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ABSTRACT
Partitioning driven placement approaches are often preferred for
fast and scalable solutions to large placement problems. However,
due to the inaccuracy of representing wirelength objective by cut
objective the quality of such placements often trails the quality of
placements produced by pure wirelength driven placements. In this
paper we present THETO, a new partitioning driven global place-
ment algorithm that retains the speed associated with traditional
partitioning driven placement algorithms but incorporates a num-
ber of novel ideas that allows it to produce solutions whose quality
is better than those produced by more sophisticated and computa-
tionally expensive algorithms. The keys to THETO’s success are
a new terminal propagation method that allows the partitioner to
better capture the characteristics of the various cut nets and a new
post-bisectioning refinement step that enhances the effectiveness of
the new terminal propagation. Experiments on the ISPD98 bench-
marks shows that THETO produces global placement solutions that
are 6% better in terms of the half perimeter wirelength than Dragon
while requiring significantly less time.
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1. INTRODUCTION
Placement is one of the fundamental problems in physical design

and numerous algorithms have been developed utilizing a variety
of ideas and optimization techniques. However, the ever increasing
problem sizes and shortening time-to-market windows require scal-
able and high-quality solutions in minimal amount of time. These
pressures were largely limited to ASIC placement in the past, but
modern FPGAs have grown to match the size of ASICs, which ne-
cessitates the development of extremely fast global placement al-
gorithms, in order to facilitate reasonable compile times demanded
by FPGA users. This has led to the re-emergence of partitioning
driven placement (PDP) methods, as advances in circuit partition-
ing resulted in placement algorithms that are computationally scal-
able, capable of leading to high-quality solutions, and can scale to
very large designs. Examples of such partition driven placement
tools includes Capo [4], Dragon [14], and FengShui [1] that pro-
vide different time-quality trade-offs.

In this paper we present THETO, a new top-down hierarchical
partitioning driven global placement algorithm that incorporates a
number of novel ideas to further improve the quality of the place-
ment solution. Our key contributions are the following: (i) a new
method for terminal propagation that takes into account the size of
the bounding boxes of the various nets; (ii) a new step in the overall
structure of the hierarchical partitioning driven placement frame-
work that further improves the quality of the bisections after the
computation of each level; (iii) a comprehensive experimental eval-
uation of various algorithmic choices for partitioning driven place-
ment and their impact on both quality and computational require-
ments. Using the placement benchmarks derived from the ISPD98
benchmark [8] we show that THETO is able to produce solutions
whose wirelength are on the average up to 6% better in terms of
half-perimeter wirelength than the solutions produced by Dragon
(one of the best performing schemes [1]). In addition, THETO has
very low computational requirements, making it one of the fastest
high-quality partitioning driven placement algorithms.

The rest of this paper is organized as follows. Section 2 provides
some definitions and introduces the notation that is used through-
out the paper. Section 3 describes THETO and provides details
about the various algorithms that it uses. Section 4 evaluates THETO’s
performance and compares it against other schemes. Finally, Sec-
tion 5 provide some concluding remarks.

2. BACKGROUND
The partitioning-driven global placement (PDP) paradigm is a



divide-and-conquer strategy used to combinatorially partition the
netlist and assign the partitions to corresponding geometrically sub-
divided bins on the two dimensional chip surface. We say this pro-
cess is applied at multiple levels of global placement, which simply
means that we successively solve global placement for finer and
finer bin sizes. At the top level, there is only one bin encompassing
the entire area of the chip, and all the movable cells of the netlist
are at the center of this bin. In the next level, there are two bins
which contain bisected portions of the netlist. In the subsequent
third level, each of these bins are further subdivided which results
in 4 bins. This process continues until there are 2m∗2n bins, which
is called bottom level.

