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Abstract—Tanimoto, or (extended) Jaccard, is an important
similarity measure which has seen prominent use in fields such
as data mining and chemoinformatics. Many of the existing state-
of-the-art methods for market-basket analysis, plagiarism and
anomaly detection, compound database search, and ligand-based
virtual screening rely heavily on identifying Tanimoto nearest
neighbors. Given the rapidly increasing size of data that must be
analyzed, new algorithms are needed that can speed up nearest
neighbor search, while at the same time providing reliable results.
While many search algorithms address the complexity of the task
by retrieving only some of the nearest neighbors, we propose a
method that finds all of the exact nearest neighbors efficiently
by leveraging recent advances in similarity search filtering. We
provide tighter filtering bounds for the Tanimoto coefficient and
show that our method, TAPNN, greatly outperforms existing
baselines across a variety of real-world datasets and similarity
thresholds.

Index Terms—Tanimoto, extended Jaccard, similarity search,
all-pairs, nearest neighbors, graph construction, similarity graph,
NNG.

I. INTRODUCTION

Tanimoto, or (extended) Jaccard, is an important similarity
measure which has seen prominent use both in data min-
ing and chemoinformatics. In data mining, for example, it
was shown to outperform other similarity functions in text
analysis tasks such as clustering [?], [?], [?], plagiarism
detection [?], [?], [?], and automatic thesaurus extraction [?]. It
has also been successfully used to visualize high-dimensional
datasets [?], analyze market-basket transactional data [?],
recommend items [?], and detect anomalies in spatio-temporal
data [?]. In the chemoinformatics domain, data mining and
machine learning approaches are increasingly used to boost the
effectiveness of the drug-discovery process [?]. Fueled by the
generally valid premise that structurally similar molecules ex-
hibit similar binding behavior and have similar properties [?],
many chemoinformatics methods use the computation of pair-
wise similarities as a kernel within their algorithms. Virtual
screening (VS), for example, uses similarity search, clustering,
classification, and outlier detection to identify structurally
diverse compounds that display similar bioactivity, which form
the starting point for subsequent chemical screening [?].

In this work, we address the problem of computing pairwise
similarities above a threshold ε , also known as the all-
pairs similarity search (APSS) problem, and focus on objects
represented numerically as non-negative real-valued vectors.
Examples of such objects include text documents [?], user
and item profiles in recommender systems [?], market basket

data [?], and most existing chemical descriptors. We use the
Tanimoto coefficient to measure the similarity of two objects.

Within the chemoinformatics community, a great deal of
effort has been spent trying to accelerate pairwise similarity
computations using the Tanimoto coefficient. Swamidass and
Baldi [?] described a number of bounds for fast exact threshold
based Tanimoto similarity searches of binary and integer
based vector representations of chemical compounds. These
bounds allow skipping many object comparisons that will
theoretically not be similar enough to be included in the
result, a technique ofter referred to as filtering, or pruning.
Other pruning methods relied on hashing techniques [?], [?]
or tree-based data structures [?], [?] to accelerate neighbor
searches. However, most recent approaches focus on speeding
up chemical searches using inverted index data structures
borrowed from information retrieval [?], [?], [?].

Data mining methods initially designed to efficiently search
databases [?] or the Web [?] were later adapted to solve
the APSS problem [?]. Most of the existing work addresses
either binary vector object representations [?], [?], [?] or
cosine similarity [?], [?]. However, Bayardo et al. [?] and
Lee et al. [?] show how their cosine filtering based APSS
methods can be extended to the Tanimoto coefficient for binary
and real-valued vectors, respectively. Focusing on real-valued
vectors, Kryszkiewicz [?], [?], [?] proves several theoretic
bounds on the Tanimoto similarity and sketches an inverted
index based algorithm for efficient similarity search.

We describe a new method for Tanimoto APSS of non-
negative real-valued vectors, named TAPNN, which solves the
problem exactly, finding all pairs of objects with a Tanimoto
similarity of at least some input threshold ε . Our method
extends the indexing techniques prevalent in the literature
with tighter bounds on the similarity of two vectors, which
yield dramatic performance improvements. We experimentally
evaluated our method against several baselines on chemical
datasets derived from the Molecular Libraries Small Molecule
Repository (MLSMR) and the SureChEMBL database, and
on text collections comprised of newswire stories and USPTO
patents. We show that TAPNN significantly outperforms base-
lines for both chemical and text datasets. In particular, it was
able to find all near-duplicate pairs among 5M SureChemBL
chemical compounds in minutes, using a single CPU core,
and is over two orders of magnitude more efficient than linear
search in general at ε = 0.99.



The remainder of the paper is organized as follows. We
give a formal problem statement and describe our notation
in Section II. In Section III, we present our algorithm. In
Section IV, we describe the datasets, baseline algorithms, and
performance measures used in our experiments. We present
our experiment results and discuss their implications in Sec-
tion V, and Section VI concludes the paper.

II. PROBLEM STATEMENT

Given a set of objects D = {d1, d2, . . . , dn }, such that each
object di is represented by a (sparse) non-negative vector in
an m dimensional feature space, and a minimum threshold ε
on the similarity of two vectors, we wish to find the set of all
pairs (di, d j ) satisfying di, d j ∈ D, di , d j , and sim(di, d j ) ≥
ε , and compute their similarities. Let di indicate the feature
vector associated with the ith object, and di, j its value (or
weight) for the jth feature. We measure vector similarity as
the Tanimoto coefficient for real-valued vectors, computed as,

T(di, d j ) =
〈
di, d j

〉
‖di ‖

2 + ‖d j ‖
2 −

〈
di, d j

〉, (1)

where
〈
di, d j

〉
=

∑m
l=1 di,l × d j,l denotes the vector dot-

product, and ‖di ‖ =
√〈

di, di
〉

denotes its Euclidean norm, or
length. For a given object di , we call an object d j a neighbor
of di if sim(di, d j ) ≥ ε .

