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Topic-driven Clustering for Document Datasets *

Ying Zhao T

Abstract

In this paper, we define the problem of topic-driven
clustering, which organizes a document collection ac-
cording to a given set of topics. We propose three
topic-driven schemes that consider the similarity be-
tween documents and topics and the relationship among
documents themselves simultaneously. We present a
comprehensive experimental evaluation of the proposed
topic-driven schemes on five datasets. Our experimental
results show that the proposed topic-driven schemes are
efficient and effective with topic prototypes of different
levels of specificity.

1 Introduction

Fast and high-quality document clustering algorithms
play an important role in providing intuitive navigation
and browsing mechanisms by organizing large amounts
of information into a small number of meaningful clus-
ters. As unsupervised learning methods, clustering al-
gorithms do not require any prior knowledge of the
datasets in general. However, when such prior knowl-
edge is available, clustering algorithms should also be
able to benefit from it to produce more desired cluster-
ing solutions. In particular, we focus on the type of the
prior knowledge that reflect the cognition of the natu-
ral clusters by domain experts. For example, in many
knowledge management applications, even though the
complete taxonomy of the document collection is not
available, often times domain experts can describe the
major topics (clusters) that the collection covers. More-
over, they would like the clustering algorithms produce
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the clustering solutions that are consistent with their
cognition models. Hence it is important to be able to
organize a document collection according to a given set
of topics (either from domain experts, or as a require-
ment satisfying users’ needs). We refer to this problem
as topic-driven clustering.

For example, in a typical environment of law firms,
a large amount of letters, memoranda, e-mail messages,
and contracts are generated on a daily basis. Thus,
organizing legal documents into meaningful clusters
to leverage browsing and searching is very important.
Even though a complete law firm taxonomy may not
be available, law librarians in a law firm can provide
some information on the major topics of the document
collection based on their knowledge on the practice areas
of the law firm, related law categories, and custom
base. For example, a law firm may focus on the
areas of banking, bankruptcy, insurance, and debt.
This information is not only helpful for organizing the
documents, but also serves as a requirement of desired
clustering solutions. That is, the resultant clusters
should correspond to the identified topics (for example,
the four practice areas). Also note that acquiring prior
knowledge of labeled documents associated with each
topic, even a small amount, can be very time-consuming
and costly.

The traditional classification algorithms cannot
solve the topic-driven clustering problem because of
the insufficient information about each class (topic).
Since sometimes the available descriptions may only
contain a few words, in order to produce good organiza-
tion, the information of unlabeled documents must be
taken into account to leverage classification technology.
Semi-supervised classification [13, 3] and active learn-
ing [6, 23] are two of such approaches. However, these
approaches either need sufficient labeled data to start
with, or need to have access to a nontrivial amount of
labeled data during the process.

The current approaches of semi-supervised cluster-
ing [25, 1, 26, 11], which can use class labels or pairwise
constraints on some documents during the clustering
process, fail to satisfy the requirements of the topic-
driven clustering problem as well, mainly because the
prior knowledge of the topic-driven clustering problem
is not in the format of labeled objects, but of the de-



scriptions of possible topics.

We propose the topic-driven clustering schemes to
solve this problem by defining two properties that a
good clustering solution must have. First, the docu-
ments clustered to a certain topic should contain the
content of the topic (i.e., the documents are similar or
relevant to the topic). Second, the documents within
one cluster should be more similar to each other than
the documents from two different clusters.

The contribution of this paper is two-fold. First, to
our knowledge, we introduce this novel problem of topic-
driven clustering. Second, we propose effective and ef-
ficient topic-driven clustering methods that emphasize
the relationship between documents and topics and rela-
tionship among documents themselves simultaneously.
In addition, we present a comprehensive experimental
evaluation using various datasets and our experimental
results show that the proposed topic-driven clustering
schemes are effective with topic prototypes of different
levels of specificity.

The rest of this paper is organized as follows. Sec-
tion 2 discusses some related research. Section 3 pro-
vides some information on how documents are repre-
sented and how the similarity or distance between doc-
uments is computed. Sections 4 describes the criterion
functions that are the focus of this paper and describes
the algorithm that optimizes the various topic-driven
criterion functions and the clustering algorithm itself.
Section 5 provides the detailed experimental evaluation
of the various topic-driven criterion functions. Finally,
Section 6 provides some concluding remarks.

