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ABSTRACT
Given a query document, ranking the documents in a collec-
tion based on how similar they are to the query is an essential
task with extensive applications. For collections that con-
tain documents whose creation dates span several decades,
this task is further complicated by the fact that the language
changes over time. For example, many terms add or lose one
or more senses to meet people’s evolving needs. To address
this problem, we present methods that take advantage of
two types of information in order to account for the language
change. The first is the citation network that often exists
within the collection, which can be used to link related docu-
ments with significantly different creation dates (and hence
different language use). The second is the changes in the
usage frequency of terms that occur over time, which can
indicate changes in their senses and uses. These methods
utilize the above information while estimating the represen-
tation of both documents and terms within the context of
non-probabilistic static and dynamic topic models. Our ex-
periments on two real-world datasets that span more than 40
years show that our proposed methods improve the retrieval
performance of existing models and that these improvements
are statistically significant.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval Models; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing—
Linguistic processing

General Terms
Experimentation, Performance

Keywords
Similarity search, Topic modeling, Longitudinal document
collections, Language change, Citation network, Terms us-
age frequency changes, Regularization

1. INTRODUCTION
Searching for similar documents to a given query docu-

ment is an important task with extensive applications. For
example, during patent issuing and prosecution, examiners
are responsible for retrieving all previous prior art that are
most relevant to the application in order to determine the
novelty claimed by it (this task is called Prior Art Can-
didate Search). Another example is in scientific research,

where researchers are interested in retrieving articles that
are related to some recently published articles. These types
of collections (patents and scientific articles) span several
decades and the documents that are similar or related to
the queries may have been written a long time ago. We
will refer to these types of collections that span a long time
period as longitudinal document collections.

Many linguistic and computational studies have shown
that the language changes over time [20, 26, 30, 25, 17].
These changes can take one of three forms. The first, called
word sense evolution, is the form of change where an ex-
isting term adds (or removes) one or more senses, e.g., the
term “mouse” gained a new sense when graphical user inter-
faces were introduced to indicate a computer input device.
The second, called term-to-term evolution or (synonyms
over time), is the form in which a new term is created that
has the same meaning as an older term, e.g., “mp3 player”
has become a recent synonym for “walkman”. The new term
can co-exist with the older one or eclipse it. The third form
deals with emergence of new terms, in which new terms
are introduced to describe newly created concepts. For ex-
ample, “Google” and “Facebook” were first introduced after
their launch on the Internet.

Due to these time-induced language changes, the task of
finding similar documents in longitudinal document collec-
tions becomes harder. Approaches based on dimensionality
reduction and topic modeling [6, 13, 5, 28] can indirectly
account for some of these changes by estimating their model
parameters using the entire collection. However, researchers
have recognized that such approaches are suboptimal, and
for this reason, methods that explicitly model the changes in
the language have been investigated. One line of research fo-
cused on term-to-term evolution (or more specifically, named
entity evolution, since the query used is a named entity) by
reformulating the user’s query given in today’s language in
order to translate it to the user-specified date’s language so
that the translated query is then used to retrieve old docu-
ments relevant to the query [16, 8, 9, 10, 7]. Another line
of research developed dynamic topic modeling approaches
to handle topic evolution over time [2, 4, 27, 29]. These
approaches estimate a different term-topic matrix for each
time span leading to time-specific distributions for the words
over the latent topics. As a result, they can explicitly model
language change. Even though these models were not di-
rectly evaluated in the context of document similarity search
task, they have shown to be qualitatively better in model-
ing documents, words and topics for longitudinal document
collections.



In this paper, we develop methods for document similar-
ity search that explicitly account for language changes that
occur in longitudinal document collections. Our methods
improve upon the current non-probabilistic static and dy-
namic topic modeling approaches by leveraging two types
of information: the citation network in the collection (when
available) and changes in the terms’ usage frequency over
time. The citation network allows our methods to extract
information from related document pairs (i.e., linked docu-
ments) whose language may have changed due to the pas-
sage of time. At the same time, the changes in the usage
frequency of terms allow our methods to explicitly account
for the changes in the words’ uses and senses. We use these
two types of information while estimating static and dy-
namic topic models. Specifically, the citation network is
used to regularize the latent representation of documents in
both static and dynamic topic models in order to increase
the similarity between linked documents in the latent space.
The changes in the usage frequency of the terms are used to
compute term-time-specific transition regularization weights
in dynamic topic models, which enable them to model non-
smooth transitions that are indicative of major changes in
the terms’ usage.

