
Knowl Inf Syst (2005) 00: 1–19
DOI 10.1007/s10115-005-0216-7

Knowledge and
Information Systems

RESEARCH ARTICLE

Jianyong Wang · George Karypis

On efficiently summarizing
categorical databases

Received: 1 June 2004 / Revised: 15 January 2005 / Accepted 30 January 2005 /
Published online: 10 May 2005
C© Springer-Verlag 2005

Abstract Frequent itemset mining was initially proposed and has been studied
extensively in the context of association rule mining. In recent years, several
studies have also extended its application to transaction or document clustering.
However, most of the frequent itemset based clustering algorithms need to first
mine a large intermediate set of frequent itemsets in order to identify a subset of
the most promising ones that can be used for clustering. In this paper, we study
how to directly find a subset of high quality frequent itemsets that can be used
as a concise summary of the transaction database and to cluster the categorical
data. By exploring key properties of the subset of itemsets that we are interested
in, we proposed several search space pruning methods and designed an efficient
algorithm called SUMMARY. Our empirical results show that SUMMARY
runs very fast even when the minimum support is extremely low and scales
very well with respect to the database size, and surprisingly, as a pure frequent
itemset mining algorithm it is very effective in clustering the categorical data and
summarizing the dense transaction databases.

Keywords Data mining · Frequent itemset · Categorical database · Clustering

1 Introduction

Frequent itemset mining was initially proposed and has been studied extensively in
the context of association rule mining [2, 3, 9, 15, 18, 24, 29, 35]. In recent years,

J. Wang
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

G. Karypis (B)
Department of Computer Science, Digital Technology Center and Army HPC Research Center,
University of Minnesota, Minneapolis, MN 55455, USA
E-mail: karypis@cs.umn.edu

2 J. Wang, G. Karypis

some studies have also demonstrated the usefulness of frequent itemset mining
in serving as a condensed representation of the input data in order for answering
various types of queries [8, 22], and the transactional data (or document) classifi-
cation [4, 5, 19, 20] and clustering [7, 11, 32, 33, 34].

Most frequent itemset based clustering algorithms need to first mine a large
intermediate set of frequent itemsets (in many cases, it is the complete set of fre-
quent itemsets), on which some further post-processing can be performed in order
to generate the final result set which can be used for clustering purposes. In this
paper we consider directly mining a final subset of frequent itemsets which can
be used as a concise summary of the original database and to cluster the categor-
ical data. To serve these purposes, we require the final set of frequent itemsets
have the following properties: (1) it maximally covers the original database given
a minimum support; (2) each final frequent itemset can be used as a description
for a group of transactions, and the transactions with the same description can
be grouped into a cluster with approximately maximal intra-cluster similarity. To
achieve this goal, our solution to this problem formulation is that for each trans-
action we find one of the longest frequent itemsets that it contains and use this
longest frequent itemset as the corresponding transaction’s description. This set
of mined frequent itemsets is called a summary set.

One significant advantage of directly mining the final subset of frequent item-
sets is that it provides the possibility of designing a more efficient algorithm. We
proved that each itemset in the summary set must be closed; thus, some search
space pruning methods proposed for frequent closed itemset mining can be bor-
rowed to accelerate the summary set mining. In addition, based on some proper-
ties of the summary set, we proposed several novel pruning methods which greatly
improve the algorithm efficiency. By incorporating these pruning methods with a
traditional frequent itemset mining framework, we designed an efficient summary
set mining algorithm, SUMMARY. Our thorough empirical tests show that SUM-
MARY runs very fast even when the minimum support is extremely low and scales
very well with respect to the database size. Moreover, its result set is very effective
in clustering the categorical data and summarizing the dense transaction databases.

The rest of this paper is organized as follows. Sections 2 and 3 introduce the
problem definition and some related work, respectively. Section 4 describes the
algorithm in detail. Section 5 presents the empirical results. Section 6 shows an
application of the algorithm in clustering categorical data, and the paper ends with
some discussions and conclusion in Section 7.

2 Problem definition

A transaction database TDB is a set of transactions, where each transaction, de-
noted as a tuple 〈tid, X〉, contains a set of items (i.e., X) and is associated with
a unique transaction identifier tid. Let I = {i1, i2, . . . , in} be the complete set of
distinct items appearing in TDB. An itemset Y is a non-empty subset of I and is
called an l-itemset if it contains l items. An itemset {x1, . . . , xl} is also denoted by
x1 . . . xl . A transaction 〈tid, X〉 is said to contain itemset Y if Y ⊆ X . The number
of transactions in TDB containing itemset Y is called the (absolute) support of
itemset Y , denoted by sup(Y). In addition, we use |TDB| and |Y | to denote the
number of transactions in database TDB, and the number of items in itemset Y ,
respectively.

On efficiently summarizing categorical databases 3

Table 1 A transaction database TDB

Tid Set of items Ordered frequent item list

01 a, c, e, g a, c, e
02 b, d, e b, d, e
03 d, f, i d, f
04 e, f, h e, f
05 a, b, c, d, e, f a, b, c, d, e, f
06 b, c, d b, c, d
07 a, c, f a, c, f
08 e, f e, f
09 b, d b, d

Given a minimum support threshold, min sup, an itemset Y is frequent if
sup(Y) ≥ min sup. Among the longest frequent itemsets supported by transaction
Ti , we choose any one of them and denote it by SITi . SITi is called the summary
itemset of Ti .1 The set of the summary itemsets with respect to (w.r.t.) the transac-
tions in TDB (i.e., ∪|TDB|

i=1 {SITi }) is called a summary set w.r.t. database TDB. Note
that the summary set of a database may not be unique, this is because a transaction
may support more than one summary itemset.

Given a transaction database TDB and a minimum support threshold min sup,
the problem of this study is to find any one of the summary sets w.r.t. TDB.