2 Related Research

Active learning [6, 23] acknowledges the fact that ac-
quiring labeled data is very time-consuming and costly,
and tries to minimize the number of labeled data re-
quried to build a successful classifer. The active learn-
ing approaches start with a very small number of labeled
data and request unlabeled objects to be labeled based
on whether the unlabeled objects are “more informa-
tive” point. The active learning approaches utilize the
information provided by unlabled data. However, they
still need to have access to sufficient labeled data.
Incorporating prior knowledge into the clustering
process has drawn people’s attention recently. The fo-
cus of this research has been on semi-supervised clus-
tering, which assumes the prior knowledge (background
knowledge) is given by a limited set of labeled data,
from which the knowledge of two objects should belong
to the same cluster (must-link) or should not belong to
the same cluster (cannot-link) can be derived. Previous
semi-supervised approaches fall into three categories:
constraint-based, metric-based and the combined ap-

proaches. Constraint-based approaches explicitly mod-
ify the objective function or make certain constraints
during the clustering process[25]. Whereas, metric-
based approaches parametrize distance metric and learn
the metric parameters in a manner, so that the distance
between objects connected by must-links is smaller and
the distance between objects connected by cannot-links
is larger in general [1, 26]. Finally the combined ap-
proaches integrate both of these techniques in the clus-
tering process [2]. Another recent approach of incorpo-
rating prior knowledge tackles the problem differently
[11]. They defined the non-redundant data clustering
as a problem of discovering alternative clustering solu-
tions given a known clustering solution, where the prior
knowledge is an entire clustering solution.

3 Preliminaries

Through-out this paper we will use the symbols n, m,
and k to denote the number of documents, the number
of terms, and the number of clusters, respectively. We
will use the symbol S to denote the set of N documents
that we want to cluster, Si,S2,...,Sk to denote each
one of the k clusters, ny,ng, . .., ng to denote the sizes of
the corresponding clusters, and 71,75, ...,T; to denote
the topic prototype vectors given as prior knowledge.

The various clustering algorithms that are described
in this paper use the vector-space model [20] to repre-
sent each document. In this model, each document d is
considered to be a vector in the term-space. In particu-
lar, we employed the tf — idf term weighting model, in
which each document can be represented as

(tfl log(n/dfl), tf2 IOg(n/df2), St tfm log(n/dfm))'

where tf; is the frequency of the ith term in the
document and df; is the number of documents that
contain the ¢th term. To account for documents of
different lengths, the length of each document vector is
normalized so that it is of unit length (||d:s47]| = 1), that
is each document is a vector on the unit hypersphere.
In the rest of the paper, we will assume that the vector
representation for each document and for each topic has
been weighted using ¢f-idf and it has been normalized so
that it is of unit length. Given a set A of documents and
their corresponding vector representations, we define
the composite vector D4 to be Dy = ) ;. ,d, and
the centroid vector C4 to be Cy = D /|A| . We also
define the composite vector of the entire dataset to be
D = 21111 d;, and the composite vector of the entire
topics to be T' = Zle T;.

In the vector-space model, the cosine similarity
is the most commonly used method to compute the
similarity between two documents d; and dj;, which is
defined to be cos(d;, d;) = di*d;/(||d:||||d;||). The cosine



formula can be simplified to cos(d;,d;) = ditdj, when
the document vectors are of unit length. This measure
becomes one if the documents are identical, and zero
if there is nothing in common between them (i.e., the
vectors are orthogonal to each other).

4 Topic-driven Clustering Algorithms

At a high-level the problem of topic-driven clustering is
defined as follows. Given a set S of n documents and a
set T of k topics, we would like to partition the docu-
ments into k£ subsets S, 5o, ..., Sk, each corresponding
to one of the topics, such that (i) the documents as-
signed to each subset are more similar to each other
than the documents assigned to different subsets, and
(ii) the documents of each subset are more similar to its
corresponding topic than the rest of the topics.

Even though there are a number of different ways
that can be used to convert the above high-level prob-
lem definition into a precise clustering algorithm, in this
paper, we will limit our focus to the class of algorithms
that use a global criterion function C to capture the
properties and quality of the desired clustering solution
and formulate the clustering problem as that of an opti-
mization problem that tries to compute a k-way cluster-
ing solution such that the value of C is optimized [10].

In the rest of this section we first present a number
of different criterion functions that can represent the
requirements of the topic-driven clustering problem,
followed by a description of the algorithms that were
used to perform their optimization.

4.1 Criterion Functions

Since the requirements of the topic-driven clustering
contain two components, we first look at how to model
them separately. The first component emphasizes the
relationship between documents and tries to guide the
clustering process to produce clustering solutions in
which documents from the same cluster are more similar
to each other than the documents assigned to different
clusters. This component does not consider the topics
and we will refer to the criterion functions that fall
into this category as unsupervised criterion functions.
On the other hand, the second component emphasizes
whether the documents in each cluster are relevant to
the topic associated with the cluster. We will refer to
the criterion functions in this category as supervised
criterion functions. In the rest of this section we
will first discuss several criterion functions from each
catogery and then propose two schemes to combine
them together. At the end, we propose the third scheme,
which is a hybrid approach that incorporates the two
aspects into a single criterion function.

4.1.1 Unsupervised Criterion Functions

People have proposed a great number of criterion func-
tions in this category over the past few years [7, 15, 8, 9].
Recently, we [31, 30] studied eight different partitional
clustering criterion functions in the context of docu-
ment clustering, which optimize various aspects of intra-
cluster similarity, inter-cluster dissimilarity, and their
combinations. Our experiments revealed that different
criterion functions lead to substantially different results,
whereas our analysis showed that their performance de-
pends on the degree to which they can correctly operate
when the dataset contains clusters of different densities
(i.e., they contain documents whose pairwise similarities
are different) and the degree to which they can produce
balanced clusters.