Our main contributions are: (i) We study the effect of link
regularization on retrieving documents similar to a query
document when the query and set of searched documents
have large differences in their publication dates; and (ii) We
present a novel transition regularization technique for terms
in dynamic topic models that captures the changes in their
usage over time.

We evaluated our methods on the task of document simi-
larity search, where the user is interested in retrieving simi-
lar documents in a specific time span for a query document
from the most recent time period. We used a subset of the
US utility patents as well as the Association of Computa-
tional Linguistics Anthology dataset that span more than 40
years. Our results show that: (i) adding link regularization
improves the retrieval performance of both static and dy-
namic topic models, with larger improvements in early doc-
uments’ retrieval; and (ii) having term-time-specific transi-
tion regularization weights is better than having the same
weights in link regularized dynamic topic models.

2. RELATED WORK

2.1 Language Change over Time
There have been a lot of linguistic and computational

studies that showed how and why the language changes over
time [17, 20, 26, 30]. Language changes to meet people’s
evolving needs, which continuously change over time. These
changes can occur to existing words by gaining and/or losing
one or more senses. New words also tend to appear when
creating new technology, medicine, or other concepts. Some
computational studies were done to analyze how to capture
these changes. Kulkarni et al. [17] and Tahmasebi et al. [26]
showed that peaks in terms’ frequencies could correspond to
invention of new technology, events, or change of meaning.
This signal is only reliable when the topic popularity over
time does not change. For example, searching for the terms
“Hurricane” and “Sandy” on Google Trends1 shows a peak
in their frequencies in October 2012, which occurred due to

1http://www.google.com/trends

having a storm called “Hurricane Sandy”. This frequency
peak was a signal of changing the sense of “Sandy” only (no
change occurred to the sense of “Hurricane”).

For this reason, Kulkarni et al. [17] also provided two other
ways to capture language change for existing words, which
are based on syntactic and distributional changes. When a
term gains a new sense, it could gain a new Part-Of-Speech
(POS), e.g., the word “apple” used to have the POS “Noun”
only until Apple technical company was established in 1971,
where it gained a new POS (“Proper Noun”). When there is
neither a change in the term frequency or POS distribution
over time, distributional-based changes (based on the distri-
butional hypothesis that states that words that appear in
the same contexts tend to have similar meanings [12]) can
also signal a change in the term’s sense. These changes can
be learned by mapping words to different semantic vector
spaces over time, and then tracking changes in the words
that appear close to the words of interest in these spaces.

2.2 Document Modeling
Early document modeling approaches include: Vector Space

Models (VSM) [23], probabilistic models, e.g., Okapi BM25 [22],
and language models, e.g., the query likelihood model [19].
These models are based on term matching, where they repre-
sent documents as bags-of-words, apply some term weighting
function (as in the case of VSM and probabilistic models)
or build a language model for each document (as in lan-
guage models), and then apply a ranking function to rank
documents based on their relevance to queries.

To learn the latent semantics in the collection, researchers
have proposed different topic modeling approaches, which
fall into non-probabilistic (matrix factorization) approaches,
such as Latent Semantic Indexing (LSI) [6] and Regular-
ized LSI (RLSI) [28], and probabilistic approaches, such as
Probabilistic LSI (PLSI) [13] and Latent Dirichlet Alloca-
tion (LDA) [5]. These topic models represent documents
and terms in low-dimensional spaces. In probabilistic topic
models, a document is represented as a weighted mixture of
latent topics, and a latent topic is represented as a weighted
vector of terms. For example, LDA [5] generates a docu-
ment by choosing a distribution over topics, then for each
term in the document, a topic is chosen according to the
topic distribution and a term is drawn according to the term
distribution in that topic. In non-probabilistic topic mod-
els, each document and term is represented as a point in a
low-dimensional latent space. For example, RLSI [28] for-
malizes the problem as a minimization of a quadratic loss
function to factorize the original document-term matrix into
low-dimensional document-topic and term-topic matrices,
regularized by L1 and/or L2 norms. The authors showed
that RLSI and LDA perform similarly in relevance ranking.
One major limitation of these approaches is that they model
documents and terms in static spaces, i.e., assuming no lan-
guage change over time, that fail to represent the evolution
of language use. This makes these approaches suboptimal
for document similarity search for longitudinal document
collections when the language of the query and its relevant
documents are different due to changes in their language use.