Example 1 The first two columns in Table 1 show the transaction database TDB
in our running example. Let min sup = 2, we sort the list of frequent items in
support ascending order and get the sorted item list which is called f list. In this
example f list = 〈a:3, b:4, c:4, d:5, e:5, f :5〉. The list of frequent items in each
transaction are sorted according to f list and shown in the third column of Table 1.
It is easy to figure out that {ace:2, ac f :2, bcd:2, bd:4, bde:2, d f :2, e f :3} is one
summary set w.r.t. TDB.

3 Related research

Since the introduction of the association rule mining [2, 3], numerous fre-
quent itemset mining algorithms have been proposed. In essence, SUMMARY
is a projection-based frequent itemset mining algorithm [1, 18] and adopts the
natural matrix structure instead of the FP-tree to represent the (conditional)
database [12, 26]. It grows a current prefix itemset by physically building and
scanning its projected matrix. In [15] an algorithm was proposed to mine all most
specific sentences, however, both the problem and the algorithm in this study are
different from those in [15].

In Section 4 we prove that each summary itemset must be closed; thus, some
pruning methods previously proposed in the closed (or maximal) itemset mining
algorithms [6, 10, 21, 23, 25, 27, 30, 35] can be used to enhance the efficiency
of SUMMARY. Like several itemset mining algorithms with length-decreasing
support constraint [28, 31], SUMMARY adopts some pruning methods to prune

1 Transaction Ti may support no frequent itemset, in this case SITi is empty and Ti can be
treated as an outlier.

4 J. Wang, G. Karypis

the unpromising transactions and prefixes. However, as the problem formulations
are different, the pruning methods in SUMMARY are different from the previous
studies.

One important application of the SUMMARY algorithm is to concisely sum-
marize the transactions and cluster the categorical data. There are many algo-
rithms designed for clustering categorical data, typical examples include ROCK
[14] and CACTUS [13]. Recently several frequent itemset based clustering algo-
rithms have also been proposed to cluster categorical or numerical data [7, 11, 34].
These methods first mine an intermediate set of frequent itemsets, and some post-
processing are needed in order to get the clustering solution. SUMMARY mines
the final subset of frequent itemsets which can be directly used to group the trans-
actions to form clusters and enables us to design more effective pruning methods
to enhance the performance.

Contributions. The contributions of this paper can be summarized as follows:

1. We proposed a new problem formulation of mining the summary set of fre-
quent itemsets with the application of summarizing transactions and clustering
categorical data.

2. By exploring the properties of the summary set, we have proposed several prun-
ing methods to effectively reduce the search space and enhance the efficiency
of the SUMMARY algorithm.

3. Thorough performance study has been performed and shown that SUMMARY
has high efficiency and good scalability, and can be used to cluster categorical
data with high accuracy.

4 SUMMARY: an efficient algorithm to summarize the transactions

In this section we first briefly introduce a traditional framework for enumerating
the set of frequent itemsets, which forms the basis of the SUMMARY algorithm.
Then we discuss how to design some pruning methods to speed up the mining
of the summary set and present the integrated SUMMARY algorithm. Finally we
discuss the local item ordering schemes and how to revise SUMMARY to mine K
summary itemsets for each transaction.

4.1 Frequent itemset enumeration

Like most of the other projection-based frequent itemset mining algorithms, SUM-
MARY employs the divide-and-conquer and depth-first search strategies [18, 30],
which are applied according to the f list order. In Example 1, SUMMARY first
mines all the frequent itemsets containing item a, then mines all frequent itemsets
containing b but no a, . . . , and finally mines frequent itemsets containing only
f . In mining itemsets containing a, SUMMARY treats a as the current prefix,
and builds its conditional database, denoted by TDB|a ={〈01, ec〉, 〈05, e f c〉,
〈07, f c〉} (where the local infrequent items b, d , and g have been pruned and the
frequent items in each projected transaction are sorted in support ascending or-
der). By recursively applying the divide-and-conquer and depth-first search meth-
ods to TDB|a , SUMMARY can find the set of frequent itemsets containing a.

On efficiently summarizing categorical databases 5

Note instead of using the FP-tree structure, SUMMARY adopts the natural ma-
trix structure to store the physically projected database [12]. This is because the
matrix structure allows us to easily maintain the tids in order to determine which
set of transactions the prefix itemset covers. In addition, in the above enumeration
process, SUMMARY always maintains the current longest frequent itemset for
each transaction Ti that was discovered first so far. In the following we call it the
current Longest Covering Frequent itemset w.r.t. Ti (denoted by LCFTi).

4.2 Search space pruning

The above frequent itemset enumeration method can be simply revised to mine
the summary set: Upon getting a frequent itemset, we check if it is longer than the
current longest covering frequent itemset w.r.t. any transaction that this itemset
covers. If so, this newly mined itemset becomes the current longest covering fre-
quent itemset for the corresponding transactions. Notice that this naı̈ve method is
no more efficient than the traditional all frequent itemset mining algorithm. How-
ever, the above algorithm for finding the summary set can be improved in two
ways. First, as we will prove later in this section, any summary itemset must be
closed and thus, the pruning methods proposed for closed itemset mining can be
used. Second, by maintaining the length of the current longest covering itemset
for each transaction during the mining process, we can employ additional branch-
and-bound techniques to further prune the overall search space.

Definition 1 (Closed itemset) An itemset X is a closed itemset if there exists no
proper superset X ′ ⊃ X such that sup(X ′) = sup(X).

Lemma 1 (Closure of a summary itemset) Any summary itemset w.r.t. a transac-
tion Ti , SITi , must be a closed itemset.

Proof We will prove it by contradiction. Assume SITi is not closed, which means
there must exist an itemset Y , such that SITi ⊂Y and sup(SITi) = sup(Y). Thus, Y
is also supported by transaction Ti and is frequent. However, |Y | > |SITi | contra-
dicts with the fact that SITi is the summary itemset of transaction Ti . �

Lemma 1 suggests that any pruning method proposed for closed itemset min-
ing can be used to enhance the performance of the summary set mining. In SUM-
MARY, only one such technique, item merging [30], is adopted that works as fol-
lows. For a prefix itemset P, the complete set of its local frequent items that have
the same support as P are merged with P to form a new prefix, and these items are
removed from the list of the local frequent items of the new prefix. It is easy to see
that such a scheme does not affect the correctness of the algorithm [30].