A netlist G = (V,E) is a set of cells V and a set of nets E.
Each net is a subset of the set of cells V . The size of a net is the
cardinality of this subset. A cell v is said to be incident on a net e,
if v ∈ e. Each cell v and net e has a weight associated with them
and they are denoted by w(v) and w(e), respectively. Pin is the
location on the cell that physically attaches the net to the cell. The
external portion of a net is a subnet induced by the cells incident on
the net but lie outside the bin currently being considered. Similarly
external cells of a net are the cells that are incident on the external
portion of that net. Topological neighbors of a cell v are the subset
of cells that are incident on at least one of the nets, on which v is
also incident.

The quality of the placement is measured in terms of the half-
perimeter wirelength (HPWL), which is equal to the weighted sum
of half-perimeters of the bounding boxes of the nets that enclose the
cells incident on each net, i.e.,

�
HP (e) ∗ w(e). The wirelength

objective of the global placement is to minimize HPWL, while sat-
isfying upper- and lower-bound constraints on the total weight of
cells that each of the bins contains (balance constraint).

3. THE THETO PLACER
Our placement algorithm, called THETO, follows the general

top-down hierarchical partition driven placement framework. The
overall structure of the computation performed at each level of the
hierarchy is shown in Figure 1. They consist of three distinct steps.
The first step computes a bisection of each bin using a cut-based
hypergraph partitioning algorithm. The second step, which is ap-
plied after each bin has been bisected, further improves the cut (and
to some extent the wirelength) of the original bisection by taking
into account the finer-level partitioning of all the bins. Finally, the
last step focuses on minimizing the wirelength of the placed solu-
tion at the current level of the hierarchy, by moving cells between
the bins so that to reduce the half-perimeter wirelength.

To a large extent THETO’s structure is similar to that used by
previously developed placement algorithms [14, 4, ?], with the only
major difference being the introduction of the post-bisection refine-
ment step. As we will later see in the experimental results section,
this step significantly improves the quality of the placement and is
instrumental in contributing to THETO’s overall effectiveness. In
the rest of this section we describe various schemes that we devel-
oped and evaluated for performing each one of these three steps.

3.1 Partitioning the bins
THETO bisects each bin using a multilevel hypergraph partition-

ing algorithm that was derived from hMetis [11]. Multilevel parti-
tioning algorithms are the current state-of-the-art and have been
shown to find high-quality partitionings in moderate amount of
time. Our locally modified version of hMetis retains its basic over-
all structure but it has been extended to accept real numbers as net
weights and small balance tolerances. In addition, to further reduce
the amount of time spent in partitioning we do not perform any V -
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Figure 1: The structure of our PDP algorithm THETO

cycles and we have reduced the number of coarsening levels that
is being computed. In general, the quality of our locally modified
version is comparable to that of hMetis 1.5.3, which is available
publically.

3.1.1 Terminal Propagation
Besides the partitioning algorithm itself, another key factor that

affects the overall performance of partitioning driven placement is
the method that is used to take into account the external portion of
the nets that are incident on cells of the bin that is being currently
bisected. The goal of these methods is to utilize the information that
is external to the bin in an effort to bias the min-cut objective toward
minimizing HPWL. THETO achieves this by employing a scheme
that is based on the widely used technique of terminal propaga-
tion (TP) [5] that also takes into account the bounding boxes of the
various nets that are connected to cells that are outside the current
bin.

Traditionally, terminal propagation is performed as follows [3].
For each net that connects internal and external cells and lies exclu-
sively on one half region of the area to be bisected, a fixed dummy
cell is added (terminal propagated) to the child bin on that side to
try to prevent that net from being extended to the other side (i.e.,
prevent it from being cut). For computational efficiency [4], in-
stead of assigning a fixed dummy cell to each such net, only two
fixed dummy cells are maintained, one for each partition and all the
nets that require terminal propagation are attached to these dummy
cells. We will refer to this scheme as traditional terminal propaga-
tion.