In this study, we focus on two internal criterion
functions (Z; and Z3) and one external criterion func-
tion (€1) [29, 31]. This subset represents some of
the most widely-used ciretrion functions for document
clustering, and includes some of the best- and worst-
performing schemes.

The Z; criterion function (Equation 4.1) maximizes
the sum of the average pairwise similarities (as mea-
sured by the cosine function) between the documents
assigned to each cluster weighted according to the size
of each cluster and has been used successfully for clus-
tering document datasets [19].

k
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The Z criterion function (Equation 4.2) is used
by the popular vector-space variant of the K-means
algorithm [7, 15, 8, 22]. In this algorithm each cluster
is represented by its centroid vector and the goal is to
find the solution that maximizes the similarity between
each document and the centroid of the cluster that is
assigned to.

k k
(42)  Ip=) > cos(di;,Cr) =Y _|ID].

r=1d;eS,

(4.1)

The &; criterion function (Equation 4.3) computes
the clustering by finding a solution that separates the
documents of each cluster from the entire collection.
Specifically, it tries to minimize the cosine between the
centroid vector of each cluster and the centroid vector of
the entire collection. The contribution of each cluster is
weighted proportionally to its size so that larger clusters



will be weighted higher in the overall clustering solution.
&1 was motivated by multiple discriminant analysis and
is similar to minimizing the trace of the between-cluster
scatter matrix [10].

(4.3)

&= ancos C., Q) (:)an D ”

4.1.2 Supervised Criterion Functions

For the topic-driven clustering problem, we assume
that the description of each cluster is available as
prior knowledge and can be represented as a vector.
Given these cluster prototype vectors, the similarity
between each document and its topic can be defined
as the cosine similarity between the vector of the
document d and the prototype vector of the topic 7.
Hence, we can define internal and external supervised
criterion functions similar to the unsupervised criterion
functions.

The internal supervised criterion function, denoted
by &z, tries to maximize the similarity between the
documents in a cluster to the topic that is associated
with the cluster. The formal definition can be written
as

(4.4)

k k
= Z Z cos(d;, T;) = ZD,«tTr.
r=1d;ES, r=1

The external supervised criterion function, denoded
by Sg, tries to minimize the similary between each
document to the topics that are not associated with its
cluster. Let T, = T — T,, then the external supervised
criterion function (Sg) can be written as

k k
(4.5) S, :Z Z cos(di, Tp) = > Dp'T,/||T |-
r=1d;ES, r=1

Note that since maximizing Z’:Zl D,'T. is the
same as minimizing Y*_, D,'T,, the difference between
Sz and Sg is that in Sg the dissimlarities between
documents to the other topics is scaled by the norm
of the composite of the other topics.

4.1.3 Combined Criterion Functions

Combining unsupervised and supervised criterion func-
tions can be treated as a mulit-objective optimization
problem, which has been studied in many different do-
mains [14, 28, 21]. One of the real difficulties in this
problem is that no single optimal solution exists. In-
stead, an optimal solution exists for each objective in

the solution space. The result is that the definition of
a good solution becomes ambiguous. Thus, we need to
develop a scheme that can disambiguate the definition
of a good solution. A good scheme should allow fine-
tuned control of the tradeoffs among the objectives and
be able to handle objectives that correspond to quanti-
ties that are both of similar as well as of different types.

One straightforward means of disambiguating the
definition of a good multi-objective solution is to assign
the objectives different weights before combining them
together, which we refer to as the weighted scheme.

Given two criterion functions X and Y,
weighted scheme can be written as

the

(4.6) Mi(X,Y)=aX+ (1 - @)Y,
where « is the preference factor.

The weighted scheme allows a fine-tuned control
of the tradeoffs among the objectives by varying the
preference factor a. However, this formulation cannot
handle dissimilar criterion functions or the criterion
functions that change in different scales, because a
weighted sum of them can be meaningless.

Deriving topic-driven criterion functions based on
the weighted scheme can be done easily for Z5 and &;,
since both Zo and £; have N terms in their formulas.
However, for Z;, to make it also contain N terms as in
Sz, we need to multiply the Z; function by N before
combining it with Sz.

Motivated by the method of combining multiple
objective functions in graph partitioning [21], we pro-
pose the second scheme, the normalized scheme. Our
formulation is based on the intuitive notion of what
constitutes a good multi-objective solution. Quite of-
ten, a natural way of evaluating the quality of a multi-
objective solution is to look at how close it is to the
optimal solution of each individual objective. Hence,
before combining two criterion functions, we normalize
them with the optimal values that can be achieved by
optimizing the two criterion functions separately.

Given two criterion functions X and Y, let X* and
Y™ denote the criterion function values of the optimal
solutions with respect to X and Y, respectively, then the
normalized scheme of combining two criterion functions
can be defined as

Y

X

(4.7) —

where « is the preference factor.