Example 2 Assume the current prefix is a:3, whose local frequent item list is 〈e:2,
f :2, c:3〉, among which c:3 can be merged with a:3 to form a new prefix ac:3 with
local frequent item list 〈e:2, f :2〉.

Besides the above pruning method, we developed two new pruning methods
called conditional transaction and conditional database pruning that given the set
of the currently maintained longest covering frequent itemsets w.r.t. TDB, they

6 J. Wang, G. Karypis

remove some conditional transactions and databases that are guaranteed not to
contribute to and generate any summary itemsets.

Specifically, let P be the prefix itemset that is currently under con-
sideration, sup(P) its support, and TDB|P = {〈TP1, X P1〉, 〈TP2, X P2〉, . . . ,〈TPsup(P)

, X Psup(P)
〉} its conditional database. Note that some (or all) of the transac-

tions X Pi (1 ≤ i ≤ sup(P)) can be empty.

Definition 2 (Invalid conditional transaction) A conditional transaction TPi in
TDB|P (where 1 ≤ i ≤ sup(P)), is an invalid conditional transaction if it falls
into one of the following two cases:

1. |X Pi | ≤ (|LCFTPi
| − |P|);

2. |X Pi | > (|LCFTPi
| − |P|), but |{ ∀ j ∈ [1..sup(P)], TPj | |X Pj | > (|LCFTPi

| −
|P|) }| < min sup.

Otherwise, TPi is called a valid conditional transaction.

The first condition states that a conditional transaction is invalid if its size is no
greater than the difference between its current longest covering frequent itemset
and the length of the prefix itemset, whereas the second condition states that the
number of conditional transactions which can be used to derive itemsets longer
than LCFTPi

by extending prefix P is smaller than the minimum support.

Lemma 2 (Unpromising summary itemset generation) If TPi is an invalid con-
ditional transaction, there will be no frequent itemset derived by extending prefix
P that TPi supports and is longer than LCFTPi

.

Proof Follows directly from Definition 2. (i) If a transaction TPi is invalid be-
cause of the first condition, it will not contain sufficient items in its conditional
transaction to identify a longer covering itemset. (ii) If a transaction TPi is invalid
because of the second condition, the conditional database will not contain a suf-
ficiently large number of long conditional transactions to obtain an itemset that is
longer than LCFTPi

and frequent. �

Note that it is possible for an invalid conditional transaction to be used to mine
summary itemsets for other valid conditional transactions w.r.t. prefix P; thus, we
cannot simply prune any invalid conditional transaction. Instead, we can safely
prune some invalid conditional transactions according to the following Lemma.

Lemma 3 (Conditional transaction pruning) An invalid conditional transac-
tion, TPi , can be safely pruned, if it satisfies:

|X Pi | ≤ min∀ j, TPj is valid

(∣∣LCFTPj

∣∣ − |P|). (1)

Proof Consider an invalid conditional transaction TPi that satisfies Eq. (1). Then
in order for a frequent itemset supported by the conditional transaction TPi and
prefix P to replace the current longest covering frequent itemset of a valid condi-
tional transaction TPj , TPi needs to contain more than |X Pi | items in its conditional
transaction. As a result, TPi can never contribute to the support of such an itemset
and can be safely pruned from the conditional database. �

On efficiently summarizing categorical databases 7

Lemma 3 can be used to prune from the conditional database some unpromis-
ing transactions satisfying Eq. (1) even when there exist some valid conditional
transactions. However, in many cases, there may exist no valid conditional trans-
actions, in this case the whole conditional database can be safely pruned.

Lemma 4 (Conditional database pruning) Given the current prefix itemset P
and its projected conditional database TDB|P , if each of its conditional transac-
tions, TPi , is invalid, TDB|P can be safely pruned.

Proof According to Lemma 2, for any invalid conditional transaction, TPi , we
cannot generate any frequent itemsets longer than LCFTPi

by growing prefix P .
This means that if each conditional transaction is invalid, we can no longer change
the current status of the set of the currently maintained longest covering frequent
itemsets w.r.t. prefix P , ∪sup(P)

i=1 {LCFTPi
}, by extending P; thus, TDB|P can be

safely pruned. �

Example 3 Assume the prefix is c:4 (i.e., P=c). From Table 1 we get that
TDB|c={〈01, e〉, 〈05, de f 〉, 〈06, d〉, 〈07, f 〉}, and LCF01=ace:2, LCF05=ace:2,
LCF06=bcd:2, and LCF07=ac f :2. Conditional transactions 〈01, e〉, 〈06, d〉, and
〈07, f 〉 fall into case 1 of Definition 2, while 〈05, de f 〉 falls into case 2 of
Definition 2; thus, all the conditional transactions in TDB|c are invalid. According
to Lemma 4, conditional database TDB|c can be pruned.

ALGORITHM 1: SUMMARY(TDB, min sup)

INPUT: (1) TDB: a transaction database, and (2) min sup: a minimum support threshold.
OUTPUT: (1) SI: the summary set.

01. for all ti ∈ TDB
02. SIti ← ∅;
03. call summary(∅, TDB);

SUBROUTINE 1: SUMMARY(pi, cdb)

INPUT: (1) pi: a prefix itemset, and (2) cdb: the conditional database w.r.t. prefix pi.