One major deficiency of this scheme is that the assignment of
uniform partitioning cost to all the nets (same weight), while in re-
ality the magnitude of HPWL degradation does vary for each net
cut. To illustrate this, consider the example shown in Figure 2,
which graphically depicts the current state of the bisectioning pro-
cess of three large bins in a local region of the chip. The top bin
has already been bisected into children bins A1 and A2, the bottom
bin C0 has not yet been bisected, while the bin in the middle B0

is being currently bisected. Let us say the largest x coordinate of
external cells of a net is equal to X1 (connected to some cell A1),
then if this net is cut then it would extend the bounding box by
X2 −X1, but on the other hand if the largest coordinate is equal to
X0 (connected to some cell in C0) then if this net is cut the bound-
ing box will only expand by X2 − X0 which is half as much as
X2 − X1. The traditional terminal propagation scheme does not
capture this anomaly, which can easily be accounted for by proper
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Figure 2: A Snapshot of partitioning the bins

net-weighting.
For this reason we developed a bounding box aware terminal

propagation scheme, denoted by BBTP, that explicitly weights the
nets according to the degradation in the HPWL that can potentially
occur if they get cut. Due to the cut direction being parallel to
one of the axis (in our example parallel to Y axis), this can be
accomplished by a simple heuristic. We first estimate the maximum
x coordinate xmax and the minimum x coordinate xmin of the
external cells. If (X2 − xmax) > (xmin − X1) then we attach
the net to fixed dummy cell located at bin B1 (X1), and set the net-
weight as w(e)∗((X2−xmax)/(X2−X1)). Similar logic applies
for attaching the nets to fixed dummy cell located on the other bin
(B2). An interesting, but traditionally ignored case occurs when
there are ties (xmin = xmax = X0), in which case if the net is
not cut, irrespective of which child bin it is located, the bounding
box is always going to be half as much as X2 − X1, but if it is cut
the expansion of the bounding box is going to be X2 − X1. So the
difference between the net being cut and not cut is half as much as
X2−X1. Therefore, for these nets we set the weight as 0.5∗w(e).
When compared to traditional TP, this scheme captures the HPWL
objective more accurately and works well even in the presence of
fixed cells/pads that may be located anywhere on the chip.

3.2 Post-Bisection Refinement
During the course of bisecting the various bins at each level of

the hierarchy, the final locations of the cells at that level are known
only for those bins that already have been bisected. As a result,
terminal propagation cannot achieve its full potential in accounting
for the external portions of the nets. The post-bisection refinement
step introduced in THETO is designed to address this problem as it
is being applied once all the bins have been bisected and attempts to
further improve the quality of each individual bisection and further
reducing the HPWL either implicitly or explicitly.

THETO implements three different schemes for performing this
post-bisection refinement. The first scheme performs a V-cycle re-
finement [12] at each bisection using the multilevel FM-based re-
finement algorithm implemented in hMetis. Specifically, it visits
the different bisections in a random order and apply a single V-
cycle refinement step. We will refer to this as the V-cycle-based
approach. A limitation of this V-cycle-based approach is that it is
biased towards the initial bisection, which may make it difficult to
find a better solution (i.e., climb out of a local minima). For this
reason, the second scheme that we implemented computes an en-
tirely new bisection for each bin [4] and is further refined using a

V-cycle refinement. We will refer to this as the Repartition-based
approach. Finally, unlike the earlier schemes that minimize the
min-cut of the bisections, the third scheme that we developed tries
to directly optimize the HPWL of the solution [7] using an FM-
based refinement algorithm. Since, the initial bisection produced
by hMetis when coupled with BBTP is already a good quality bi-
section for HPWL, we did not implement this refinement algorithm
in a multilevel framework. We will refer to this as the WLFM-based
approach.

3.3 Algorithms for Level-wise Improvement
The final step that THETO performs at each level of the hierar-

chy is to directly focus on the HPWL objective and minimize it by
performing a k-way refinement. In the course of this refinement
individual cells are allowed to move between the bins as long as
such moves will eventually lead to lower HPWL.