The majority of feature values in sparse vectors are 0. As a
result, a vector di is generally represented as the set of all pairs
( j, di, j ) satisfying 1 ≤ j ≤ m and di, j > 0. For a set of objects
represented by sparse vectors, an inverted index representation
of the set is made up of m lists, I = {I1, I2, . . . , Im }, one
for each feature. List I j contains pairs (di, di, j ), also called
postings in the information retrieval literature, where di is an
indexed object that has a non-zero value for feature j, and di, j

is that value. Postings may store additional statistics related to
the feature within the object it is associated with.

Given a vector di and a dimension p, we will denote by d≤pi
the vector (di,1, . . . , di,p, 0, . . . , 0), obtained by keeping the p
leading dimensions in di , which we call the prefix (vector) of
di . Similarly, we refer to d>p

i = (0, . . . , 0, di,p+1, . . . , di,m ) as
the suffix of di , obtained by setting the first p dimensions of
di to 0. Vectors d<p

i and d≥pi are analogously defined. Table I
provides a summary of the notation used in this work.

TABLE I
NOTATION USED THROUGHOUT THE PAPER

Description
D set of objects
di the ith object
di vector representing ith object
di, j value for jth feature in di

d≤p
i
, d>p

i
prefix and suffix of di at dimension p

d≤
i
, d>i un-indexed/indexed portion of di

d̂i normalized version of di
I inverted index
f j vector with jth feature values from all d̂i
ε minimum desired similarity

III. METHODS

We now describe our algorithm that can be used to solve the
Tanimoto APSS problem for non-negative real-valued vectors.
First, we describe how a bound on the length of indexed vec-
tors can be efficiently integrated into an inverted index APSS
approach. We then show how bounds on the cosine similarity
of non-negative real-valued vectors can be used to achieve
additional pruning. Finally, we introduce new theoretic bounds
on the Tanimoto similarity that rely on partially computed
dot-products of vectors, and we show how our method can
efficiently use these bounds to eliminate object comparisons.

A. A basic indexing approach

One approach to find neighbors for a given query object
that has been reported to work well in the similarity search
literature [?], [?], [?], [?], [?], [?], [?] has been to use an
inverted index, which makes it possible to avoid computing
similarities between the query and objects that do not have
any non-zero features in common with it. A map-based data
structure, called an accumulator, can be used to compute the
dot-product of the query with all objects encountered while
iterating through the inverted lists for non-zero features in the
query. We call an object that has a non-zero accumulated dot-
product a candidate. Using precomputed lengths for the object
vectors, the dot-products of all candidates can be transformed
into Tanimoto coefficients according to Equation 1 and those
coefficients at or above ε can be stored in the output.

One inefficiency with this approach is that it does not
take advantage of the commutativity property of the Tanimoto
coefficient, computing sim(di, d j ) both when accumulating
similarities for di and for d j . To address this issue, authors
in [?] and [?] have suggested building the index dynamically,
adding the query vector to the index only after finding its
neighbors. This ensures that the query is only compared
against previously processed objects in a given processing
order. We suggest a different approach that is equally effi-
cient given modern compute architectures. Given an object
processing order, we first re-label each document to match
the processing order, then build the inverted index fully,
adding objects to the index in the given processing order. The
result will be inverted lists sorted in non-decreasing order of
document labels. Then, when iterating through each inverted
list, we can stop as soon as the encountered document label
is greater or equal to that of the query. Since the document
label will have already been read from memory to perform the
accumulation operation and will be resident in the processor
cache, the additional check against the value of the query label
will be very fast, and will be hidden by the latency associated
with loading the next cache line from memory.

Kryszkiewicz [?] has shown that some of the objects whose
vector lengths are either too small or too large compared
to that of the query object cannot be its neighbors and can
thus be ignored. An object d j cannot be a neighbor of a
query object di if its length ‖d j ‖ falls outside the range
[(1/α)‖di ‖, α‖di ‖], where ‖di ‖ is the length of the query



vector and

α =
1
2
*.
,

(
1 +

1
ε

)
+

√(
1 +

1
ε

)2

− 4+/
-
. (2)

In Section III-C, we show this bound is actually the limit of a
new class of Tanimoto similarity bounds we introduce in this
paper. Here, we will show how candidate length pruning can
be efficiently integrated into our indexing approach.

A given object will be encountered as many times in the
index as it has non-zero features in common with the query.
To avoid checking its length against that of the query each
time, we could use a data structure, such as a map or bit
vector, to mark when a candidate has been checked. While
checking this data structure may be less demanding than a
multiplication and a comparison, it can actually be slower
if the number of candidates is high and the data structure
does not fit in the processor cache. Instead, we propose to
process objects in non-decreasing vector length order. By re-
labeling objects as discussed earlier, objects whose lengths
are too short will be potentially found at the beginning of the
inverted lists, while objects whose lengths are too long can
be automatically ignored, as they will come after the query
object in the processing order. Note also that, for an object d j

following di in the processing order,

1
α
‖d j ‖ ≥

1
α
‖di ‖,

since ‖d j ‖ ≥ ‖di ‖ and both vector lengths and α are non-
negative real value. As such, the label of the maximum
candidate that can be ignored will be non-decreasing. Our
approach thus uses a list of starting points, one for each
inverted list, and updates the starting point of a list each time
a new candidate whose length is too small is found in it.