04. I ← find frequent items(cdb,min sup);
05. S ← item merging(I); pi ← pi ∪ S; I ← I - S;
06. if(pi �= ∅)
07. for all ti ∈ cdb
08. if(|SIti | < |pi |)
09. SIti ←pi;
10. if(I �= ∅)
11. if(conditional database pruning(I,pi,cdb))
12. return;
13. cdb ← conditional transaction pruning(I,pi,cdb);
14. for all i∈I do
15. pi

′ ← pi ∪ {i};
16. cdb

′ ← build cond database(pi
′
, cdb);

17. call summary(pi
′
, cdb

′
);

8 J. Wang, G. Karypis

4.3 The algorithm

By pushing deeply the search space pruning methods of Section 4.2 into the fre-
quent itemset mining framework described in Section 4.1, we can mine the sum-
mary set as described in the SUMMARY algorithm shown in Algorithm 1. It first
initializes the summary itemset to empty for each transaction (lines 01-02) and
calls the Subroutine 1 (i.e., summary(∅, TDB)) to mine the summary set (line
03). Subroutine summary(pi , cdb) finds the set of local frequent items by scan-
ning conditional database cdb once (line 04) and applies the search space pruning
methods such as the item merging (line 05), conditional database pruning (lines
11–12), and conditional transaction pruning (line 13), updates the summary set
information for conditional database cdb w.r.t. prefix itemset pi (lines 06–09),
and grows the current prefix, builds the new conditional database, and recursively
calls itself under the projection-based frequent itemset mining framework (lines
14–17).

4.4 Discussions and extensions

4.4.1 Ordering of local items

In some FP-tree based frequent itemset mining algorithms [18, 30], the support
descending ordering scheme is popularly used to sort the local items w.r.t. a pre-
fix, while as stated in Section 4.1, SUMMARY adopts the support ascending or-
dering scheme. We make this decision due to the following considerations. First,
the support descending ordering generally helps in generating more compact FP-
tree structures; thus, leads to more efficient memory usage and support count-
ing. However, SUMMARY does not use the FP-tree structure to represent the
conditional database; thus, it cannot get the benefit from the support descending
ordering as the FP-tree based algorithms usually do. Second, a transaction may
support multiple summary itemsets. By adopting the support ascending ordering
scheme, SUMMARY prefers the summary itemset whose constituent items have
relatively lower support. This heuristic is very important for the purpose of clus-
tering due to the fact that some items with very high support (e.g., as high as
the number of transactions in the database) are not differentiable in terms of dif-
ferent classes. We will justify this heuristic with our experiments on some real
datasets.

4.4.2 Mining K longest itemsets w.r.t. each transaction

As mentioned above, a transaction may be covered by multiple summary itemsets
in many cases. The SUMMARY algorithm described in Algorithm 1, only inserts
for each transaction into the summary set one summary itemset, i.e., the one that
was discovered first. We can revise SUMMARY to find K summary itemsets for
each transaction which supports no less than K summary itemsets,2 where K is a
user input parameter. We denote the so-derived algorithm by SUMMARY-K.

2 If a transaction supports less than K summary itemsets, all its summary itemsets will be
mined.

On efficiently summarizing categorical databases 9

The SUMMARY-K algorithm is very similar to the SUMMARY algorithm. To
avoid the unnecessary repetition, here we mainly describe their major difference,
that is, how to adapt Definition 2 and Lemma 3 to mine K summary itemsets, and
will leave other minor revisions to the interested readers.
Invalid conditional transaction for mining K summary itemsets. Similar to
the notations used in Definition 2, let P be the prefix itemset that is currently
under consideration, sup(P) its support, and TDB|P = {〈TP1, X P1〉, 〈TP2, X P2〉,
. . . , 〈TPsup(P)

, X Psup(P)
〉} its conditional database. In addition, we use KTPi

to
denote the number of the currently longest itemsets maintained by algorithm
SUMMARY-K w.r.t. a conditional transaction TPi .

Definition 3 (Invalid conditional transaction for mining K summary itemsets) A
conditional transaction TPi in TDB|P (where 1≤i≤sup(P)), is an invalid condi-
tional transaction if it falls into one of the following two cases:

1. |X Pi | < (|LCFTPi
| − |P|) or |X Pi | = (|LCFTPi

| − |P|) but KTPi
≥ K ;

2. |X Pi | > (|LCFTPi
| − |P|) or |X Pi | = (|LCFTPi

| − |P|) and KTPi
< K but

|{ ∀ j ∈ [1..sup(P)], TPj ||X Pj | > (|LCFTPi
| − |P|) }| < min sup.

Otherwise, TPi is called a valid conditional transaction.

Conditional transaction pruning for mining K summary itemsets. Similar to
SUMMARY algorithm, an invalid conditional transaction can be used to mine
summary itemsets for other valid conditional transactions and thus cannot be sim-
ply pruned. As a result, we need to design new conditions in order to safely prune
some invalid conditional transactions.

Lemma 5 (Conditional transaction pruning for mining K summary itemsets) An
invalid conditional transaction, TPi , can be safely pruned, if it satisfies:

∣
∣X Pi

∣
∣ < min∀ j, TPj is valid

(∣∣LCFTPj

∣
∣ − |P|). (2)

Proof Similar to the proof of Lemma 3. �

5 Experimental results

In this section, we will first present a thorough experimental study to evaluate the
effectiveness of the pruning methods, the overall scalability, and the efficiency of
the SUMMARY algorithm. Then we will evaluate the SUMMARY-K algorithm
by varying the K parameter. All the experiments except the efficiency test were
performed on a 2.4 GHz Intel PC with 1 GB memory and Windows XP installed.
In our experiments, we used some databases which were popularly used in eval-
uating various frequent itemset mining algorithms [16, 30, 35], such as connect,
chess, pumsb*, mushroom, and gazelle, and some categorical databases obtained
from the UCI Machine Learning repository, such as SPECT, Letter Recognition,
and so on.