In THETO we developed three level-wise algorithms. First algo-
rithm is a randomized swap based algorithm (we call it RSwap),
which is expected to succeed in tight balance constraints compared
to a single move. The second algorithm is a randomized move
based algorithm(we call it RMove). For these two algorithms we
utilize topology of the netlist to identify nearby cell to swap with
or nearby bin to move to and make the swap or move greedily. For
swap, topological neighbors become candidates for swap, while for
move, the bins of the topological neighbors become candidate des-
tinations. The reason for implementing them based on topology is
due to the inherent efficiency (time complexity is linear in terms
of the number of pins). We traverse the netlist repeatedly until no
more swap or move is possible. Usually these algorithms converge
in a few iterations.

Drawing motivation from [10], we developed the third algorithm,
in which we apply WLFM to two randomly chosen geometrically
adjacent bins (We call this PairWLFM). In alternative iterations
we pick the pairs to form diagonal and non-diagonal bins. Although
this is a relatively expensive algorithm, it requires only a few such
iterations.

3.4 Bin Legalization
In THETO, we predominantly address bin legalization by ex-

plicitly setting tight balance constraints for the partitioner. De-
spite that, bins tend to overflow when the number of cells being
bisected is small. This is due to the inherent limitation of FM al-
gorithm used in our partitioner. To handle such cases, we modified
RMove algorithm to move the cells away from overflowing bins.
We randomly pick the cells from the overflowing bin and evaluate
the moves to their adjacent bins identified by the topological struc-
ture. The moves that result in least degradation in wirelength are
taken until the balance constraint is satisfied. Even though this al-
gorithm is not guaranteed to remove all the overflow (when there
are very few cells and the adjacent bins are also in violation), in
most cases it works quite satisfactorily. This heuristic could eas-
ily be extended to search for topological neighbors of depth greater
than one if needed (as a topologically “chained” move or as a means
to find more locations for move destination). Alternatively existing
sophisticated legalization algorithms [15] can be used, which are
really necessary only in the detail placement phase. THETO’s bin
legalization algorithm is always applied, when there were viola-
tions unless specified otherwise.

4. EXPERIMENTAL EVALUATION
We evaluated the performance of the various algorithmic choices

in THETO on the placement benchmarks derived from the 18 ISPD98
circuits [8]. The number of cells and the number of nets in these



name num cells num nets name num cells num nets
ibm01 12282 11507 ibm10 67692 64227
ibm02 19321 18429 ibm11 68525 67016
ibm03 22207 21621 ibm12 69663 67739
ibm04 26633 26163 ibm13 81508 83806
ibm05 29347 28446 ibm14 146009 143202
ibm06 32185 33354 ibm15 158244 161196
ibm07 45135 44394 ibm16 182137 181188
ibm08 50977 47944 ibm17 183102 180684
ibm09 51746 50393 ibm18 210323 200565

Table 1: The benchmark suite (IBMPlace v1.0).

benchmarks are shown in Table 1. Specifically, we used THETO

to compute the global placements for the first ten circuits (ibm01–
ibm10) for 64 × 64 bins, and for the remaining circuits (ibm11–
ibm18) for 128 × 128 bins. Note that these numbers are chosen to
match the number of rows provided in each of these benchmarks.
We have performed all our experiments on 1.5GHz Athlon MP pro-
cessor machine. We have used gcc3.2 version with aggressive opti-
mization (-O3 -ffast-math -funroll-all-loops -fomit-frame-pointer).