Algorithm 1 provides a pseudo-code sketch for our basic
inverted index based approach. The method first permutes
objects in non-decreasing vector length order and indexes
them. Then, for each query object dq , in the processing order,
the maximum object dmax satisfying (1/α)‖dmax ‖ < ‖dq ‖ is
identified. When iterating through the jth inverted list, TAPNN
avoids objects in the list whose lengths have already been
determined too small by starting the iteration at index S[ j],
which is incremented as more objects are found with small
lengths. At the end of the accumulation stage, the accumulator
contains full dot-products between the query and all objects
that could be its neighbors. For each such object, the algorithm
computes the Tanimoto coefficient using the dot-product stored
in the accumulator and adds the object to the result set if its
similarity meets the threshold.

B. Incorporating Cosine Similarity Bounds

A number of recent methods have been devised that use
similarity bounds to efficiently solve the cosine similarity
APSS problem. Moreover, Lee et al. [?] have shown that,
for non-negative vectors and the same threshold ε , the set of
Tanimoto neighbors of an object is actually a subset of its set

Algorithm 1 TAPNN inverted index approach
1: function TAPNN-1(D, ε)
2: A← ∅ . accumulator
3: S ← ∅ . list starts
4: N ← ∅ . set of neighbors
5: Compute and store vector lengths for all objects
6: Permute objects in non-decreasing vector length order
7: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
8: for each j = 1, . . . ,m s.t. dq, j > 0 do . Indexing
9: I j ← I j ∪ {(dq, dq, j )}

10: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
11: Find label dmax of last object that can be ignored
12: for each j = 1, . . . ,m s.t. dq, j > 0 do
13: for each k = S[ j], . . . , |I j | do
14: (dc, dc, j ) ← I j [k]
15: if dc ≤ dmax then
16: S[ j]← S[ j] + 1
17: else if dc ≥ dq then
18: break
19: else . Accumulation
20: A[dc ]← A[dc ] + dq, j × dc, j
21: for each dc s.t. A[dc ] > 0 do . Verification
22: Scale dot-product in A[dc ] according to Equation 1
23: if A[dc ] ≥ ε then
24: N ← N ∪ (dq, dc, A[dc ])
25: return N

of cosine neighbors. This can be seen from the formulas of
the two similarity functions.

T(di, d j ) =
〈
di, d j

〉
‖di ‖

2 + ‖d j ‖
2 −

〈
di, d j

〉
C(di, d j ) =

〈
di, d j

〉
‖di ‖‖d j ‖

Given a common numerator, it remains to find a relationship
between the denominators in the two functions. Since, for any
real valued vector lengths, (‖di ‖ − ‖d j ‖)2 ≥ 0, it follows that,

‖di ‖
2 + ‖d j ‖

2 − 2‖di |‖‖d j ‖ ≥ 0,

‖di ‖
2 + ‖d j ‖

2 −
〈
di, d j

〉
≥ ‖di ‖‖d j ‖,

where the last equation follows from the Cauchy-Schwarz
inequality, which states that

〈
di, d j

〉
≤ ‖di ‖‖d j ‖. As a result,

the following relationships can be observed between the cosine
and Tanimoto similarities of two vectors,

T(di, d j ) ≤ C(di, d j ),
T(di, d j ) ≥ ε ⇒ C(di, d j ) ≥ ε,
C(di, d j ) < ε ⇒ T(di, d j ) < ε.

One can then solve the Tanimoto APSS problem by first
solving the cosine APSS problem and then filtering out those
cosine neighbors that are not also Tanimoto neighbors. Given
the computed cosine similarity of two vectors and stored vector
lengths, the Tanimoto similarity can be derived as follows.

T(di, d j ) =

〈
di,d j

〉
‖di ‖ ‖d j ‖

‖di ‖
2+‖d j ‖

2−
〈

di,d j

〉
‖di ‖ ‖d j ‖

=

〈
di,d j

〉
‖di ‖ ‖d j ‖

‖di ‖
2+‖d j ‖

2

‖di ‖ ‖d j ‖
−

〈
di,d j

〉
‖di ‖ ‖d j ‖



Applying the definition for cosine similarity, we have,

T(di, d j ) =
C(di, d j )

‖di ‖
2+‖d j ‖

2

‖di ‖ ‖d j ‖
− C(di, d j )

. (3)

Note that,

(‖di ‖ − ‖d j ‖)2 ≥ 0⇒
‖di ‖

2 + ‖d j ‖
2

‖di ‖‖d j ‖
≥ 2,

which provides a higher pruning threshold when searching for
cosine neighbors given a Tanimoto similarity threshold ε ,

T(di, d j ) ≥ ε ⇒
C(di, d j )

2 − C(di, d j )
≥ ε ⇒ C(di, d j ) ≥

2ε
1 + ε

= t

(4)
Unlike the Tanimoto coefficient, cosine similarity is length

invariant. Vectors can thus be normalized as a pre-processing
step, which reduces cosine similarity to the dot-product of the
normalized vectors. Denoting by d̂i = di/‖di ‖, the normalized
version of the ith object vector,

C(di, d j ) =
〈
di, d j

〉
‖di ‖‖d j ‖

=
〈
d̂i, d̂ j

〉
.

This step, in fact, reduces the number of floating point oper-
ations needed to solve the problem, and is standard in cosine
APSS methods. Note that the method outlined in Algorithm 1
can also be applied to normalized vectors, adding only a
normalization step before indexing and replacing the scaling
factor in line 22, using Equation 3 instead of Equation 1.

In a recent work [?], we described a number of cosine
similarity bounds based on the `2-norm of prefix or suffix
vectors that have been found to be more effective than previous
known bounds for solving the cosine APSS problem. It may
be beneficial to incorporate this type of filtering in our method.
However, some of the bounds we described in that work rely
on a different object processing order. Our method, therefore,
uses similar `2-norm based bounds that are processing order
independent. This allows our method to still take advantage
of the vector length based filtering described in Section III-A.
In the remainder of this section, we will describe the `2-norm
based filtering in our method.