10 J. Wang, G. Karypis

1

10

2481632

R
un

tim
e

in
 s

ec
on

ds

Absolute support threshold

SUMMARY with no pruning
SUMMARY with pruning

2

4

6

8

10

12

14

16

18

20

200 300 400 500 600 700 800 900 1000

R
un

tim
e

in
 s

ec
on

ds

Base size (in K tuples)

SUMMARY: min_sup=0.2%
SUMMARY: min_sup=1%

a b

Fig. 1 Effectiveness of the pruning methods and the scalability test. a Database (mushroom).
b Scalability (T10I4Dx)

5.1 Effectiveness of the pruning methods

We first evaluated the effectiveness of the pruning methods by comparing
SUMMARY itself with or without the conditional database and transaction prun-
ing methods. Figure 1a shows that the SUMMARY algorithm with pruning can be
over an order of magnitude faster than the one without pruning for the mushroom
database. This illustrates that the pruning methods proposed in this paper are very
effective in reducing search space.

5.2 Scalability

We also tested the algorithm scalability using the IBM synthetic database series
T10I4Dx by setting the average transaction length at 10 and changing the number
of transactions from 200 K to 1000 K. We ran SUMMARY at two different mini-
mum relative supports of 0.2% and 1%. Figure 1b shows that SUMMARY scales
very well against the database size.

5.3 Efficiency

To mine the summary set, a naı̈ve method is to first mine the complete set of
frequent closed itemsets, from which the summary set can be further identified.
Our comparison with FPclose [17], one of the most recently developed efficient
closed itemset mining algorithms [16], shows that such a solution is not prac-
tical when the minimum support is low. As we will discuss in Section 6, such
low minimum support values are beneficial for clustering applications. The ef-
ficiency comparison was performed on a 1.8 GHz Linux machine with 1 GB
memory by varying the absolute support threshold and turning off the output
of FPclose. The experiments for all the databases we used show consistent re-
sults. Due to limited space, we only report the results for databases connect and
gazelle.

Figure 2 shows the runtime for databases connect and gazelle. It shows
that SUMMARY scales very well w.r.t. the support threshold, and for connect

On efficiently summarizing categorical databases 11

100

1000

128256512102420484096

R
un

tim
e

in
 s

ec
on

ds

Absolute support threshold

FPclose
SUMMARY

1

10

2481632

R
un

tim
e

in
 s

ec
on

ds

Absolute support threshold

FPclose
SUMMARY

a b

Fig. 2 Efficiency test for connect and gazelle. a Database (connect). b Database (gazelle)

database, it even runs faster at low support value of 128 than at high sup-
port value of 512. This is because SUMMARY usually mines longer itemsets
at lower support, which makes the pruning methods more effective in remov-
ing some short transactions and conditional databases. As the FP-tree struc-
ture adopted by FPclose is very effective in condensing dense databases, at
high support, FPclose is faster than SUMMARY for dense databases like con-
nect, but once we continue to lower the support, it can be orders of magnitude
slower. While for sparse databases like gazelle, FPclose can be several times
slower.

5.4 Test of SUMMARY-K algorithm

We also evaluated the efficiency of the SUMMARY-K algorithm by varying
the value of the K parameter from 1 to 8 against FPclose (When K equals 1,
SUMMARY-K is the same as SUMMARY). Figure 3 shows the comparison result
for database spect. From Fig. 3a we can see that when K is larger, SUMMARY-K
is a little slower, but it is always faster than FPclose. Figure 3b compares the num-
ber of patterns mined by SUMMARY-K and FPclose, which shows that FPclose
mines orders of magnitude more patterns than SUMMARY-K. The high efficiency
of the SUMMARY-K algorithm illustrates the effectiveness of the pruning meth-
ods newly proposed in this paper from another angle.

1

10

100

8163264

R
un

tim
e

in
 s

ec
on

ds

Absolute support threshold

FPclose
SUMMARY-8
SUMMARY-4
SUMMARY-2
SUMMARY-1

100

1000

10000

100000

1e+006

1e+007

1e+008

8163264

N
um

be
r

of
 p

at
te

rn
s

Absolute support threshold

FPclose
SUMMARY-8
SUMMARY-4
SUMMARY-2
SUMMARY-1

a b

Fig. 3 Test for SUMMARY-K on database spect. a Runtime. b Number of patterns

12 J. Wang, G. Karypis

root

a d

c

e:2

d:1

e:1

f:1

b e

f:2c

d:1f:1

cid 01 02 03 04 05 06 07
tid
list

01
05

02 03 04
08

06 07 09

Fig. 4 Clustering based on summary set

6 Application—summary set based clustering

6.1 Clustering based on summary set

One important application of the SUMMARY algorithm is to cluster the categor-
ical data by treating each summary itemset as a cluster description and grouping
the transactions with the same cluster description into a cluster. In SUMMARY,
we adopt a prefix tree structure to facilitate this task, which has been used exten-
sively in performing different data mining tasks [18, 30]. For each transaction, Ti ,
if its summary itemset SITi is not empty, we sort the items in SITi in lexicographic
order and insert it into the prefix tree. The tree node corresponding to the last item
of the sorted summary itemset represents a cluster, to which the transaction Ti
belongs.

Example 4 The summary itemsets for the transactions in our running example are
SI01 = ace, SI02 = bde, SI03 = df , SI04 = ef , SI05 = ace, SI06 = bcd, SI07 =
acf , SI08 = ef , and SI09 = bd. If we insert these summary itemsets into the prefix
tree in sequence, we can get seven clusters with cluster descriptions ace, bde, df,
ef, bcd, acf, and bd, as shown in Fig. 4. From Fig. 4 we see that transactions 01
and 05 are grouped into cluster 01, transactions 04 and 08 are grouped into cluster
04, while each of the other transactions forms a separate cluster of their own. Note
that a non-leaf node summary itemset in the prefix tree represents a non-maximal
frequent itemset in the sense that one of its proper supersets must be frequent.
For example, summary itemset bd is non-maximal, because summary itemset bde
is a proper superset of bd . In this case, we have an alternative clustering option:
merge the non-leaf node clusters with their corresponding leaf node clusters to
form larger clusters. In Fig. 4, we can merge cluster 07 with cluster 02 to form a
cluster.