2.3 Dealing with Language Change in IR
Recently, researchers have investigated some approaches

to handle language change in Information Retrieval (IR).
Some work has been done on term-to-term evolution to re-
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formulate a named entity query (a named entity is a name
of a person, place, or organization) given at some reference
time R to translate it to the language used at some target
time T [3, 15, 14, 24]. For instance, Berberich et al. [3]
developed a probabilistic measure of across-time semantic
similarity between term u at time R and term v at time T ,
P (u@R|v@T ), using co-occurrence statistics between each of
u and v and the contexts in which they appear. They then
used this similarity measure as the emission probability in a
Hidden Markov Model, where the state space comprises all
terms at time T and each state emits terms at time R with
these emission probabilities. The evaluation was done on
some selected queries, where they showed the top-k list of
translated queries for each of them. Kalurachchi et al. [14]
used association rule mining to extract semantically related
named entities used at different times by associating each
named entity to its contextual event (verb), such that two
entities that share the same event multiple times at differ-
ent times are extracted as frequent rules. Then, for each
transaction consisting of all entities sharing the same event,
the strength of the relationship between each pair of enti-
ties is measured using the Jaccard coefficient between the
frequencies of other contextual words, such as objects and
adjectives, that each entity has. Using the translated list of
named entities for the query, they achieved higher precision
and recall for retrieving relevant documents from a corpus
containing the USA President’s speeches from 1790 to 2006
than by using the original query. Our work is different from
these methods in that we use the whole document as a query,
not just a named entity, for which we would like to retrieve
its most similar documents, and so these approaches cannot
work efficiently for the problem addressed here, since they
model words only, whereas we need to model documents for
the task of document similarity search.

Language change has also been studied for Historic Docu-
ment Retrieval (HDR), which is concerned about retrieving
relevant documents to a query written in today’s language,
e.g., Modern English, from a pool of documents written
in older languages, e.g., Middle English [16, 8, 9, 10, 7].
The approaches proposed to solve this problem mainly rely
on two sources of information: available dictionaries and
spelling variations over time. For instance, Efron [7] used
the MorphAdorner dictionary that contains a list of (mod-
ern, archaic) pairs of words as his source of dictionary ev-
idence, and the string edit distance as a measure of string
similarity between two terms to account for spelling varia-
tions of the same term over time. In our work, we model
the changes in the same language, i.e., Modern English, so
these types of evidence are not appropriate for the problem
addressed in this work.

Other researchers focused on modeling the dynamic evo-
lution of topics over time using probabilistic topic models [2,
4, 11, 27, 29]. Dynamic Topic Model (DTM) [4] is an exten-
sion to LDA that captures the evolution of topics over time
by learning different consecutive term-topic matrices that
have smooth transitions over time. Ahmed and Xing [2] in-
troduced infinite DTM (iDTM) that considers the change
of topic popularity, topic word distribution and number of
topics over time. Han et al. [11] presented a dynamic rank
factor model (DRFM), which is capable of learning tempo-
ral changes in the importance of topics and the correlations
among topics and words over time. Having time-specific
term distributions over the latent topics in these models

can be also used to explicitly model word sense evolution,
since each term has multiple representations over the topics
in different time spans. Most of these models were evalu-
ated based on their temporal perplexity and were not eval-
uated on real tasks, such as document similarity search or
classification. However, we believe that modeling changes
in language use can improve the performance of document
similarity search for queries done on longitudinal document
collections.

3. NOTATIONS
Boldface uppercase letters will be used to represent ma-

trices, boldface lowercase letters to represent vectors, and
calligraphic letters will be used to represent sets. The ith
row of matrix X is represented as xi, whereas the ith column
of matrix X is represented as xTi .

A matrix D represents the document-term matrix of size
N ×M , where N denotes the number of documents and M
denotes the number of words in the vocabulary. In the meth-
ods that will be developed, D is factored into a document-
topic matrix U of size N ×K and a term-topic matrix V of
size M ×K, where each document and term is represented
as a point in the K-dimensional latent topic space.