Normalized vector prefix `2-norm based filtering

Given a fixed feature processing order and the prefix and
suffix of a query object at feature p, it is easy to see that,〈

d̂q, d̂c
〉
=

〈
d̂≤pq , d̂c

〉
+

〈
d̂>p
q , d̂c

〉
≤ ‖d̂≤pq ‖‖d̂c ‖ +

〈
d̂>p
q , d̂c

〉
,

where the inequality follows from applying the Cauchy-
Schwarz inequality to the prefix dot-product. Since the maxi-
mum value of ‖d̂c ‖ is 1, the prefix dot-product can further be
upper-bounded by the length of the prefix vector,〈

d̂≤pq , d̂c
〉
≤ ‖d̂≤pq ‖. (5)

Another bound on the prefix dot-product can be obtained by
considering the maximum values for each feature among all
normalized object vectors. Let f j denote the vector of all
feature values for the jth feature within the normalized vectors,

and mx the vector of maximum such feature values for each
dimension, defined as,

f j = (d̂1, j, d̂2, j, . . . , d̂n, j ),
mx = (‖f1‖∞, ‖f2‖∞, . . . , ‖fm ‖∞).

Then,〈
d̂≤pq , d̂c

〉
=

m∑
l=1

dq,l ×dc,l ≤

m∑
l=1

dq,l ×mxl = 〈d̂
≤p
q ,mx〉. (6)

Combining the bounds in Equation 5 and Equation 6, we
obtain a bound on the prefix similarity of a vector with any
other object in D, which we denote by ps≤pq ,〈

d̂≤pq , d̂c
〉
≤ ps≤p = min(‖d̂≤pq ‖, 〈d̂

≤p
q ,mx〉). (7)

We define ps<p
q analogously.

Algorithm 2 describes how we incorporate cosine similarity
bounds within our method. Following examples in [?] and [?],
we use the ps bound to index only a few of the non-zeros
in each object. Note that, if ps<p

q < t, with t defined as in
Equation 4, and an object dc has no features in common with
the query in lists I j, p ≤ j ≤ m, then its cosine similarity
to the query will be below t, and its Tanimoto similarity will
then be below ε . Conversely, if

〈
d̂>p
q , d̂c

〉
> 0, the object

may potentially be a neighbor. By indexing values in each
query vector starting at the index p satisfying ps≤pq ≥ t,
and then iterating through the index and accumulating, the
non-zero values in the accumulator will contain only the
suffix dot-products,

〈
d̂q, d̂>c

〉
, where d>c represents the indexed

suffix for some object dc found in the index. Once some
value has been accumulated for an object, we refer to it
as a candidate. This portion of the method can be thought
of as candidate generation (CG), and is similar in scope
to the screening phase of many compound search methods
in the chemoinformatics literature. Our method uses the un-
indexed portion of the candidate, d≤c , to complete the dot-
product computation during the verification stage, before the
scaling and threshold checking steps. We call this portion of
the method, which is akin to the verification stage in other
chemoinformatics methods, candidate verification (CV).

Our method adopts a non-increasing inverted list size order
for indexing features, which heuristically leads to shorter lists
in the inverted index. The partial indexing strategy presented
in the previous paragraph improves the efficiency of our
method in two ways. First, objects that have non-zero values
in common with the query only in the un-indexed set of
query features will be automatically ignored. Our method will
not encounter such an object in the index when generating
candidates for the query and will thus not accumulate a
dot-product for it. Second, the verification stage will require
reading from memory only those sparse vectors for un-pruned
candidates, iterating through fewer non-zeros in general than
exist in the un-indexed portion of all objects.

We use the ps bound in two additional ways to improve the
pruning effectiveness of our method. First, when encountering
a new potential object in the index during the CG stage



(A[dc ] = 0), we only accept it as a candidate if ps≤ jq ≥ t.
Note that we process index lists in reverse feature processing
order in the CG and CV stages, and A[dc ] contains the exact
dot-product

〈
d̂q, d̂

> j
c

〉
. Therefore, if A[dc ] = 0 and ps≤ jq < t,

the candidate cannot be a neighbor of the query object. Second,
as a first step in verifying each candidate, we check whether
ps<c , added to the accumulated suffix dot-product, meets the
threshold t. The value ps<c is an upper bound of the dot-
product of the un-indexed prefix of the candidate vector with
any other vector in the dataset. Thus, the candidate can be
safely pruned if the check fails.

As in our cosine APSS method [?], after each accumulation
operation, in both the CG and CV stages of the algorithm,
we check an additional bound, based on the Cauchy-Schwarz
inequality. The objects cannot be neighbors if the accumulated
suffix dot-product, added to the upper bound ‖d̂< j

q ‖‖d̂
< j
c ‖ of

their prefix dot-product, cannot meet the threshold t. We have
tested a number of additional candidate verification bounds
described in the literature based on vector number of non-
zeros, prefix lengths, or prefix sums of the vector feature
values, but have found them to be less efficient to compute
and in general less effective than our described cosine pruning
in a variety of datasets. The interested reader may consult [?],
[?], [?], [?] for details on additional verification bounds for
cosine similarity.