The performance of the various schemes was evaluated by com-
paring two quantities. The first is the weighted half-perimeter wire-
length (denoted as “HPWL” in the tables), which measures the
quality of the solution in million units. THETO uses weighted half-
perimeter wirelength, so that net weighting based timing driven ap-
proaches can be seamlessly integrated. Solutions that have smaller
HPWL values are better. The second is the amount of time re-
quired to compute the GP solution (denoted as “Time” in the ta-
bles). Schemes that require less time are preferred over those re-
quiring more time. The numbers presented are average results of 10
independent runs. Also, to make overall comparisons between dif-
ferent schemes across the different data sets easier, we computed
two summary statistics. The first is the total amount of time (de-
noted as “TTime” in the tables), which is simply the time required
to place all 18 benchmarks. The second is called average qual-
ity relative to the best (denoted “AQB” in the tables) and measures
the relative performance of the various schemes being compared
in terms of HPWL. The AQB statistic for a particular scheme is
computed as follows. For each benchmark we compute the ratio
of the HPWL produced by that scheme against the smallest HPWL
produced for that benchmark by any of the schemes under consid-
eration, and we obtain its AQB by simply averaging these ratios
across the 18 benchmarks. A scheme that achieved an AQB value
that is 1.0 means that for all benchmarks it produced the smallest
HPWL. In general, a scheme will outperform another, if its AQB
value is smaller.

4.1 Evaluation of Various Algorithmic Choices
As discussed in Section 3, there are a number of different algo-

rithmic choices for each one of the three main steps within THETO’s
top-down hierarchical placement framework. In this section we
present an experimental evaluation of these options and evaluate
their impact on the overall GP solution. Due to space constraints,
we are not able to provide an exhaustive comparison of all possible
combinations for these steps. Instead, we provide comparisons of
different alternatives for each step after making a reasonable choice
for the other two phases.

4.1.1 Terminal Propagation Schemes
The performance achieved by the different terminal propagation

schemes described in Section 3.1.1 is shown in Table 2. Specif-
ically, this table shows the performance achieved by four differ-

Traditional TP BBTP
NRuns= 1 NRuns=5 NRuns=1 NRuns=5

HPWL Time HPWL Time HPWL Time HPWL Time
ibm01 5.8 2 5.4 8 5.4 2 5.2 8
ibm02 16.5 4 15.7 15 15.6 4 15.0 17
ibm03 14.8 4 14.2 16 14.1 4 13.6 18
ibm04 19.1 5 18.3 21 18.4 5 17.6 23
ibm05 42.4 6 40.9 27 40.6 7 39.5 33
ibm06 22.4 7 21.4 29 21.8 7 20.7 32
ibm07 35.2 10 33.4 45 33.1 11 31.9 49
ibm08 41.1 12 39.0 50 37.0 13 35.7 57
ibm09 32.4 11 30.4 48 30.3 12 29.0 52
ibm10 70.1 18 64.8 80 64.2 19 62.5 86
ibm11 49.5 24 47.3 84 47.2 25 45.3 89
ibm12 87.1 28 83.8 104 82.8 30 79.7 111
ibm13 61.0 34 57.9 116 58.7 36 56.0 123
ibm14 138.6 66 132.8 254 134.3 71 128.4 276
ibm15 153.7 78 144.4 298 149.4 84 143.1 319
ibm16 206.3 91 194.0 360 199.7 99 189.3 378
ibm17 307.5 102 287.9 418 298.9 112 283.0 453
ibm18 231.9 104 213.9 421 214.2 114 198.5 454
AQB 1.101 1.043 1.045 1.000
TTime 605 2395 657 2579

Table 2: Results obtained by terminal propagation schemes.

ent schemes. The first two schemes use the traditional terminal
propagation scheme (labeled “Traditional TP”), whereas the other
two are based on the new bounding box aware scheme (labeled
“BBTP”). The difference between each pair of schemes is the num-
ber of different bisections that they compute during each bin-bisection
step. In particular, the schemes labeled “NRuns=1” compute a sin-
gle bisection, whereas the schemes labeled “NRuns=5” compute
five different bisections and select the one that achieves the small-
est cut. Note that all these experiments were performed without
performing any bisection or level-wise refinement.