Each document in a collection has a publication year as-
sociated with it, which is assumed to be the time when the
document was written. A time span s is a consecutive period
of time measured in years. The documents in a collection
can be divided into S disjoint subsets based on their pub-
lication years, each of which corresponds to a time span.
Given a time span s and a document-term matrix D, then
Ds of size Ns ×M is the span-specific document-term sub-
matrix of D that contains only the rows of D corresponding
to the documents that were published in s. Similarly with
D, the factored representation of Ds will be denoted by
UsV

T
s , where Us and Vs are the Ns × K document-topic

and M × K term-topic matrices of the documents in time
span s, respectively.

Documents in the collections have links to each other, rep-
resenting the citation network. The citation network will be
denoted with matrix W, where wij is the weight of the link
between documents i and j. The weight can be binary, i.e.,
wij = 1 for linked document pairs, and 0 otherwise, or it can
be a function of the publication times of the two linked doc-
uments. This is further discussed in Section 4.1.3. The set
of pairs P is the set of linked documents, i.e., the document
pair (i, j) ∈ P if and only if document i cites document j.

4. METHODS
To improve the retrieval performance of queries done on

longitudinal document collections, we address the problem
of language change over time by leveraging two types of in-
formation: the citation network that often exists in these
collections and the changes in the terms’ usage frequency
over time. We first explain how to incorporate link informa-
tion in both static and dynamic topic models by adding link
regularization to them, then we present a novel transition
regularization technique in dynamic topic models based on
the changes that occur in the terms’ usage frequency over
time.

We use the non-probabilistic static topic model, RLSI [28],
and Dynamic Smooth RLSI (a combination of RLSI and
DTM) as the baseline static and dynamic models, respec-



tively, since RLSI was shown to have the best retrieval per-
formance compared to other models. We use the static ver-
sion of RLSI as a baseline to compare it with its dynamic
version, since dynamic topic models were not used in docu-
ment similarity search before.

4.1 Incorporating Link Information in Topic
Models

A link between a pair of documents provides an indica-
tion that the two documents are related. Incorporating ci-
tation information with content information was found to
be useful for the task of document classification, where cita-
tion information complements content information to place
similar documents close to each other in the documents la-
tent space. This type of constraint in matrix factorization
is called “link regularization” [18]. Citation information can
be useful for document similarity search as well, especially if
the two linked documents were written at different time pe-
riods, since their language use has most probably changed.
For this reason, we add link regularization to both static
and dynamic topic models to bring closer together pairs of
linked documents while estimating their representations in
the latent space.

4.1.1 Static Topic Models
Given a document-term matrix D, RLSI [28] formalizes

the problem of learning the document-topic matrix U and
the term-topic matrix V as a regularized matrix factoriza-
tion approach by solving the following optimization problem:

min
U,V

1

2
||D−UVT ||2F +

α

2
||U||2F +

β

2
||V||2F , (1)

where α and β are the parameters controlling the regular-
ization on U and V, respectively2. We will refer to this
method as Static RLSI, or SRLSI.

We leverage citation information that exists in the docu-
ment collection by adding link regularization to the objective
function in Eq. (1) as:

min
U,V

(
1

2
||D−UVT ||2F +

α

2
||U||2F +

β

2
||V||2F

+
θ

2

∑
(i,j)∈P

wij ||ui − uj ||22

)
, (2)

where θ is the link regularization controlling parameter and
wij is the weight of the link for the linked document pair
(i, j). This weight can be binary, as proposed in [18], or it
can be computed based on the documents publication times,
which we will discuss in more detail in Section 4.1.3. We
will refer to the Static RLSI model with link regularization
as SRLSI+link.

The objective function in Eq. (1) is not jointly convex
with respect to the two variables U and V. However, when
one of them is fixed, it becomes convex with respect to the
other one. Hence, by alternately minimizing it with respect
to U then with respect to V, it is guaranteed to converge
to a local minimum. When one of the matrices is fixed,
updating the other matrix becomes an L2-regularized least

2Note that RLSI can have different regularization norms on
both U and V. In our experiments (not reported here) we
found that L2 regularization achieved the best results and
for this reason our methods will only use L2 regularization.

squares problem, which has an exact solution. Solving for
V in Eq. (2) is the same as in Eq. (1). To find U in Eq.
(2), we use coordinate descent to update each entry unk of
U, while keeping all other entries fixed. Let V\k the matrix

of V with the kth column removed, vTk be the kth column
vector of V, and un\k the vector of un with the kth entry
removed. We can rewrite the objective function in Eq. (2)
as a function with respect to unk as:

L(unk) =

(
1

2
||dn −V\kun\k − unkvk||22 +

α

2
u2
nk

+
α

2
||un\k||22 +

θ

2

∑
(n,i)∈P

wni(unk − uik)2

+
θ

2

∑
(n,i)∈P

wni||un\k − ui\k||22

)

=
1

2
||vk||22u2

nk −
(
dn −V\ku\k

)T
vkunk

+
α

2
u2
nk +

θ

2

∑
(n,i)∈P

wni(unk − uik)2 + const

=
1

2
s2kku

2
nk −

(
rnk −

∑
l 6=k

sklunl
)
unk +

α

2
u2
nk

+
θ

2

∑
(n,i)∈P

wni(unk − uik)2 + const, (3)

where sij and rij are the entries of the K ×K matrix S =
VTV and the N × K matrix R = DV, respectively, and
const is a constant with respect to unk. We can then solve
for unk as:

unk =
θ
∑

(n,i)∈P wniuik + rnk −
∑
l6=k sklunl

skk + α+ θ
∑

(n,i)∈P wni
. (4)

4.1.2 Dynamic Topic Models
In order to better handle language change over time, we

need to have a term-topic matrix for each time span, since
each term can have a different distribution over the latent
topics in each time span, depending on the change that oc-
curred to it (if any). We develop Dynamic Smooth RLSI
(DSRLSI), which is a dynamic version of RLSI that com-
bines RLSI with the smooth transition regulation used in
DTM [4]. DSRLSI enforces the coupling between consecu-
tive term-topic matrices by having smooth transition regu-
larization (that was used in DTM), which is a regularization
term in the objective function that penalizes the Frobenius
norm of the difference between each two consecutive term-
topic matrices. The objective function for DSRLSI is:

min
Us,Vs
s=1..S

(
1

2

S∑
s=1

(
||Ds −UsV

T
s ||2F + α||Us||2F + β||Vs||2F

)

+
1

2

S∑
s=2

||Vs −Vs−1||2F

)
, (5)

where Ds is the document-term matrix for the documents
that appear in time span s, and Us and Vs are the learned
document- and term-topic matrices in s.

Adding link regularization to DSRLSI, which we will refer



to as DSRLSI+link, the objective function becomes:

min
Us,Vs
s=1..S

(
1

2

S∑
s=1

(
||Ds −UsV

T
s ||2F + α||Us||2F + β||Vs||2F

)

+
θ

2

∑
(i,j)∈P

wij ||ui − uj ||22 +
1

2

S∑
s=2

||Vs −Vs−1||2F

)
.

(6)

Finding the optimal Us in Eqs. (5) and (6) is the same
as finding U as done in Eqs. (3) and (4), with replacing
dn with ds,n, un with us,n and V with Vs, where ds,n is
the nth original document vector in s and us,n is the nth

document latent representation in s. To learn Vs in Eqs (5)
and (6), we can rewrite the objective function with respect
to vs,m as:

L(vs,m) =
1

2
||dTs,m −Usvs,m||22 +

β

2
||vs,m||22

+
1

2
||vs,m − vs−1,m||22 +

1

2
||vs+1,m − vs,m||22,

(7)

where dTs,m is the mth column of Ds and vs,m, vs−1,m and

vs+1,m are the mth term latent representations in time spans
s, s− 1 and s+ 1, respectively. Hence, the optimal solution
for vs,m is:

vs,m =
(
UT
s Us + (β+ 2)I

)−1(
Usd

T
s,m + vs+1,m + vs−1,m

)
.

(8)
The matrix inversion in Eq. (8) can be done easily, since the
matrix is of dimension K, where K is usually less than 100,
and it is be computed once for updating the whole matrix
Vs.

4.1.3 Computation of Link Weights
Recall from Sections 4.1.1 and 4.1.2 that our models as-

sociate a weight with each link, which is used to control the
degree of importance of the various links. We used the doc-
uments’ publication times to determine these weights based
on the difference between the two linked documents times-
tamps. Our intuition behind this idea is that when two
linked documents have large differences in their publication
dates, their language use is most probably more dissimi-
lar than linked documents that belong to closer time spans.
Therefore, we assign larger weights to links that have a larger
publication time difference than those that have a smaller
time difference. This will force similar documents with large
differences in their dates and have more dissimilar bag-of-
words representations (more than similar documents with
small differences in their dates) to come closer together in
the latent space.