In essence, optimizing Equation 4.7 attempts to
compute a k-way clustering such that the criterion
function values with respect to each criterion are not
far away from the optimal values. This scheme works
with both similar and dissimilar objectives. This is



because it makes all quantities similar before combining
them. Each criterion function value is divided by the
optimal value of its corresponding criterion, and so,
represents a certain fraction of the optimal value. Since
all components now represent a fraction of the optimal
value, they can be combined meaningfully.

Finally, the various topic-driven criterion functions
derived by the two combined schemes are shown in Ta-
ble 1, the clustering problem becomes that of maximiz-
ing Mi(Z1), Mi1(Z3), M2(Z1), and M(Z), and mini-
mizing M;(€1) and M3(&,) accordingly.

4.1.4 Hybrid Criterion Functions

For 7, and Z,, we propose the third scheme that incor-
porates the two aspects into a single criterion function.
The motivation behind this hybrid scheme is that we
noticed the relationship between the unsupervised cri-
terion function Zs and the internal supervised criterion
function Sz. The former maximizes the summation of
the similarity of each document to its cluster centroid
and the latter maximizes the summation of the simi-
larity of each document to its cluster topic. If we could
define a new center that represents both the cluster cen-
troid and the topic, then we could maximize the sum-
mation of the similarity of each document to this new
center and address the two requirements of the topic-
driven clustering problem at the same time. To this end,
we define the topic-weighted composite vector of the rth
cluster C; as D; = >, ¢ cos(d, T;)d; and the weighted
size n,. = ) 4cg cos(d, ;). The topic-weighted centroid
can be defined as

o ZdeST cos(d, T;)d;

™ n,l,. I

which takes into account the similarity of each document
to its cluster topic. Using the above definition, the hy-
brid Z, criterion function, denoted by H(Z3), can be
obtained by requiring the clustering solution to maxi-
mize the similarity between the documents assigned to a
cluster and its topic-weighted centroid. This is formally
defined as follows:

k k
(4.8) H(T)=)_ Y cos(d;,C}) =) D,'C,
r=1d;€S, r=1
Similarly, the Z; can be rewritten as
k t
d;"D,
n=y Y 4P
r=1d;es, 7

If we use the topic-weighted composite and size of the
r cluster to replace the composite and size, we can get

the hybrid Z; criterion function, denoted by H(Z;), as
follows:

(4.9)

k t
H(T)=> > %.
r=1d;ES, r
Given the formulation of H(Z;) and H(Z,), the
clustering problem becomes that of finding the cluster-
ing solutions that maximize H(Z;) and H(Z;), respec-
tively.

4.2 Partitional Clustering Algorithm

The partitional method we used to optimize the various
criterion functions is very similar and also similar to that
used in [22, 29]. Our optimizer computes the clustering
solution by first obtaining an initial k-way clustering
and then applying an iterative refinement algorithm to
further improve it. The algorithms that optimize un-
supervised, supervised and topic-driven criterion func-
tions differ in two ways: whether topic vectors are used
as initial seeds; and whether topic vectors are allowed
to move to another cluster.

4.2.1 Initialization

We employed two different ways of producing the initial
clustering. For optimizing unsupervised criterion func-
tions, during initial clustering, £ documents are ran-
domly selected to form the seeds of the clusters and
each document is assigned to the cluster corresponding
to its most similar seed.

For the various supervised and topic-driven crite-
rion functions, the k& topic vectors are used as the initial
seeds for the k clusters and each document is assigned
to the cluster corresponding to its most similar seed.

4.2.2 Optimization Methods

The refinement strategy that we used consists of a num-
ber of iterations. During each iteration, the documents
are visited in a random order. For each document, d;, we
compute the change in the value of the criterion function
obtained by moving d; to one of the other £k —1 clusters.
If there exist some moves that lead to an improvement
in the overall value of the criterion function, then d; is
moved to the cluster that leads to the highest improve-
ment. If no such cluster exists, d; remains in the cluster
that it already belongs to. The refinement phase ends,
as soon as we perform an iteration in which no doc-
uments moved between clusters. Note that unlike the
traditional refinement approach used by K-means type
of algorithms, the above algorithm moves a document as
soon as it is determined that it will lead to an improve-
ment in the value of the criterion function. This type of
refinement algorithms are often called incremental [10].
Since each move directly optimizes the particular crite-



Table 1: Clustering Criterion Functions.

Weighted Scheme

Mi(Z1) = M1 (NZI:,8z) = aN Zf:l

MI(I2) = M1 (Iz,SI) = aZ’::I
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r=1
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rion function, this refinement strategy always converges
to a local minima.

Note that for the various supervised and topic-
driven criterion functions, it is important to keep the
topic vector always associate with its own cluster.
Hence we do not allow the topic vector move to other
clusters, and the clustering problem becomes that of
forming clusters around the topic vectors.

The optimization method for the normalized
scheme is different from the others, because it requires
the optimal criterion function values obtained by opti-
mizing the two criterion functions separately before per-
forming the optimization of the combined criterion func-
tions. Hence, the optimization method for the normal-
ized scheme contains three rounds of refinement. The
first two rounds optimize the two individual criterion
functions, and the third round starts from the same ini-
tial clustering and uses the optimal criterion function
values achieved in the first two rounds as the normal-
ization factors.