From these results we can see that the new terminal propagation
scheme is superior to the traditional approach as it leads to higher
quality solutions without materially increasing the overall GP time.
For example, when NRuns=1, BBTP leads to solutions that have
5.6% lower HPWL while incurring only a 10% degradation in time.
Similar performance advantages can be seen for NRuns=5. Com-
paring the impact of improved bisectioning quality, we can see that
it directly translates to lower HPWL. For example, when NRuns=5,
the traditional TP results improved by 5.8% and the BBTP results
improved by 4.5% while the runtime increased by a factor of four.
Also, it is interesting to note that THETO’s overall PDP engine is
quite fast, as it can place the ibm01 benchmark (12K nets) in two
seconds and the ibm18 benchmark (210K nets) within two minutes.

Due to the quality advantage of BBTP with NRuns=5 and its
modest computational requirements, we will use it as the default
bin-bisectioning scheme in all our subsequent experiments.

4.1.2 Bisection Improving Schemes
The performance achieved by the different bin-bisection improve-

ment schemes is shown in Table 3. Specifically, this table shows the
performance achieved by three schemes described in Section 3.1, as
well as the scheme that does not perform any bin-bisection refine-
ment (labeled “BBTP5” as it corresponds to BBTP with NRuns=5).
Note that all these experiments were performed without performing
any level-wise refinement.

From these results we can see that in terms of HPWL, the Repar-
tition scheme performs the best among the bisection improving
schemes, whereas the the V-Cycle and WLFM schemes produce so-
lutions whose HPWL is about 3% and 2% worse than Repartition,
respectively. In terms of computational requirements, the V-Cycle



V-Cycle Repartition WLFM BBTP5
HPWL Time HPWL Time HPWL Time HPWL Time

ibm01 5.1 11 5.0 19 5.1 17 5.2 8
ibm02 14.9 22 14.5 37 15.1 80 15.0 17
ibm03 13.4 24 13.2 39 13.5 42 13.6 18
ibm04 17.7 31 17.1 51 17.6 54 17.6 23
ibm05 38.3 44 37.8 72 39.1 107 39.5 33
ibm06 20.3 44 19.7 69 20.2 79 20.7 32
ibm07 31.0 69 30.5 109 30.6 111 31.9 49
ibm08 35.0 84 34.3 126 34.6 203 35.7 57
ibm09 28.4 79 27.9 117 28.3 129 29.0 52
ibm10 60.3 123 59.4 195 63.6 237 62.5 86
ibm11 44.0 130 43.0 201 44.0 249 45.3 89
ibm12 77.9 161 76.2 254 79.8 361 79.7 111
ibm13 54.7 183 53.6 280 54.5 346 56.0 123
ibm14 126.7 398 122.7 620 128.0 784 128.4 276
ibm15 137.9 477 136.6 727 140.2 984 143.1 319
ibm16 183.5 555 180.8 896 184.6 1213 189.3 378
ibm17 272.1 629 268.4 1042 287.8 1548 283.0 453
ibm18 194.6 653 190.0 1029 194.3 1569 198.5 454
AQB 1.021 1.000 1.030 1.044
TTime 3718 5883 8112 2579

Table 3: Results obtained by bisection improving schemes.

RSwap RMove PairWLFM BBTP5
HPWL Time HPWL Time HPWL Time HPWL Time

ibm01 5.1 23 5.1 13 5.1 38 5.2 8
ibm02 14.8 171 14.8 50 14.3 150 15.0 17
ibm03 13.8 56 13.7 30 13.4 96 13.6 18
ibm04 17.8 64 18.0 37 17.3 114 17.6 23
ibm05 39.3 228 39.2 81 38.1 190 39.5 33
ibm06 20.6 106 20.3 52 19.8 167 20.7 32
ibm07 31.9 130 31.6 75 30.8 238 31.9 49
ibm08 35.7 391 35.8 149 34.5 376 35.7 57
ibm09 29.0 144 29.0 82 28.2 272 29.0 52
ibm10 61.7 294 61.8 143 59.6 445 62.5 86
ibm11 44.9 193 44.4 122 43.9 368 45.3 89
ibm12 79.5 446 80.0 194 77.6 547 79.7 111
ibm13 55.8 344 55.4 182 54.4 542 56.0 123
ibm14 127.3 657 126.6 386 123.9 1107 128.4 276
ibm15 141.1 974 140.0 493 139.2 1448 143.1 319
ibm16 187.5 1310 184.9 606 182.2 1733 189.3 378
ibm17 278.7 1957 274.5 781 271.0 2139 283.0 453
ibm18 196.4 1852 195.3 839 194.5 2195 198.5 454
AQB 1.027 1.022 1.000 1.033
TTime 9338 4316 12164 2579