We experimented with four link weighting functions: bi-
nary (bin), logarithmic (log), linear (lin), and quadratic
(quad). The bin function assigns a weight of 1 to all links
in the dataset, whereas the other functions assign differ-
ent weights based on the publication time difference of the
linked documents. Specifically, given a link from document
i to document j whose publication dates are ti and tj , re-
specitively, then log assigns a weight of 1 + log2(ti − tj); lin
assigns a weight of 1 + (ti − tj), and quad assigns a weight
of 1 + (ti − tj)2. Thus, these three functions progressively
assign higher weights to the links based on the difference in

the publication dates of the documents involved.

4.2 Incorporating Changes in Terms’ Usage
Frequency in Dynamic Topic Models

Recall from Section 4.1.2 that DTM learns different term-
topic matrices by assuming that these matrices evolve smoothly
(with a fixed rate) over time. However, changes in each
term’s distribution over the latent topics occur at different
times and with different rates over time. As was shown in
many linguistic and computational studies, changes in the
usage frequency of terms over time are usually a good sig-
nal of changes in the terms’ senses and uses (Section 2.1).
Therefore, we make use of this type of information to im-
prove the latent representation of words in dynamic topic
models. Instead of having smooth transition regularization
on consecutive Vs as in DSRLSI, we assign a specific weight
to each term for each pair of consecutive time spans. The
idea behind having these term-time-specific weights is that
when there is a huge difference in the frequency of a term
m in some time span s than in its previous span s− 1, there
should not be a smooth transition between vs,m and vs−1,m,
since m might have been used in different contexts (e.g., dif-
ferent topics) in s where it was not used before in s− 1. On
the other hand, when the frequencies of m in s and s−1 are
similar, the two term distributions over the latent topics in
s and s − 1 should be similar, as there is no evidence that
there has been a change in the term’s meaning in these time
spans.

To model this type of regularization, which we call term-
time-specific transition regularization, we weight the transi-
tion regularization of each term in each pair of consecutive
time spans as follows. Terms that have similar normalized
frequencies in two consecutive time spans will have a higher
penalty (weight) on their transition regularization, whereas
terms whose normalized frequencies in two consecutive time
spans are different will have less penalty on their transition
regularization. This allows the same term to have differ-
ent distributions over the latent topics in two consecutive
time spans when its meaning or sense changes. We will re-
fer to this model as Dynamic Term-time-specific RLSI, or
DTRLSI. The objective function for DTRLSI is:

min
Us,Vs
s=1..S

(
1

2

S∑
s=1

(
||Ds −UsV

T
s ||2F + α||Us||2F + β||Vs||2F

)

+
1

2

S∑
s=2

M∑
m=1

λs,m||vs,m − vs−1,m||22

)
, (9)

where λs,m is the parameter controlling the transition regu-
larization for term m in time spans s and s− 1. We assign
λs,m as:

λs,m =
0.1

10γ ∗ | ndfs(m)− ndfs−1(m)|+ 0.1
,

where ndfs(m) is the normalized document frequency, i.e.,
the percentage of documents where term m appears in time
span s. The parameter γ is an integer (usually 0 or 1) that
controls the range of transition regularization. This function
makes the maximum value for λs,m = 1. Link regulariza-
tion can be added to Eq. (9) to have DTRLSI with link
regularization, which we will refer to as DTRLSI+link.

Since the weights are different for every vs,m, we cannot
use Eq. (8) for finding vs,m, as the matrix inversion needs



Table 1: Time complexities for all models per iteration.
Model Time Complexity for Updating U Time Complexity for Updating V

SRLSI max{MK2, NK × AvgRL, NK2} max{MK2,MK × AvgCL, NK2}
SRLSI+link max{MK2, NK × AvgRL, NK2Ti × AvgNL} same as SRLSI

DSRLSI same as SRLSI max{SMK2, SMK × AvgCL, NK2}
DSRLSI+link max{SMK2, NK × AvgRL, NK2Ti × AvgNL} same as DSRLSI

DTRLSI same as SRLSI max{SMK2, SMKTi × AvgCL, NK2}
DTRLSI+link same as DSRLSI+link same as DTRLSI

AvgRL denotes the average row length in D, i.e., the average number of terms per document. Similarly,
AvgCL denotes the average column length in D. AvgNL denotes the average number of links per document.
Ti denotes the number of inner iterations when using coordinate descent.