6.2 Clustering evaluation

We have used several categorical databases to evaluate the clustering quality of
the SUMMARY algorithm, including mushroom, SPECT, Letter Recognition,
and Congressional Voting, which all contain class labels and are available at

On efficiently summarizing categorical databases 13

http://www.ics.uci.edu/∼xmlearn/. We did not use the class labels in mining the
summary set and clustering, instead, we only used them to evaluate the clustering
accuracy, which is defined by the number of correctly clustered instances (i.e.,
the instances with dominant class labels in the computed clusters) as a percent-
age of the database size. SUMMARY runs very fast and can achieve very good
clustering accuracy for these databases, especially when the minimum support
is low. Due to limited space, we only show results for mushroom and Congres-
sional Voting databases, which have been widely used in the previous studies
[14, 32, 34].

The mushroom database contains some physical characteristics of various
mushrooms. It has 8124 instances and two classes: poisonous and edible. Table 2
shows the clustering results for this database, including the minimum support used
in the tests, the number of clusters found by SUMMARY, the number of misclus-
tered instances, clustering accuracy, compression ratio, and runtime (in seconds)
for both the summary set discovery and clustering. The compression ratio is de-
fined as the total number of items in the database divided by the total number of
items in the summary set. We can see that SUMMARY has a clustering accuracy
higher than 97% and a runtime less than 0.85 seconds for a wide range of support
thresholds. At support of 25, it can even achieve a 100% accuracy. The MineClus
algorithm is one of the most recently developed clustering algorithm for this type
of databases [34]. Its reported clustering solution for this database finds 20 clusters
with an accuracy 96.41% and in the meantime declares 0.59% of the instances as
outliers, which means it misclusters about 290 instances and treats about another
48 instances as outliers. Compared to this algorithm, SUMMARY is very compet-
itive in considering both of its high efficiency and clustering accuracy. In addition,
the high compression ratios demonstrate that the summary set can be used as a
concise summary of the original database (Note in each case of Table 2, the sum-
mary set covers each instance of the original database, which means there is no
outlier in our solution).

The Congressional Voting database contains the 1984 United States Congres-
sional Voting Records and has two class labels: Republican and Democrat. In our
experiments, we removed four outlier instances whose most attribute values are
missing and used the left 431 instances. Table 3 shows the clustering solution of
SUMMARY at a minimum support of 245, at which point the clusters produced by
SUMMARY covers the entire database (while a minimum support higher than 245

Table 2 Clustering mushroom database

sup. # clu. # miscl. accur. com. rat. time

1400 30 32 99.6 660 0.38s
1200 35 32 99.6 549 0.42s
1000 37 32 99.6 509 0.44s

800 63 208 97.4 268 0.48s
400 128 8 99.9 120 0.66s
200 140 6 99.93 97 0.77s
100 197 32 99.6 62 0.81s
50 298 1 99.99 37 0.79s
25 438 0 100 23 0.75s

14 J. Wang, G. Karypis

Table 3 Clustering congressional voting database

cid # Rep. # Demo. cid # Rep. # Demo.

1 2 244 2 155 16
3 5 0 4 1 3
5 2 1 6 1 1

will make SUMMARY miss some instances), and SUMMARY only uses 0.001 s
to find the six clusters with an accuracy higher than 95% and a compression ratio
higher than 1164. Even we simply merge the four small clusters with the two large
clusters in order to get exact two clusters, the accuracy is still higher than 93% in
the worst case (e.g., clusters 3 and 5 are merged into cluster 1, and clusters 4 and 6
are merged into cluster 2), and is much better than the reported accuracy, 86.67%,
of the MineClus algorithm [34].

6.3 Comparison with ROCK

ROCK is one of the most well-known categorical clustering algorithms [14].
Following we will compare SUMMARY with ROCK. For mushroom database,
ROCK generates 21 clusters as shown in Table 4. In the table we also list the 21
largest clusters generated by SUMMARY at absolute support 1400. From Table 4,
we see that although SUMMARY and ROCK are two different clustering algo-
rithms, their clustering solutions are similar in many aspects. For example, each

Table 4 SUMMARY vs. ROCK (mushroom database)

ROCK SUMMARY

cid # Edi. # Pois. cid # Edi. # Pois.

1 1728 0 1 1728 0
2 0 1728 2 0 1728
3 0 1296 3 0 1296
4 768 0 4 704 0
5 704 0 5 0 576
6 0 288 6 256 0
7 288 0 7 0 192
8 0 256 8 0 192
9 192 0 9 0 192

10 0 192 10 0 144
11 192 0 11 0 144
12 96 0 12 96 0
13 96 0 13 96 0
14 48 0 14 0 96
15 48 0 15 0 96
16 0 36 16 72 0
17 0 32 17 72 0
18 16 0 18 72 0
19 0 8 19 72 0
20 0 8 20 0 48
21 32 72 21 72 32

On efficiently summarizing categorical databases 15

Table 5 SUMMARY vs. ROCK (congressional voting database)

ROCK SUMMARY

cid # Rep. # Demo. cid # Rep. # Demo.

1 5 201 1 2 244
2 144 22 2 155 16

of these two algorithms only generates one impure cluster (i.e., the 21st cluster),
and their top 3 largest clusters (i.e., the first, the second, and the third one) have
the same size and class distribution.

Table 5 shows the comparison result for Congressional Voting database. Sim-
ilarly, as ROCK generates exact two clusters, here we only list the two largest
clusters for SUMMARY at support 245. We see that the two clusters generated by
SUMMARY contains more tuples but they are purer than the corresponding ones
of ROCK. As a result, SUMMARY has better clustering solution than ROCK for
this database.

6.4 Evaluation of item ordering scheme

In Section 4.4.1 we analyzed why SUMMARY adopts the support ascending or-
dering scheme instead of the support descending ordering for sorting the local
items. Our experiments demonstrate that the support ascending ordering scheme
usually leads to better clustering solution than the support descending ordering.
Table 6 shows the comparison result for Congressional Voting database at abso-
lute support of 245. The two different ordering schemes generate the same number
of clusters, but it is very clear that the clustering computed with the support as-
cending ordering scheme has better quality.