Table 4: Results obtained by level-wise refinement schemes.

scheme is the fastest, the WLFM scheme is the slowest, whereas the
Repartition scheme is somewhere in between these two. Also, it is
interesting to note that all three schemes lead to solutions whose
HPWL is better than those achieved by BBTP5 alone. For exam-
ple, the solutions produced by BBTP5 are about 4.4% worse than
those produced by Repartition. These results indicate that there is
a non-trivial quality advantage in introducing this new phase in the
overall flow of PDP.

4.1.3 Level-Wise Refinement Schemes
The performance achieved by the different level-wise refinement

schemes is shown in Table 4. This table shows the performance
achieved by three schemes described in Section 3.3, as well as
BBTP5, which does not perform any level-wise refinement. Note
that all these experiments were performed without applying any bi-
section refinement.

From these results we can see that the PairWLFM scheme achieves
the best HPWL improvement compared to RSwap and RMove. The
HPWL obtained by RSwap and RMove is about 3% and 2% higher

than that achieved by PairWLFM, respectively. However, Pair-
WLFM’s performance advantage comes at a significant increase in
the overall computational time. For example, PairWLFM requires
five times more time than that required by BBTP5. Comparing the
time required by different level-wise refinements, we can see that
RMove is the fastest, requiring less than twice the time required by
BBTP5. Finally, comparing the gains in HPWL achieved by this
PDP step over the gains achieved by the bisection refinement step
(Table 3) we can see that the later leads to higher improvements at
a lower computational cost.

4.2 Overall Comparisons
Our comparisons so far were focused on evaluating the various

algorithmic choices for the three main steps of THETO’s top-down
hierarchical PDP flow. In this section we evaluate how the combi-
nation of some of these algorithmic choices affect the overall per-
formance of THETO. Table 5 shows the GP performance achieved
by seven different schemes. The columns labeled “BBTP5”, “Repar-
tition”, and “PairWLFM” correspond to the lowest HPWL achiev-
ing schemes identified in Sections 4.1.1–4.1.3. The column labeled
“Repartition+PairWLFM” corresponds to the scheme that performs
both bisection and level-wise refinements using the Repartition and
PairWLFM schemes, respectively. The column labeled “V-Cycle +
Repartition+WLFM” corresponds to the scheme that uses all three
bisection refinement schemes one-after-the-other but does not per-
form an level-wise refinement. Finally, the scheme labeled “ALL”
corresponds to the scheme that performs both bisection and level-
wise refinement using all three bisection refinement schemes and
all three level-wise refinement schemes applied one-after-the-other.
In addition, the last column labeled “Dragon”, contains the GP re-
sults produced by Dragon [14]. We chosen Dragon for two reasons.
First, it provides statistics regarding the quality of the GP solu-
tion that it computes, and second, based on a recent comprehensive
comparisons of various placement algorithms [1, 16], Dragon pro-
duces either the highest quality or among the highest quality place-
ment solutions.

From these results we can see that as expected, the scheme that
applies all the different algorithms bisection refinement and level-
wise refinement (ALL) achieves the lowest HPWL and requires the
most amount of time among the different possibilities for THETO.
However, the scheme that combines all bisection refinement schemes
but performs no level-wise refinement (fifth column) achieves com-
parable HPWL results but is about 2.5 times faster. This obser-
vation is consistent with our earlier results in Section 4.1.3 that
showed that the benefits achieved by level-wise refinement are usu-
ally smaller than those achieved by the bisection refinement algo-
rithms.