Table 2: Datasets statistics.
Dataset # Documents Vocabulary

Size
nnz #Links #Test Docu-

ments
#Test links
(early)

#Test links
(recent)

USPTO 40,000 38,868 16,578,274 49,421 707 813 3,609

ACL2013 18,897 27,059 9,673,340 101,878 1,966 390 16,867

The column “nnz” shows the number of non-zero entries in the document-term matrix. “#Links” shows the total number of links in
the whole dataset. “#Test Documents” shows the number of documents that were used in the test set. The last two columns show the
number of documents linked to the test documents in the early and recent halves of time spans, respectively.

to be done for every term m, which is very expensive since
M is usually large. Therefore, we use coordinate descent
to update every entry vs,mk of every vector vs,m. The loss
function in Eq. (9) can be written with respect to vs,mk as:

L(vs,mk) =
1

2
||dTs,m −Us,\kvs,m\k||22 +

β

2
(vs,mk)2

+
β

2
||vs,m\k||22 +

λs,m
2

(vs,mk − vs−1,mk)2

+
λs,m

2
||vs,m\k − vs−1,m\k||22

+
λs+1,m

2
(vs+1,mk − vs,mk)2

+
λs+1,m

2
||vs+1,m\k − vsm\k||22

=
1

2
skkv

2
s,mk −

(
rmk −

∑
l 6=k

sklvs,ml
)
vs,mk

+
β

2
v2s,mk +

λs,m
2

(vs,mk − vs−1,mk)

+
λs+1,m

2
(vs+1,mk − vs,m) + const, (10)

where sij and rij are the entries of the K ×K matrix S =
UT
s Us and the M × K matrix R = DT

s Us, respectively,
and const is a constant with respect to vs,mk. We can then
update vs,mk as:

vs,mk =
rmk −

∑
l 6=k sklvs,ml + λs,mvs−1,m + λs+1,mvs+1,m

skk + β + λs,m + λs+1,m
.

(11)

4.3 Computational Requirements
Table 1 shows the time complexity for updating each of

the U and V matrices in each model per iteration. Adding
link regularization to SRLSI increases the time complexity of
updating U by Ti×AvgNL, where Ti is the number of itera-
tions needed for performing coordinate descent and AvgNL
denotes the average number of links per document. Com-
paring SRLSI with DSRLSI, we can see that the time com-
plexity of V increases with a factor of S, since S different

term-topic matrices need to be learned, whereas by compar-
ing SRLSI with DTRLSI, the increase is by a factor of STi.
By comparing SRLSI+link and DSRLSI+link, we see that
updating U in the latter model may take more time than
the former only if the first term dominates the third one.
Finally, we see that the time complexity of updating V in
DTRLSI is larger than that of DSRLSI by a factor of Ti.

5. EXPERIMENTAL EVALUATION

5.1 Datasets
We evaluate the performance of our methods on two dif-

ferent datasets. The first is derived from the US utility
patents [1]. We used the specification section of each patent
as its content. Each patent is assigned by the US patent
office to one primary node within the International Patent
Classification (IPC classification) hierarchical classification
system based on the field of its invention. We extracted a
subset from this dataset by selecting a set of 35 IPC classes
that have a large number of documents and then randomly
retrieving a subset of documents from each IPC class that
were granted between 1970 and 2009. The set of 35 IPC
classes were selected so that to they contain related patents
(i.e., they are siblings within IPC’s hierarchical classifica-
tion system). This is done in order to create a dataset
for which the task of document similarity searcg will be
harder, as it will contain a fairly thematically homogeneous
collection of documents. We will refer to this dataset as
USPTO3. The second dataset is the 2013 release of the
Association of Computational Linguistics (ACL) Anthology
dataset (ACL2013)[21], which contains all scientific papers
published in many ACL venues between 1965 and 2013. The
datasets’ statistics are summarized in Table 2.

We performed lemmatization and removed stop words,
words of length less than three and words that occurred less
than 30 times in each dataset. We computed the weight of
each term in each document as its TF-IDF value, normalized

3The dataset used can be found here: http://goo.gl/
B1k2Yj

http://goo.gl/B1k2Yj
http://goo.gl/B1k2Yj


Table 3: Effect of link regularization on SRLSI.
USPTO ACL2013

Method NDCG(all) NDCG(early) NDCG(recent) NDCG(all) NDCG(early) NDCG(recent)
SRLSI 0.1645 0.1339 0.1740 0.1757 0.1233 0.1782
SRLSI+link(bin) 0.1684† 0.1417† 0.1767† 0.1843† 0.1455† 0.1861†
SRLSI+link(log) 0.1682† 0.1404† 0.1768† 0.1847 † ‡ 0.1477 † ‡ 0.1864†
SRLSI+link(lin) 0.1683† 0.1424 † ‡ 0.1764† 0.1853 † ‡ 0.1501 † ‡ 0.1870 † ‡
SRLSI+link(quad) 0.1674† 0.1403† 0.1758† 0.1845† 0.1535 † ‡ 0.1859†