Algorithm 2 TAPNN with cosine bounds
1: function TAPNN-2(D, ε)
2: A← ∅, S ← ∅, N ← ∅
3: t ← 2ε/(1 + ε )
4: Compute and store vector lengths for all objects
5: Permute objects in non-decreasing vector length order
6: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
7: Normalize dq
8: for each j = 1, . . . ,m s.t. d̂q, j > 0 and ps≤pq ≥ t do
9: I j ← I j ∪ {(dq, d̂q, j, ‖d̂

< j
q ‖)} . Indexing

10: Store ps<q
11: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
12: Find label dmax of last object that can be ignored
13: for each j = m, . . . , 1 s.t. d̂q, j > 0 do . CG
14: for each k = S[ j], . . . , |I j | do
15: (dc, dc, j ) ← I j [k]
16: if dc ≤ dmax then
17: S[ j]← S[ j] + 1
18: else if dc ≥ dq then
19: break
20: else if A[dc ] > 0 or ps≤ jq ≥ t then
21: A[dc ]← A[dc ] + d̂q, j × d̂c, j
22: Prune if A[dc ] + ‖d̂< j

q ‖‖d̂
< j
c ‖ < t

23: for each dc s.t. A[dc ] > 0 do . CV
24: Prune if A[dc ] + ps<c < t
25: for each j = m, . . . , 1 s.t. d̂≤

c, j
> 0 and dq, j > 0 do

26: A[dc ]← A[dc ] + d̂q, j × d̂c, j
27: Prune if A[dc ] + ‖d̂< j

q ‖‖d̂
< j
c ‖ < t

28: Scale dot-product in A[dc ] according to Equation 3
29: if A[dc ] ≥ ε then
30: N ← N ∪ (dq, dc, A[dc ])
31: return N

C. New Tanimoto similarity bounds

Up to this point, we have used pruning bounds based on
the lengths of the un-normalized vectors and prefix `2-norms
of the normalized vectors to either ignore outright or stop
considering (prune) those objects that cannot be neighbors for
a given query. We will now present new Tanimoto-specific
bounds which combine the two concepts to effect additional
pruning. First, we will describe a bound on the prefix length
of an un-normalized candidate vector, which we use during
candidate generation. Then, we will introduce a bound for the
length of the un-normalized candidate vector that relies on
cosine similarity estimates we compute in our method.

A bound on the prefix length of an un-normalized candidate
vector

Recall that the dot-product of a query with a candidate
vector can be de-composed as the sum of its prefix and
suffix dot-products, which can be written as a function of the
respective normalized vector dot-products as,〈

dq, dc
〉
=

〈
d≤pq , dc

〉
+

〈
d>p
q , dc

〉
=

〈
d̂≤pq , d̂c

〉
‖d≤pq ‖‖dc ‖ +

〈
d̂>p
q , d̂c

〉
‖d>p

q ‖‖dc ‖.

For an object that has not yet become a candidate (A[dc ] = 0),〈
d̂>p
q , d̂c

〉
= 0, simplifying the expression to,〈

dq, dc
〉
=

〈
d̂≤pq , d̂c

〉
‖d≤pq ‖‖dc ‖.

From the expression T(dc, dq ) ≥ ε , substituting the Tanimoto
formula in Equation 1, we can derive,〈

dq, dc
〉
≥

ε

1 + ε

(
‖dq ‖

2 + ‖dc ‖
2
)

‖d≤pq ‖ ≥
ε

1 + ε
‖dq ‖

2 + ‖dc ‖
2

‖dc ‖
〈
d̂≤pq , d̂c

〉
‖d≤pq ‖ ≥

ε

1 + ε
‖dq ‖

2 + ‖d1‖
2

‖dq−1‖ ps≤ jq

(8)

Equation 8 replaces the prefix dot-product
〈
d̂≤pq , d̂c

〉
with the

ps upper bound, which represents the dot-product of the query
with any potential candidate. Furthermore, taking advantage
of the pre-defined object processing order in our method,
we replace the numerator candidate length by that of the
object with minimum length (the first processed object, d1)
and the denominator candidate length with that of the object
with maximum length (the last processed object, dq−1). Since
‖d1‖

2 ≤ ‖dc ‖
2, ‖dq−1‖ ≥ ‖dc ‖, and ps≤ jq ≥

〈
d̂≤pq , d̂c

〉
, the

inequality holds.
We use the bound in Equation 8 during the candidate

generation stage of our method as a potentially more restrictive
condition for accepting new candidates. It complements the ps
bound in line 20 of Algorithm 2, which checks whether new
candidates can still be neighbors based only on the prefix of the
normalized query vector. Once the prefix length of the query
un-normalized vector falls below the bound in Equation 8,
objects that have not already been encountered in the index
can no longer be similar enough to the query.



A tighter bound for the un-normalized candidate vector length

Let β = ‖dc ‖/‖dq ‖, and, for notation simplicity, s =〈
d̂q, d̂c

〉
= C(di, d j ). Given T(dq, dc ) ≥ ε , and the pre-

imposed object processing order (i.e., ‖dq ‖ ≥ ‖dc ‖), we
derive β as a function of the cosine similarity of the objects,

T(dq, dc ) =
s‖dq ‖‖dc ‖

‖dq ‖
2 + ‖dc ‖

2 − s‖dq ‖‖dc ‖
≥ ε

ε ‖dc ‖
2 − s(1 + ε )‖dc ‖‖dq ‖ − ε ‖dq ‖

2 ≤ 0

ε β2 − s(1 + ε ) β − ε ≤ 0

β =
s(1 + ε )

2ε
+

√(
s(1 + ε )

2ε

)2

− 1 =
s
t
+

√( s
t

)2
− 1 (9)

Replacing s with any of the upper bounds on the cosine
similarity we described in Section III-B, the bound in Equa-
tion 9 allows us to prune any candidate whose length is less
than ‖dq ‖/β. Note that, for s = 1, which is the upper limit
of the cosine similarity of non-negative real-valued vectors,
β = α, which is the bound introduced by Kryszkiewicz [?]
for length-based pruning of candidate vectors. In the presence
of an upper bound estimate of the cosine similarity for two
vectors, our bound provides a more accurate estimate of the
minimum length a candidate vector must have to potentially
be a neighbor for the query.