Comparing the results produced by THETO against those pro-
duced by Dragon, we can see that all but the BBTP5 scheme pro-
duce GP solutions whose HPWL is slightly higher than those pro-
duced by Dragon. These gains range from about 2% up to 6%. Un-
fortunately, the times reported by Dragon cannot be directly com-
pared as they correspond to Dragon’s overall GP run time, which
also includes a “single cell switching” based hybrid phase as well
as few more bisection levels for some of the benchmarks to aid
DP. However, according the authors, the global placement phase is
dominating its overall runtime [14]. As a result, we can infer that
Dragon is much slower (in the range of 4–15 times slower) than the
various instances of THETO.

5. CONCLUSION
In this paper we presented a new global placer algorithm that

is based on the partitioning driven placement paradigm. We in-



BBTP5 Repartition PairWLFM Repartition+PairWLFM V-Cycle+Repartition+WLFM ALL Dragon
HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time∗

ibm01 5.2 8 5.0 19 5.1 38 4.9 47 4.9 29 4.9 74 5.0 1243
ibm02 15.0 17 14.5 37 14.3 150 14.1 161 14.0 80 13.8 394 15.0 1857
ibm03 13.6 18 13.2 39 13.4 96 13.2 109 13.0 64 12.7 178 13.7 1509
ibm04 17.6 23 17.1 51 17.3 114 16.7 136 16.5 89 16.7 216 17.7 1732
ibm05 39.5 33 37.8 72 38.1 190 37.4 214 36.8 136 36.8 501 42.2 4413
ibm06 20.7 32 19.7 69 19.8 167 19.5 193 19.2 126 19.3 349 20.8 3017
ibm07 31.9 49 30.5 109 30.8 238 30.0 278 29.8 187 29.6 444 33.0 3479
ibm08 35.7 57 34.3 126 34.5 376 33.5 428 33.2 269 32.7 915 36.0 4990
ibm09 29.0 52 27.9 117 28.2 272 27.5 325 27.5 220 27.3 538 29.8 3859
ibm10 62.5 86 59.4 195 59.6 445 58.5 537 58.2 358 57.9 965 60.5 8765
ibm11 45.3 89 43.0 201 43.9 368 42.7 458 42.5 371 42.0 732 42.8 5678
ibm12 79.7 111 76.2 254 77.6 547 76.0 640 74.4 487 75.1 1274 73.5 9113
ibm13 56.0 123 53.6 280 54.4 542 53.3 655 52.5 523 52.2 1143 55.8 7301
ibm14 128.4 276 122.7 620 123.9 1107 119.6 1369 119.3 1304 118.1 2413 123.8 14007
ibm15 143.1 319 136.6 727 139.2 1448 134.9 1739 132.9 1581 132.1 3249 140.6 21135
ibm16 189.3 378 180.8 896 182.2 1733 176.7 2102 173.8 1904 173.0 3987 180.1 22870
ibm17 283.0 453 268.4 1042 271.0 2139 264.7 2593 260.6 2212 257.2 5235 271.4 29785
ibm18 198.5 454 190.0 1029 194.5 2195 185.8 2685 185.0 2288 182.9 5475 197.6 26546
AQB 1.080 1.034 1.045 1.019 1.008 1.002 1.068
TTime 2579 5883 12164 14670 12227 28083 171301

Table 5: Results obtained by combining THETO’s different parameters and from Dragon.

troduced a number of different algorithmic choices for its various
steps and presented a detailed experimental evaluation. Our results
showed that min-cut partitioning alone when combined with effec-
tive terminal propagation can lead to global placement algorithms
that are both fast and of high quality. In fact, our algorithm is able
to produce global placement solutions whose half perimeter wire-
length is up to 6% better when compared by other state-of-the-art
academic placement tools.
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