The greedy nature of the refinement algorithm does
not guarantee that it will converge to a global optima,
and the local optima solution it obtains depends on
the particular set of seed documents that were selected
during the initial clustering. To eliminate some of this
sensitivity, the overall process is repeated a number
of times. That is, we compute N different clustering
solutions (i.e., initial clustering followed by cluster
refinement), and the one that achieves the best value
for the particular criterion function is kept. In all of
our experiments, we used N = 10. For the rest of this
discussion when we refer to the clustering solution we
will mean the solution that was obtained by selecting
the best out of these IV potentially different solutions.

4.2.3 Computational Complexity

One of the advantages of our partitional algorithm and
that of other similar partitional algorithms, is that it
has relatively low computational requirements. A k-
way clustering of a set of documents can be computed in
time linear on the number of documents and the number
of clusters k, as in most cases the number of iterations
required by the greedy refinement algorithm is small
(less than 20), and is to a large extent independent on
the number of documents. The evaluation of all the
various criterion functions presented in this paper at
each refinement step can be implemented efficiently and
bounded by a constant determined by the document
that contains the maximum number of terms, thus the
overall amount of time required to compute a k-way
clustering solution is O(kN).

5 Experimental Results

We experimentally evaluated the performance of the
various topic-driven clustering schemes, compared with
the corresponding unsupervised and supervised cluster-
ing schemes on five datasets, and studied various issues
associated with our topic-driven clustering schemes. In
the rest of this section we first describe the various
datasets and our experimental methodology, followed
by a description of the experimental results.

5.1 Document Collections

In our experiments, we used a total of five different
datasets, whose general characteristics are summarized
in Table 2. The smallest of these datasets contained
1,560 documents and the largest contained 2,838 docu-
ments. To ensure diversity in the datasets, we obtained
them from different sources. For all datasets, we used a



stop-list to remove common words, and the words were
stemmed using Porter’s suffix-stripping algorithm [18].
Moreover, any term that occurs in fewer than two doc-
uments was eliminated.

The datasets trec6, trec7 and trec8 were derived
from the Financial Times Limited (FT) and the Los
Angeles Times (LATimes) articles that are distributed
as part of the TREC collection [24]. We used the queries
of the ad hoc test from TREC-6 [24], TREC-7 [24] and
TREC-8 [24] as the topic prototypes, and derived the
datasets by including all the relevant document in FT
and LATimes to particular queries. The queries that
have fewer than 10 relevant documents were eliminated
from the datasets. Each TREC query contains a title, a
description and a narrative. The title usually contains
2-3 words as the key words. The description describes
what are the contents of the relevant document briefly,
and the narrative provides more detailed descriptions.
Thus, we could use the titles, descriptions and narra-
tives to form the topic prototypes of different levels of
specificity. In particularly, we used the titles to form
short topics, titles and descriptions to form medium top-
ics, and all three parts to form long topics.

The dataset rel is from Reuters-21578 text cat-
egorization test collection Distribution 1.0 [16], and
contains the documents from 25 categories. For rel,
we selected documents that have a single class la-
bel. Finally, the dataset wap are from the WebACE
project [17, 12, 4, 5]. Each document corresponds to a
web page listed in the subject hierarchy of Yahoo! [27].
The original sources for the rel and wap datasets do
not contain sufficient information that we can derive as
topics. Thus, we selected the median document of each
class as the representer of the content and treated it as
the topic prototype.

Table 2: Summary of datasets used to evaluate the
various clustering criterion functions.

# of # of # of
Dataset Topic # Source Docs terms classes
trec6 301-350 FT & LATimes 2619 32790 38
trec? 351-400 FT & LATimes 2838 33963 45
trec8 401-450 FT & LATimes 2804 36347 43
rel Reuters-21578 [16] 1657 3758 25
wap WebACE [12] 1560 8460 20

5.2 Experimental Methodology and Metrics

For each one of the different datasets we obtained a
k-way clustering solution that optimized the various
topic-driven criterion functions shown in Table 1 and
Equations 4.9 and 4.8, where k is the number of top-
ics (classes) present in the dataset. In addition, we
compared the three topic- driven schemes with the cor-

responding unsupervised and supervised schemes. In
particularly, for supervised schemes, we compared the
various Z; and Zs topic-driven criterion functions with
Sz, and the various £; topic-driven criterion functions
with Sg. To illustrate whether the performance im-
provements gained by the various topic-driven schemes
are due to the initialization with topic prototypes, we
also performed another set of experiments using topics
as the initial seeds but optimizing the various unsuper-
vised criterion functions, which we will refer to as the
seed-based scheme.

In addition, for each TREC dataset, we also com-
pared the various topic-driven clustering schemes using
long, mediun, and short topics as the topic prototypes
to evaluate the effectiveness of the proposed methods
with topic prototypes of different levels of specificity.