Algorithm 3 The TAPNN algorithm
1: function TAPNN(D, ε)
2: Lines 2 – 10 in Algorithm 2
3: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
4: Find label dmax of last object that can be ignored
5: for each j = m, . . . , 1 s.t. d̂q, j > 0 do . CG
6: for each k = S[ j], . . . , |I j | do
7: (dc, dc, j ) ← I j [k]
8: if dc ≤ dmax then
9: S[ j]← S[ j] + 1

10: else if dc ≥ dq then
11: break
12: else if A[dc ] > 0 or [ps≤ jq ≥ t and EQ8] then
13: A[dc ]← A[dc ] + d̂q, j × d̂c, j
14: Prune if A[dc ] + ‖d̂< j

q ‖‖d̂
< j
c ‖ < t

15: for each dc s.t. A[dc ] > 0 do . CV
16: Prune if A[dc ] + ps<c < t
17: Compute β given s = A[dc ] + ps<c
18: Prune if ‖dc ‖ × β < ‖dq ‖
19: Find first j s.t. d̂≤

c, j
> 0 and dq, j > 0

20: A[dc ]← A[dc ] + d̂q, j × d̂c, j
21: Prune if A[dc ] + ‖d̂< j

q ‖‖d̂
< j
c ‖ < t

22: Compute β given s = A[dc ] + ‖d̂< j
q ‖‖d̂

< j
c ‖

23: Prune if ‖dc ‖ × β < ‖dq ‖
24: for each j = . . . , 1 s.t. d̂≤

c, j
> 0 and dq, j > 0 do

25: A[dc ]← A[dc ] + d̂q, j × d̂c, j
26: Prune if A[dc ] + ‖d̂< j

q ‖‖d̂
< j
c ‖ < t

27: Scale dot-product in A[dc ] according to Equation 3
28: if A[dc ] ≥ ε then
29: N ← N ∪ (dq, dc, A[dc ])
30: return N

In Algorithm 3, we present pseudo-code for the TAPNN
method, which includes all the pruning strategies we described
in Section III. The symbol EQ8 in line 12 refers to checking
the query prefix vector length, according to Equation 8.

While our bound β for the un-normalized candidate vector
length could be checked each time we have a better estimate
of the cosine similarity of two vectors, after each accumulation
operation, it is more expensive to compute than the simpler
prefix `2-norm cosine bound. We thus check it only twice
for each candidate object, first after computing the cosine
estimate based on the candidate ps bound (line 17), and again
after accumulating the first un-indexed feature in the candidate
(line 22). We have found this strategy works well in practice.

IV. MATERIALS

In this section, we describe the datasets, baseline algorithms,
and performance measures used in our experiments.

A. Datasets

We evaluate each method using several real-world and
benchmark text and chemical compound corpora. Their char-
acteristics, including number of rows (n), columns (m), non-
zeros (nnz), and mean row/column length (µr /µc ), are detailed
in Table II.

1) Patents is a random subset of 100,000 patent documents
from all US utility patents1. Each document contains the
patent title, abstract, and body.

2) RCV1 is a standard text processing benchmark corpus
containing over 800,000 newswire stories from Reuters,
Ltd [?].

3) MLSMR [?] (Molecular Libraries Small Molecule
Repository) is a collection of structures of compounds
accepted into the repository of PubChem, NCBI’s
database of small organic molecules and their biological
activity. We used the December 2008 version of the SDF
database2.

4) SC contains chemical compounds from the
SureChEMBL [?] database, which includes a large
set of compounds automatically extracted from text,
images and attachments of patent documents. SC-5M,
SC-1M, SC-500k and SC-100k are random subsets of
5,000,000, 1,000,000, 500,000 and 100,000 compounds,
respectively, from the SC dataset.

1) Text data processing: We used standard text processing
methods to encode documents as sparse vectors. Each docu-
ment was first tokenized, removing punctuation, making text
lower-cased, and splitting the document into a set of words.
Each word was then stemmed using the Porter stemmer [?],
reducing different versions of the same word to a common
token. Within the space of all tokens, a document is then
represented by the sparse vector containing the frequency of
each token present in the document.

1http://www.uspto.gov/
2https://mlsmr.evotec.com/MLSMR_HomePage/pdf/MLSMR_

Collection_20081201.zip



TABLE II
DATASET STATISTICS

dataset n m nnz µr µc
Patents 100,000 759,044 46.3M 464 61
RCV1 804,414 45,669 61.5M 77 1,348

MLSMR 325,164 20,021 56.1M 173 2,803
SC 11,519,370 7,415 1,784.5M 155 262,669

SC-5M 5,000,000 7,415 699.9M 155 103,063
SC-1M 1,000,000 6,752 154.9M 155 22,949

SC-500k 500,000 6,717 77.5M 155 11,533
SC-100k 100,000 6,623 15.5M 155 2,336

In the table, n represents the number of objects (rows), m is
the number of features in the vector representation of the objects
(columns), nnz is the number of non-zero values, and µr and µc are
the mean number of non-zeros in each row and column, respectively.

2) Chemical compound processing: We encode each chem-
ical compound as a sparse frequency vector of the molecu-
lar fragments it contains, represented by GF [?] descriptors
extracted using the AFGen v. 2.0 [?] program3. AFGen
represents molecules as graphs, with vertices corresponding
to atoms and edges to bonds in the molecule. GF descriptors
are the complete set of unique size-bounded subgraphs present
in each compound. Within the space of all GF descriptors for
a compound dataset, a compound is then represented by the
sparse vector containing the frequency of each GF descriptor
present in the compound. We used a minimum length of 3
and a maximum length of 5 and ignored Hydrogen atoms
when generating GF descriptors (AFGen settings fragtype=GF,
lmin=3, lmax=5, fmin=1, noh: yes). Before running AFGen
on each chemical dataset, we used the Open Babel toolbox [?]
to remove compounds with incomplete descriptions.