7 Discussions and conclusion

In this paper we proposed to mine the summary set that can maximally cover
the input database. Each summary itemset can be treated as a distinct cluster

Table 6 Ascending ordering vs. descending ordering (congressional voting database)

SUMMARY

Support-Ascending Support-Descending

cid # Rep. #Demo. cid # Rep. # Demo.

1 2 244 1 149 123
2 155 16 2 14 97
3 5 0 3 2 27
4 1 3 4 0 16
5 2 1 5 0 2
6 1 1 6 1 0

16 J. Wang, G. Karypis

description and the transactions with the same description can be grouped to-
gether to form a cluster. Because the summary itemset of a cluster is one of the
longest frequent itemsets that is common among the corresponding transactions
of the same cluster, it can approximately maximize the intra-cluster similarity,
while different clusters are dissimilar with each other because they support dis-
tinct summary itemsets. In addition, we require each summary itemset be frequent
in order to make sure it is statistically significant. Directly mining the summary
set also enabled us to design an efficient algorithm, SUMMARY. By exploring
some properties of the summary set, we developed two novel pruning methods,
which significantly reduce the search space. Our performance study showed that
SUMMARY runs very fast even when the minimum support is extremely low
and the summary set is very effective in clustering categorical data. In addition,
we also evaluated SUMMARY-K, a variant of SUMMARY, which mines K sum-
mary itemsets for each transaction. In future, we plan to explore how to choose
the one among the summary itemsets supported by a transaction which can reduce
the number of clusters while achieving a high clustering accuracy.

Acknowledgements This work was supported in part by NSF CCR-9972519, EIA-9986042,
ACI-9982274, ACI-0133464, and ACI-0312828; the Digital Technology Center at the Univer-
sity of Minnesota; and by the Army High Performance Computing Research Center (AHPCRC)
under the auspices of the Department of the Army, Army Research Laboratory (ARL) under
Cooperative Agreement number DAAD19-01-2-0014. The content of which does not neces-
sarily reflect the position or the policy of the government, and no official endorsement should
be inferred. Access to research and computing facilities was provided by the Digital Technol-
ogy Center and the Minnesota Super-computing Institute. Part of this work was done while
Jianyong Wang was doing research in University of Minnesota and this paper is a major-value
added version of a conference paper that appeared in the 2004 IEEE International Conference
on Data Mining (ICDM’04).

References

1. Agarwal, R., Aggarwal, C., Prasad, V.: A tree projection algorithm for generation of fre-
quent item sets. J Parallel Distrib Comput 61(3), 350–371 (2001)

2. Agrawal, R., Imielinski, T., Swami, A.: Mining associations between sets of items in mas-
sive databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pp. 207–216. Washington DC (1993)

3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke,
M., Zaniolo, C. (eds.) Proceedings of 20th International Conference on Very Large Data
Bases, pp. 487–499. Santiago de Chile, Chile (1994)

4. Antonie, M., Zaiane, O.: Text document categorization by term association. In: Proceedings
of the 2002 IEEE International Conference on Data Mining, pp. 19–26. Maebashi City,
Japan (2002)

5. Bayardo, R.J.: Brute-force mining of high-confidence classification rules. In: Heckerman,
D., Mannila, H., Pregibon, D. (eds.) Proceedings of the 3rd International Conference on
Knowledge Discovery and Data mining), pp. 123–126. Newport Beach, California, USA
(1997)

6. Bayardo, R.J.: Efficiently mining long patterns from databases. In: Haas, L.M., Tiwary,
A. (eds.) Proceedings ACM SIGMOD International Conference on Management of Data,
pp. 85–93. Seattle, Washington (1998)

7. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: KDD’02 Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 436–442. Edmonton, Alberta, Canada (2002)

On efficiently summarizing categorical databases 17

8. Boulicaut, J., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation of Boolean
data for the approximation of frequency queries. J Data Mining Knowl Discovery 7(1), 5–22
(2003)

9. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and implication
rules for market basket data. In: Peckham, J. (ed.) Proceedings ACM SIGMOD International
Conference on Management of Data, pp. 255–264. Tucson, Arizona, USA (1997)

10. Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: a maximal frequent itemset algorithm for
transactional databases. In: Proceedings of the 17th International Conference on Data En-
gineering, pp. 443–452. Heidelberg, Germany (2001)

11. Fung, B., Wang, K., Ester, M.: Hierachical document clustering using frequent itemsets. In:
Barbara, D., Kamath, C. (eds.) Proceedings of the 3rd SIAM International Conference on
Data Mining. USA, San Francisco, CA (2003)

12. Gade, K., Wang, J., Karypis, G.: Efficient closed pattern mining in the presence of tough
block constraints. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) Proceedings
of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Seattle, pp. 138–147. Washington, USA (2004)

13. Ganti, V., Gehrke, J., Ramakrishnan, R.: CACTUS: clustering categorical data using Sum-
maries. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 73–83. San Diego, CA, USA (1999)

14. Guha, S., Rastogi, R., Shim, K.: ROCK: a robut clustering algorithm for categorical
attributes. In: Proceedings of the 15th International Conference on Data Engineering,
pp. 512–521. Sydney, Austrialia (1999)

15. Gunopulos, D., Mannila, H., Saluja, S.: Discovering all most specific sentences by random-
ized algorithms. In: Afrati, F.N., Kolaitis, P.G. (eds.) Proceedings of the 6th International
Conference on Database Theory, pp. 215–229. Delphi, Greece (1997)

16. Goethals, B., Zaki, M.: Advances in frequent itemset mining implementations: Introduc-
tion to FIMI03. In: Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining
Implementations. Melbourne, Florida, USA (2003)

17. Grahne, G., Zhu, J.: Efficiently using prefix-trees in mining frequent itemsets. In: Pro-
ceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations.
Melbourne, Florida, USA (2003)

18. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen, W.,
Naughton, J.F., Bernstein, P.A. (eds.) Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pp. 1–12. Dallas, Texas, USA (2000)

19. Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on multiple
class-association rules. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) Proceedings of the 2001
IEEE International Conference on Data Mining, pp. 369–376. San Jose, California, USA
(2001)

20. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Agrawal,
R., Stolorz, P.E., Piatetsky-Shapiro, G. (eds.) Proceedings of the 4th International Confer-
ence on Knowledge Discovery and Data Mining, pp. 80–86. New York City, New York,
USA (1998)

21. Liu, G., Lu, H., Lou, W., Yu, J.X.: On computing, storing and querying frequent patterns. In:
Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 607–
612. Washington, District of Columbia, USA (2003)

22. Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed representations. In:
Simoudis, E., Han, J., Fayyad, U.M. (eds.) Proceedings of the 2nd International Conference
on Knowledge Discovery and Data Mining, pp. 189–194. Portland, Oregon, USA (1996)

23. Pan, F., Cong, G., Tung, A.K.H., Yang, J., Zaki, M.: CARPENTER: finding closed patterns
in long biological datasets. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.)
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 637–642. Washington, District of Columbia, USA (2003)

24. Park, J., Chen, M., Yu, P.S.: An effective hash based algorithm for mining association rules.
In: Carey, M.J., Schneider, D.A. (eds.) Proceedings of the 1995 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 175–186. San Jose, California (1995)

25. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for
association rules. In: Beeri, C., Buneman, P. (eds.) Proceedings of the 6th International
Conference on Database Theory, pp. 398–416. Jerusalem, Israel (1999)

18 J. Wang, G. Karypis

26. Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D.: H-mine: hyper-structure mining of
frequent patterns in large databases. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) Proceedings of
the 2001 IEEE International Conference on Data Mining, pp. 441–448. San Jose, California,
USA (2001)

27. Pei, J., Han, J., Mao, R.: CLOSET: an efficient algorithm for mining frequent closed item-
sets. In: Gunopulos, D., Rastogi, R. (eds.) Proceedings of 2000 ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, pp. 21–30. Dallas, Texas,
USA (2000)

28. Seno, M., Karypis, G.: LPMiner: an algorithm for finding frequent itemsets using length-
decreasing support constraint. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) Proceedings of the
2001 IEEE International Conference on Data Mining, pp 505–512. San Jose, California,
USA (2001)

29. Toivonen, H.: Sampling large databases for association rules. In: Vijayaraman, T.M.,
Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) Proceedings of 22th International Confer-
ence on Very Large Data Bases, pp 134–145. Mumbai, India (1996)

30. Wang, J., Han, J., Pei, J.: CLOSET+: Searching for the best strategies for mining frequent
closed itemsets. In: Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C. (eds.) Proceedings
of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 236–245. Washington, District of Columbia, USA (2003)

31. Wang, J., Karypis, G.: BAMBOO: Accelerating closed itemset mining by deeply pushing
the length-decreasing support constraint. In: Proceedings of the 4th SIAM International
Conference on Data Mining. Lake Buena Vista, Florida, USA (2004)

32. Wang, K., Xu, C., Liu, B.: Clustering transactions using large items. In: Proceedings of the
1999 ACM CIKM International Conference on Information and Knowledge Management,
pp 483–490. Kansas City, Missouri, USA (1999)

33. Xiong, H., Steinbach, M., Tan, P., Kumar, V.: HICAP:Hierarchial clustering with pattern
preservation. In: Proceedings of the 4th SIAM International Conference on Data Mining.
Lake Buena Vista, Florida, USA (2004)

34. Yiu, M., Mamoulis, N.: Frequent pattern based iterative projected clustering. In: Proceed-
ings of the 3rd IEEE International Conference on Data Mining, pp. 689–692. Melbourne,
Florida, USA (2003)

35. Zaki, M., Hsiao, C.: CHARM: an Efficient algorithm for closed itemset mining. In:
Grossman, R.L., Han, J., Kumar, V., Mannila, H., Motwani, R. (eds.) Proceedings of the
4th SIAM International Conference on Data Mining. Arlington, VA, USA (2002)

Jianyong Wang received the Ph.D. degree in computer sci-
ence in 1999 from the Institute of Computing Technology, the
Chinese Academy of Sciences. Since then, he ever worked
as an assistant professor in the Department of Computer Sci-
ence and Technology, Peking (Beijing) University in the areas
of distributed systems and Web search engines, and visited
the School of Computing Science at Simon Fraser Univer-
sity, the Department of Computer Science at the University
of Illinois at Urbana-Champaign, and the Digital Technology
Center and the Department of Computer Science at the Uni-
versity of Minnesota, mainly working in the area of data min-
ing. He is currently an associate professor of the Department
of Computer Science and Technology at Tsinghua University,
P.R. China.

On efficiently summarizing categorical databases 19

George Karypis received his Ph.D. degree in computer
science at the University of Minnesota and he is currently an
associate professor at the Department of Computer Science
and Engineering at the University of Minnesota. His research
interests spans the areas of parallel algorithm design, data
mining, bioinformatics, information retrieval, applications of
parallel processing in scientific computing and optimization,
sparse matrix computations, parallel preconditioners, and
parallel programming languages and libraries. His research
has resulted in the development of software libraries for serial
and parallel graph partitioning (METIS and ParMETIS),
hypergraph partitioning (hMETIS), for parallel Cholesky
factorization (PSPASES), for collaborative filtering-based
recommendation algorithms (SUGGEST), clustering high
dimensional datasets (CLUTO), and finding frequent patterns
in diverse datasets (PAFI). He has coauthored over ninety
journal and conference papers on these topics and a book title

“Introduction to Parallel Computing” (Publ. Addison Wesley, 2003, 2nd edition). In addition,
he is serving on the program committees of many conferences and workshops on these topics
and is an associate editor of the IEEE Transactions on Parallel and Distributed Systems.