The quality of a clustering solution was evaluated
using the entropy measure that is based on how the
various classes of documents are distributed within each
cluster.

Given a particular cluster S, of size n,., the entropy
of this cluster is defined to be

4.4 i
1 1 oo T

B logq Ty Ny
i=1

E(S;) =

where ¢ is the number of classes in the dataset and nt
is the number of documents of the ith class that were
assigned to the rth cluster. The entropy of the entire
solution is defined to be the sum of the individual cluster
entropies weighted according to the cluster size, i.e.,

k
Entropy = Z %E(ST).

r=1

A perfect clustering solution will be the one that leads
to clusters that contain documents from only a single
class, in which case the entropy will be zero. In general,
the smaller the entropy values, the better the clustering
solution is.

To eliminate any instances that a particular clus-
tering solution for a particular criterion function got
trapped into a bad local optimum, in all of our exper-
iments we found ten different clustering solutions. As
discussed in Section 4 each of these ten clustering so-
lutions correspond to the best solution (in terms of the
respective criterion function) out of ten different initial
partitioning and refinement phases.

5.3 Comparison of the Various
Schemes

Clustering

The first set of experiments was focused on evaluating
the quality of the clustering solutions produced by
the three topic-driven schemes and the corresponding



unsupervised, supervised, and seed-based schemes for
the Z,, Z5 and &; criterion functions. The long topics
(including titles, descriptions, and narratives) were used
for the trec6, trec7, and trec8 datasets in this set of
experiments. The o values used in the weighted scheme
normalized schemes were fixed for all the datasets, and
we will discuss how those values were determined in
Section 5.5.

Table 3 shows the relative improvements of the
various topic-driven schemes and the seed-based scheme
over the corresponding unsupervised and supervised
schemes averaged over all the five datasets.

The results in Table 3 show several trends. First,
all the topic-driven schemes outperform the correspond-
ing unsupervised and supervised schemes, and the over-
all best topic-driven scheme is the normalized scheme
(combining unsupervised and supervised with normal-
ization), which achieved the most improvements for all
the three criterion functions. Second, in addition to the
improvements made by initializing using topics as seeds,
all the topic-driven schemes made further improvements
for 7; and Z,, which showed that the observed im-
provements are not only because of good initializations,
but also because of the good properties of the proposed
topic-driven criterion functions. For £1, the normalized
scheme made additional improvements but to a less ex-
tent. Finally, Z; achieved the most improvements by
applying topic-driven schemes.

Table 4 shows the more detailed results of this
set of experiments on each dataset. All the entries in
Table 4 are entropy values, except for the two columns
under the unsupervised and seed-based methods labeled
“CrFun”, where the entries are the criterion function
values of the clustering solutions. Note that the entropy
values in the supervised method column were achieved
by the supervised criterion functions compared against
the other schemes. The supervised criterion function is
Sz for 77 and Z,, and S¢ for £;. The entries that are
bold-faced correspond to the methods that perform the
best for a particular dataset and criterion function.

A number of observations can be made by analyzing
the results in Table 4. First, for most of the cases topic-
driven schemes perform the best. The exception is the
wap dataset, for which the seed-based scheme performed
the best and the topic-driven schemes sometimes even
performed worse than the unsupervised scheme. One
of the differences between the wap dataset and the rest
of the datasets is that the median documents used as
topics are significant longer than the topics used in other
datasets. Since we did not perform any pruning on
the median documents, they contain the terms that are
not specific to the topic. As a result, the performances
of the supervised schemes were much worse than other

schemes and topic-driven schemes did not benefit from
incorporating these topics. Second, the two supervised
schemes Sz and Sg perform similarly, which is not
surprising as we have discussed the relationship between
them in Section 4.1.2. Finally, £; benefits the most
by using the topics as initial seeds. By looking at the
criterion function values achieved by the unsupervised
and seed-based schemes for £, we can see that unlike 7,
and Z», using topics in the initialization process helped
the optimization process to find a clustering solution
with a better criterion function value for &;.

5.4 Topic Prototypes of Different Levels of
Specificity
The second set of experiments was focused on how the
various topic-driven schemes perform with the topic
prototypes of different levels of specificity. For each
TREC dataset, we performed the same set experiments
as in Section 5.3 with long, medium, and short topics.
The results are shown in Table 5, in which all the
entries are the entropy values of the clustering solutions
obtained by the various schemes. Again, the entropy
results for the weighted and normalized schemes were
obtained with a fixed « value for all the datasets. The
entries that are bold-faced correspond to the methods
that perform the best for a particular dataset and
criterion function.

A number of observations can be made by analyzing
the results in Table 4. First, the supervised scheme
performs better as the topics become more specific for
all the datasets. Second, for most of the cases topic-
driven schemes perform the best. Finally, overall the
various topic-driven schemes performed similarly with
the topic prototypes of different levels of specificity,
despite the fact that the short and medium topics
alone (used in the supervised scheme) perform much
worse than the long topics, which shows that the
proposed topic-driven schemes are effective with the
topic prototypes of different levels of specificity.