B. Baseline approaches

We compare our methods against the following baselines.
• IdxJoin [?] is a straight-forward baseline that does not

use any pruning when computing similarities. IdxJoin
uses an accumulator data structure to simultaneously
compute the dot-products of a query object with all other
objects, iterating through the inverted lists corresponding
to features in the query. While in [?] the method was
used to compute dot-products of normalized vectors, we
apply the method on the un-normalized vectors. Resulting
Tanimoto similarities are computed according to Equa-
tion 1 using previously stored vector norms. Then, those
similarities below ε are removed.

• L2AP [?] solves the all-pairs problem for the cosine
similarity, rather than the Tanimoto coefficient. As shown
in Section III-B, the Tanimoto all-pairs result is a subset
of the cosine all-pairs result. After executing the L2AP
algorithm, we use Equation 3 and previously stored vector
norms to compute the Tanimoto coefficient of all resulting
object pairs and filter out those below ε .

• MMJoin [?] is a filtering based approach to solving the
all-pairs problem for the Tanimoto coefficient. It relies on
efficiently solving the cosine similarity all-pairs problem

3http://glaros.dtc.umn.edu/gkhome/afgen/download

using pruning bounds based on vector lengths and the
number of non-zero features in each vector.

• MK-Join is a method we designed using the Tanimoto
similarity pruning bounds described by Kryszkiewicz
in [?] and [?]. MK-Join uses an accumulator to compute
similarities of each query against all candidates found
in the inverted lists associated with features present in
the query. However, MK-Join processes inverted lists in
a different order, in non-increasing order of the query
feature values. By following this order, Kryszkiewicz
has shown that the method can safely stop accepting
new candidates once the squared norm of the partially
processed query vector (i.e. setting values of unprocessed
features to 0) falls below t = 1 − ( 2ε

1+ε )2. A candidate
is also ignored if its length ‖dc ‖ falls outside the range
[(1/α)‖dq ‖, α‖dq ‖], where α is defined as in Equation 2.
We also implemented MK-Join2, which further incorpo-
rates a tighter bound on candidate lengths described by
Kryszkiewicz in Theorem 5 of [?]. The bound is equiva-

lent to our Equation 8 with s =
√

1 −
∑

i∈L d̂q, i , given the
set L of query features that are not also candidate features.
Finding this set requires traversing both the query and
candidate sparse vectors, which significantly slows down
MK-Join2 in comparison to MK-Join. MK-Join was
superior in all our experiments and we thus only include
its results in Section V.

C. Performance measures

We compare the search performance of different methods
in terms of CPU runtime, which is measured in seconds. I/O
time needed to load the dataset into memory or write output
to the file system should be the same for all methods and is
ignored. Between a method A and a baseline B, we report
speedup as the ratio of B’s execution time and that of A’s.

D. Execution environment

Our method4 and all baselines are single-threaded, serial
programs, implemented in C and compiled using gcc 5.1.0
with the -O3 optimization setting enabled. Each method was
executed on its own node in a cluster of HP Linux servers.
Each server is a dual-socket machine, equipped with 24 Gb
RAM and two four-core 2.6 GHz Intel Xeon 5560 (Nehalem
EP) processors with 8 Mb Cache. We executed each method
a minimum of four times for ε ∈ {0.6, 0.7, 0.8, 0.9, 0.99} and
report the best execution time in each case. Due to its size (14
Gb), we executed data scaling experiments involving the full
SC dataset on a different server, equipped with 64 Gb RAM
and two 12-core 2.5 Ghz Intel Xeon (Haswell E5-2680v3)
processors with 30 Mb Cache. As all tested methods are serial,
only one core was used on each server during the execution.

V. RESULTS & DISCUSSION

Our experiment results are organized along several direc-
tions. First, we compare the efficiency of our method against

4Source code available at http://davidanastasiu.net/software/tapnn/



existing baselines, demonstrating up to an order of magni-
tude improvement. Then, we analyze the effectiveness of the
new Tanimoto pruning bounds in TAPNN, showing that they
provide a significant performance benefit. Finally, we analyze
the scaling characteristics of our method when dealing with
increasing amounts of data.

A. Execution efficiency

The main goal of our method is to efficiently solve the
Tanimoto APSS problem. We compared TAPNN against the
baselines described in Section IV-B, for ε ranging between
0.6 and 0.99, which are thresholds most often used in nearest
neighbor based analysis. Figure 1 displays our timing results
for each method on four datasets. In each quadrant, smaller
times indicate better performance. Note that the y-scale has
been log-scaled.
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Fig. 1. Efficiency comparison of TAPNN vs. baselines.

The results show that TAPNN significantly outperformed all
baselines, by up to an order of magnitude. Speedup of TAPNN
versus the next best method ranged between 3.0x–8.0x for
text datasets, and 1.2x–12.5x for chemical datasets. Speedup
against IdxJoin, which is similar to a linear search and does
not employ any pruning ranged between 8.3x–3981.4x for text
data and 1.5x–519x for chemical data, highlighting the pruning
performance of our method, especially for high values of ε .

