos. Seventy-five percent accuragyotein secondary structure predicti®dROTEINS: Structure,
Function, and Genetic®7:329-335, 1997.

[15] M. Gribskov, A. D. McLachlan, and D. Eisenberg. Profilealysis: detection of distantly related proteinBNAS
84:4355-4358, 1987.

[16] S. Henikoff and J. G. Henikoff. Amino acid subsitutioratrices from protein blocke?NAS 89:10915-10919, 1992.

[17] Y. Hou, W. Hsu, M. L. Lee, and C. Bystroff. Efficient rensohomology detection using local structuiioinformatics
19(17):2294-2301, 2003.

[18] Y. Hou, W. Hsu, M. L. Lee, and C. Bystroff. Remote homoldegtection using local sequence-structure correlations.
Proteins:Structure,Function and Bioinformatjé&7:518-530, 2004.

[19] T.Jaakkola, M. Diekhans, and D. Haussler. A discrirtiimaframework for detecting remote protein homologigsurnal
of Computational Biology7(1):95-114, 2000.

[20] D. T. Jones. Genthreader: an efficient and reliablegimdld recognition method for genomic sequencésurnal of
Molecular Biology 287:797-815, 1999.

[21] D. T. Jones, W. R. Taylor, and J. M. Thorton. A new applogcproetin fold recognitionNature 358:86—89, 1992.

[22] David T. Jones. Protein secondary structure predidigsed on position-specific scoring matricigsviol. Biol,, 292:195—
202, 1999.

[23] K. Joo, J. Lee, S. Kim, I. Kum, J. ee, and S. Lee. Profilseobnearest neighbor method for pattern recognitionf the
Korean Physical Societyp4(3):599-604, 2004.

[24] E. Huang K. T. Simons, C. Kooperberg and D. Baker. Asdgmibprotein tertiary structures from fragments with siamil
local sequences using simulated annealing and bayesiang&anctions.Journal of Molecular Biology268:209-225,
1997.

[25] W. Kabsch and C. Sander. Dictionary of protein secopdtucture: Pattern recognition of hydrogen-bonded armd ge
metrical featuresBiopolymers22:2577-2637, 1983.

[26] K. Karplus, C. Barrett, and R. Hughey. Hidden markov mlsdor detecting remote protein homologi@oinformatics
14:846-856, 1998.

[27] K. Karplus, C. Barrett, and R. Hughey. Hidden markov misdor detecting remote protein homologi@oinformatics
14:846-856, 1998.

16



[28] K. Karplus, R. Karchin, J. Draper, J. Casper, Y. Man@eltfreund, M. Diekhans, and R. Hughey. Combining local-
structure, fold-recognition, and new fold methods for piotstructure predictionPROTEINS: Structure, Function and
Genetic$53:491-496, 2003.

[29] George Karypis. Better kernels and coding schemestlzadprovements in svm-based secondary structure predicti
Technical Report 05-028, Department of Computer Scieno@disity of Minnesota, 2005.

[30] A. Krogh, M. Brown, I. Mian, K. Sjolander, and D. Hausslélidden markov models in computational biology: Applica-
tions to protein modelingJournal of Molecular Biology235:1501-1531, 1994.

[31] R. Kuang, E. le, K. Wang, K. Wang, M. Siddiqi, Y. FreundhdaC. Leslie. Profile-based string kernels for remote
homology detection and motif extractioGomputational Systems Bioinformatigmges 152—-160, 2004.

[32] J. Lee, S. Kim, K. Joo, I. Kim, and J. Lee. Prediction obfein tertiary structure using profesy, a novel method tase
fragment assembly and conformational space anned@R@TEINS: Structure, function and bioinformati66:704—714,
2004.

[33] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kerAedtring kernel for svm protein classificatioRroceedings of
the Pacific Symposium on Biocomputipgges 564-575, 2002.

[34] C. Leslie, E. Eskin, W. S. Noble, and J. Weston. Mismattting kernels for svm protein classificatioddvances in
Neural Information Processing Systeri§(4):467-476, 2003.