5.5 Parameter sensitivity

In this section, we present the results of the parameter
study on «a for the weighted and normalized schemes,
and show how we determined the a values that were
used to produce clustering solutions shown in Table 4.
The purpose of this study is two-fold: (1) to see whether
there is a range of a values that can perform well for
most of the datasets; (2) to see which scheme is better
by comparing the dynamic range and how sensitive
the two schemes are to the change of o values. In
particularly, we tested the two schemes with @ = 0.1 to
0.9 with an increment of 0.1 on the five datasets for all
three criterion functions. Note that the two combined



Table 3: Average relative improvements of the various topic-driven schemes over the unsupervised and supervised

schemes.
Seed-based Topic-driven Schemes
Scheme Hybrid Weighted Normalized
CrFun 81 Il Ig H(Il) H(Ig) M1(81) Ml(Il) Ml(Iz) M2(£1) Mz(Il) MQ(IQ)
Unsupervised 6% 3% 5% 15% 9% 5% 26% 11% 9% 26% 12%
Supervised 23% 4% 26% 16% 30% 22% 27% 31% 25% 27% 32%

Table 4: Comparison of the clustering solutions obtained by the various clustering methods.

trec6
CrFun | Unsupervised Method Supervised | Seed-based Method Topic-driven Methods
CrFun Entropy Methods CrFun Entropy H() M. () M ()
&1 3.98 0.238 0.281 3.96 0.210 0.215 0.193
71 4.37 0.275 0.283 4.32 0.268 0.238 0.177 0.180
s 1.01 0.208 0.283 1.01 0.196 0.147 0.178 0.162
trec7
CrFun | Unsupervised Method Supervised Seed-based Method Topic-driven Methods
CrFun Entropy Methods CrFun Entropy H() M () M- ()
&1 4.76 0.261 0.305 4.76 0.239 0.249 0.228
I 4.67 0.322 0.307 4.59 0.334 0.264 0.217 0.219
> 1.09 0.227 0.307 1.09 0.235 0.215 0.207 0.211
trec8
CrFun | Unsupervised Method Supervised | Seed-based Method Topic-driven Methods
CrFun Entropy Methods CrFun Entropy H() M () M2 ()
&1 4.51 0.201 0.277 4.50 0.215 0.196 0.185
71 4.19 0.270 0.275 4.16 0.278 0.252 0.186 0.175
Ts 1.04 0.208 0.275 1.03 0.194 0.188 0.170 0.160
rel
CrFun | Unsupervised Method | Supervised | Seed-based Method Topic-driven Methods
CrFun Entropy Methods CrFun Entropy H() M () M- ()
&1 1.94 0.297 0.315 1.93 0.273 0.277 0.282
I 2.66 0.365 0.311 2.59 0.308 0.288 0.270 0.252
Ts 6.31 0.290 0.311 6.29 0.265 0.268 0.252  0.247
wap
CrFun | Unsupervised Method | Supervised | Seed-based Method Topic-driven Methods
CrFun Entropy Methods CrFun Entropy H() M:() M>()
&1 1.75 0.331 0.442 1.76 0.307 0.327  0.337
T 1.65 0.372 0.454 1.65 0.355 0.306 0.359  0.377
I 4.69 0.327 0.454 4.66 0.306 0.342 0.332 0.347

schemes emphasize more on the supervised component
with a smaller a value, and emphasize more on the
unsupervised component with a larger « value. The two
combined schemes become the supervised scheme and
the unsupervised scheme with oo = 0 and 1, respectively.

The results for Z; and Z, are similar and we only
show the results for Z;. In Figure 1, we plot the
entropy values obtained by the weighted and normalized
schemes against the « values for all the datasets in a)
and b), respectively. We can see that at « = 0.4 and o =
0.6, most of the datasets reached the best entropy value
(or close to the best entropy value) for the weighted and
normalized schemes, respectively. We also tested the
same « values on the same dataset with long, medium,
and short topics. Figure 2 shows such a plot of the

Entropy

a) Weighted Scheme

b) Normalized Scheme

Figure 1: Entropy values obtained by the weighted and
normalized schemes with Z, for all the datasets.



Table 5: Comparison of the clustering solutions obtained by the various clustering methods with long, medium,

and short topics.

trec6
Topic CrFun | Unsupervised Supervised Seed-based Topic-driven Methods
Type Method Methods Method H() M () Ms()
long &1 0.281 0.210 0.215 0.193
medium | &1 0.238 0.298 0.206 0.220 0.191
short &1 0.323 0.211 0.215 0.216
long 7, 0.283 0.268 0.238 0.177 0.180
medium | Ty 0.275 0.299 0.269 0.246 0.199 0.198
short 71 0.323 0.279 0.314 0.222 0.205
long Ts 0.283 0.196 0.147 0.178 0.162
medium | T2 0.208 0.299 0.205 0.157  0.161 0.181
short Z2 0.323 0.208 0.186 0.174 0.190