The best performing baseline in general was our previous
cosine APSS method, L2AP, which employs similar cosine
based pruning but does not take advantage of un-normalized
vector lengths in its filtering. L2AP was shown in [?] to
outperform MMJoin for the cosine APSS task. Our results
show that it also outperformed MMJoin for Tanimoto APSS,
in all experiments. MK-Join was not competitive against

L2AP and MMJoin for ε ≥ 0.8 for chemical datasets and
in general for text datasets. In fact, it performed worse than
IdxJoin for the Patents dataset, and only slightly better in
general. The Patents dataset has a high average vector size
(number of non-zeros) and low average index list size, which
may have contributed to the poor performance of MK-Join.
The results show that the strategy of cosine filtering applied to
the Tanimoto APSS problem, which is employed in different
ways by TAPNN, L2AP, and MMJoin, works quite well for
both text and chemical datasets.

B. Pruning effectiveness

As a way to test the pruning effectiveness of the new
Tanimoto length bounds introduced in Section III-C, we
compared execution times of TAPNN with two versions of
the program which did not take advantage of these bounds.
While both programs implement the length based pruning
described in Section III-A, TAPNN-c filters cosine neighbors
using the threshold ε , while TAPNN-t employs the tighter
cosine filtering bound from Equation 4. Figure 2 shows the
log-scaled execution times for the three methods, for each of
the five tested ε values.
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Fig. 2. Effect of Tanimoto bounds on search efficiency.

The results of our experiments indicate that the newly intro-
duced bounds are effective at improving search performance,
achieving up to 5.8x speedup against TAPNN-t and 13.3x
speedup against TAPNN-c. Chemical datasets exhibit higher
performance improvement at high thresholds, but much lower
as ε → 0.6.

C. Scaling

As a way to understand the scalability of our method
and baselines, we executed each method on three random



subsets from the SC dataset, containing 100K, 500K, and 1M
compounds, respectively, and measuring execution time for ε
ranging between 0.6 and 0.99. Figure 3 shows the results of
this experiment. As the problem size was increased, TAPNN
maintained a similar advantage over the next best alternative,
L2AP. On the other hand, the performance gap between L2AP
and MMJoin, as well as between MK-Join and IdxJoin,
increased as the problem size was increased.
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Fig. 3. Execution time scaling given increasing problem size.

We also tested TAPNN in a near-duplicate detection scenario
on SC subsets ranging from 500K to 11.5M compounds. Ta-
ble III presents these results, for ε ∈ {0.95, 0.975, 0.99, 0.999}.
The columns ∆n, ∆z, and ∆t show relative increases in number
of objects, number of non-zeros, and search time, respectively,
for corresponding ε values, versus the next smaller dataset.
For example, ∆n = 5.00, ∆z = 4.52, and ∆t = 26.05 for
the SC-5M dataset and ε = 0.999, meaning that SC-5M has
5x more compounds, 4.52x more non-zeros, and executed
26.05x slower than SC-1M at ε = 0.999. The results show
a strong correlation between the increase in the problem size
and the search performance in TAPNN. Moreover, the relative

performance gap was very similar for the different ε values,
not showing any significant degradation with decreasing ε
values. As a near-duplicate detection tool, given ε = 0.999,
TAPNN was able to search the entire 11.5M compound SC
dataset in a little over an hour, and a 5M subset of the
compounds in less than 13 minutes, highlighting its effective
pruning and efficient search capabilities.

TABLE III
EXECUTION TIME SCALING GIVEN INCREASING PROBLEM SIZE

dataset ε time (s) ∆n ∆z ∆t
SC 0.999 4,188.06 2.30 2.55 6.51
SC 0.99 41,099.14 2.30 2.55 7.11
SC 0.975 139,887.44 2.30 2.55 7.32
SC 0.95 (371,520.00) 2.30 2.55 (7.23)
SC-5M 0.999 642.93 5.00 4.52 26.05
SC-5M 0.99 5,778.79 5.00 4.52 27.41
SC-5M 0.975 19,122.77 5.00 4.52 24.96
SC-5M 0.95 51,396.57 5.00 4.52 24.12
SC-1M 0.999 24.68 2.00 2.00 3.78
SC-1M 0.99 210.83 2.00 2.00 4.51
SC-1M 0.975 766.03 2.00 2.00 4.34
SC-1M 0.95 2,130.45 2.00 2.00 4.47
SC-500k 0.999 6.53
SC-500k 0.99 46.78
SC-500k 0.975 176.55
SC-500k 0.95 476.55

Each section of the table shows ε-NNG construction times for a
different size subset of the SC dataset, given 4 values of ε . The
columns ∆n, ∆z, and ∆t show relative increases in number of
objects, number of non-zeros, and search time, respectively, for
corresponding ε values, versus the next smaller dataset in the
following section in the table. Note that the time for the SC
experiment at ε = 0.95 is estimated. The experiment was 95%
complete when it was terminated at the end of 4 days (96 hours).

VI. CONCLUSION

We presented TAPNN, a new serial algorithm for solving
the Tanimoto all-pairs similarity search problem for objects
represented as non-negative real-valued vectors. Unlike many
alternatives, our method solves the problem exactly, finding
all pairs of objects with a Tanimoto similarity of at least
some input threshold ε . Our method incorporates several
filtering strategies based on object vector lengths and the
dot-product of their normalized vectors. We have shown
how these strategies can be effectively used to reduce the
number of object pairs that have to be fully compared, and
have introduced additional filtering techniques that combine
normalized dot-product estimates with un-normalized vector
lengths. We experimentally evaluated our method against
several baselines on both chemical and text datasets, and found
TAPNN significantly outperformed them, especially for high
thresholds. In particular, TAPNN was able to find all near-
duplicate pairs among 5M SureChemBL chemical compounds
in minutes, using a single CPU core, was up to 12.5x more
efficient than the most efficient baseline, and outperformed a
linear search baseline by two orders of magnitude in general
at ε = 0.99.