[35] L. Liao and W. S. Noble. Combining pairwise sequenceilginty and support vector machines for detecting remote
protein evolutionary and structural relationshipsoc. of the Intl. Conf. on Research in Computational MolacBiology,
pages 225-232, 2002.

[36] M. Marti-Renom, M. Madhusudhan, and A. Sali. Alignmeaftprotein sequences by their profile®rotein Science
13:1071-1087, 2004.

[37] F. S. Matthews. The structure, function and evolutibnydochromes Prog. Biophys. Mol. Bio].45:1-56, 1975.

[38] D. Mittelman, R. Sadreyev, and N. Grishin. Probahitistcoring measures for profile-profile comparison yield enor
accurate short seed alignmenBoinformatics 19(12):1531-1539, 2003.

[39] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothi@o® a structural classification of proteins database fer th
investigation of sequences and structutksirnal of Molecular Biology247:536-540, 1995.

[40] C.H. Papadimitriou and K. Steiglit€ombinatorial Optimization: Algorithms and ComplexiBrentice-Hall, Englewood
Cliffs, NJ, 1982.

[41] G. Pollastri and A. McLysaght. Porter: a new, accuratwer for protein secondary structure predicti@mwinformatics
21:1719-1720, 2005.

[42] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Imping the prediction of protein secondary structure in ¢haed
eight classes using recurrent neural networks and prof&OTEINS: Structure, Function, and Geneti¢g:228—-235,
2002.

[43] A.Porollo, R. Adamczak, M. Wagner, and J Meller. Maximéeasibility approach for consensus classifiers: Applcest
to protein structure prediction. BIRAS 2003.

[44] D. Przybylski and B. Rost. Alignments grow, secondamycure prediction improve?ROTEINS: Structure, Function,
and Genetics46:197-205, 2002.

[45] H. Rangwala and G. Karypis. Profile based direct kerf@semote homology detection and fold recogniti@ioinfor-
matics 21(23):4239-4247, 2005.

[46] V. Robles, Pedro Larranaga, Jose M. Pena, Ernestinaeadédvas, Maria S. Perez, Vanessa Herves, and Anita
Wasilewska. Bayesian network multi-classifiers for protsecondary structure predictionArtificial Intelligence in
Medicine 31:117-136, 2004.

[47] B. Rost. unpublished.

[48] B. Rostand V. A. Eyrich. EVA: Large-scale analysis ofgedary structure predictio®ROTEINS: Structure, Function,
and GeneticsSuppl. 5:192-199, 2001.

[49] B. Rost and C. Sander. Prediction of protein secondangtire at better than 70% accuradyMol. Biol,, 232:584-599,
1993.

[50] B. Rost, C. Sander, and R. Schneider. Redefining thesgufaprotein secondary structure predictiod. Mol. Biol,
235:13-26, 1994.

17



[51] Burkhard Rost. Review: Protein secondary structuegljation continues to riselournal of Structural Biologyl134:204—
218, 2001.

[52] H. Saigo, J. P. Vert, N. Ueda, and T. Akutsu. Protein hlmgy detection using string alignment kernel&oinformatics
20(11):1682-1689, 2004.

[53] A. A. Salamov and V. V. Solovyev. Protein secondarydtiite prediction using local alignments.Mol. Biol,, 268:31-36,
1997.

[54] A.Semla, C. Venclovas, Krzysztof Fidelis, and B. R@stmodified definition of sov, a segment-based measure foeprot
secondary structure prediction assessmeRIOTEINS: Structure, Function, and Genetig4:220-223, 1999.

[55] T. F. Smith and M. S. Waterman. Identification of commoal@cular subsequencesournal of Molecular Biology
147:195-197, 1981.

[56] V. Vapnik. Statistical Learning TheoryJohn Wiley, New York, 1998.
[57] G. Wang and R. L. Dunbrack JR. Scoring profile-to-prodiggiuence alignmentBrotein Sciencegl3:1612-1626, 2004.

[58] Y. Wu and E. Y. Chang. Distance-function design anddondbr sequence dat®roc. of the Thirteenth ACM conference
on Information and knowledge managemeatges 324-333, 2004.

18