trec7
Topic CrFun | Unsupervised Supervised Seed-based Topic-driven Methods
Type Method Methods Method H() M+ () M>()
long &1 0.305 0.239 0.249 0.228
medium &1 0.261 0.334 0.244 0.239 0.227
short &1 0.371 0.242 0.241 0.247
long I, 0.307 0.334 0.264 0.217 0.219
medium 7y 0.322 0.332 0.318 0.279 0.219 0.221
short T1 0.370 0.331 0.295 0.247  0.248
long 2 0.307 0.235 0.215 0.207 0.211
medium Is 0.227 0.332 0.246 0.202 0.210 0.204
short I2 0.371 0.233 0.208 0.224 0.228

trec8
Topic CrFun | Unsupervised | Supervised Seed-based Topic-driven Methods
Type Method Methods Method H() M () M>()
long &1 0.277 0.215 0.196 0.185
medium | &1 0.201 0.292 0.200 0.201 0.193
short &1 0.303 0.194 0.217 0.189
long T 0.275 0.278 0.252 0.186 0.175
medium 71 0.270 0.291 0.265 0.260 0.190 0.191
short 71 0.295 0.282 0.255 0.185 0.185
long I> 0.275 0.194 0.188 0.170 0.160
medium I2 0.208 0.291 0.196 0.182 0.169 0.172
short T2 0.300 0.202 0.176 0.171 0.174

entropy values obtained by the weighted and normalized I
ecd-long
schemes against the « values for the trec8 dataset in a)  «f DRy

and b), respectively. The results are similar for trec6
and trec7 as well. As shown in Figure 2, the results
of long, medium, and short topics are very similar to
one another. In Figures 1 and 2, the curves produced
by the normalized scheme are smoother than those by
the weighted scheme. However, the dynamic range of
the weighted scheme is narrower around the a value
that achieved the best entropy value than that of the
normalized scheme, which suggests that the weighted
scheme can achieve relative good performance with a
broader choice of o values for Zs.

Figure 3 shows the same plot generated by the
weighted and normalized schemes with £; for all the
datasets. Unlike Z; and Zs, the trend and the best «
value differ from dataset to dataset for £1, especially for
the weighted scheme, which suggests that the problem
of different scales has greater impacts on £; than 7;
and Z,. Another difference between 75 and £, is that

Entropy

a) Weighted Scheme  b) Normalized Scheme

Figure 2: Entropy values obtained by the weighted and
normalized schemes with Z5 for trec8 with long, medium
and short topics.

for short topics, the normalized scheme tends to achieve
the best performance with a larger a value as shown
in Figure 4. Since there is no consistent trend for
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Figure 3: Entropy values obtained by the weighted and
normalized schemes with £; for all the datasets.

Table 6: Selected o values for the various combined
schemes and criterion functions.

T, Iz &1 &1 (short)
‘Weighed Scheme 04 04 0.5 0.5
Normalized Scheme 0.4 0.6 0.5 0.7

the weighted scheme with £, we selected the a value
that achieved the best average entropy value. For the
normalized scheme with £, we determined the « value
in a similar fashion. The only difference is that we
selected one a value for short topics and another « value
for the rest of the cases.

In summary, the selected a values that were used to
produce the clustering solutions in Sections 5.3 and 5.4
for the various schemes and criterion functions are
shown in Table 6.

Furthermore, we compared the performance of the
two combined schemes with the fixed a values with the
best performance among all the tested a values, and
calculated the relative degradation of the fixed « on all
the datasets. We show the box plots of the relative
degradations for all the combined criterion functions in
Figure 5.

A number of observations can be made by analyzing
the results in Figure 5. First, for all the cases, the
median relative degradation is lower than 2% except for
M;i(€1), which suggests that the fixed a can perform
well for most of the datasets. The poor performance
of the fixed o for M;(€1) is consistent with that fact
that the weighted scheme does not perform well with
€1 as shown in Figure 3. Second, the variance of the
relative degradation of the normalized scheme is larger
than that of the weighted scheme for 7; and Z5, which
is consistent with the fact that the weighted scheme has
a narrower dynamic range than the normalized scheme
for Z5 as shown in Figure 1.

—+— trec6-short
—G— trec7-short
032 —<— trec8-short|

0.18 L L L L L L L
0.1 0.2 03 0.4 05 0.6 0.7 08 0.9

Figure 4: Entropy values obtained by the normalized
scheme with £; and short topics.

S

Relative Degradation %
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Figure 5: Relative performance of the selected « for all
the combined criterion functions.

6 Concluding Remarks

In this paper, we defined the problem of topic-driven
clustering, which organizes a document collection ac-
cording to a given set of topics, such that the resultant
clusters correspond to the given topics and the doc-
uments in the same cluster are similar to the cluster
topic. We proposed three efficient topic-driven schemes
that consider the similarity between the document to its
topic and the relationship between the documents them-
selves simultaneously. Our experimental results showed
that the proposed topic-driven schemes outperform the
unsupervised and supervised schemes, which suggests
that the proposed topic-driven schemes take advantages
of both the unsupervised and supervised components.
We also showed that the proposed topic-driven schemes
perform well with topic prototypes of different levels of
specificity.
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