These results are based on 60-topic models. † indicates statistical significance over SRLSI, whereas ‡ indicates
statistical significance over SRLSI+link(bin). Bold-faced entries represent the best performance obtained for each
metric.

Table 4: Effect of link regularization on DSRLSI.
USPTO ACL2013

Method NDCG(all) NDCG(early) NDCG(recent) NDCG(all) NDCG(early) NDCG(recent)
DSRLSI 0.1632 0.1370 0.1714 0.1680 0.1262 0.1700
DSRLSI+link(bin) 0.1671† 0.1425 0.1748† 0.1841† 0.1920† 0.1838†
DSRLSI+link(log) 0.1679† 0.1426 0.1758† 0.1848† 0.1906† 0.1845†
DSRLSI+link(lin) 0.1679† 0.1425 0.1758† 0.1867 † ‡ 0.1991† 0.1861 † ‡
DSRLSI+link(quad) 0.1646 0.1482 † ‡ 0.1698 0.1841† 0.2048 † ‡ 0.1832†

These results are based on 60-topic models. † indicates statistical significance over DSRLSI, whereas ‡ indicates
statistical significance over DSRLSI+link(bin). Bold-faced entries represent the best performance obtained for each
metric.

by the document length.

5.2 Evaluation Methodology and Metrics
We evaluated the performance of our methods against

the baselines on the task of document similarity search (for
patents, this task is called prior art candidate search, which
is defined as finding patent documents that may constitute
prior art for a given patent application), where the user
is interested in retrieving similar documents published in
a specific time span for query documents that were pub-
lished recently. Since we do not have relevance information
for these datasets, we followed the approach of CLEF-IP
2011 competition for prior art candidate search4 to create
the ground truth relevance scores, so we considered linked
pairs of documents to be similar. We assigned a relevance
score of one to the documents linked to the query document
and a score of zero to all other documents. We divided the
documents in each dataset according to their publication
times into different 5-year time spans. For each dataset, we
split its corresponding document-term matrix D into three
matrices: Dtrain, Dval and Dtest. We removed from D all
documents that were published in the most recent decade
and have five or more links with other documents in the
whole dataset to construct Dtrain, then we randomly and
evenly divided the removed set of documents to construct
Dval and Dtest (so the links used for validation and test
were not included during learning the models). The matrix
Dtrain was used to estimate each of the models. Then, each
document in Dtest was used as a query, where we computed
the cosine similarity between its vector and the vectors of all
the documents in Dtrain and ranked them according to their
similarity values in non-increasing order to get the ranked
list of documents returned by the model.

To assess the performance of each model, we computed
the Normalized Discounted Cumulative Gain (NDCG) score.
For each query, we ranked the documents that exist in each
time span to get an NDCG score for each of these spans.

4http://www.ir-facility.org/prior-art-search1

We report the average NDCG scores over all time spans
(NDCG (all)) as well as the average NDCG score for the
early half of the time spans (NDCG(early)) and the re-
cent half of the time spans (NDCG(recent)). This allows
us to assess the performance of each method for retrieving
similar documents that are far away in time from the query
documents. We also measured the statistical significance of
our methods against the baselines as well as our methods
against each other using one-sided t-test with a p-value of
less than 0.05.

5.3 Model Selection
We did an extensive search over the parameter space for

the various methods. The regularization parameters α and
β on U and V, respectively, were chosen from the set of
values: {0.01, 0.05, 0.1, 0.5, 1}. The link regularization pa-
rameter θ was set to one of the values: {0.1, 1, 10, 20, 30,
40, 50}, and {0.001, 0.01, 0.1, 1, 10, 20, 30} for USPTO
and ACL2013, respectively. We experimented with two val-
ues for the parameter γ in DTRLSI: γ = 1, where λsm is
in the range: [0.0198, 1] and [0.0202, 1], and γ = 0, where
λsm is in the range: [0.1681, 1] and [0.1709, 1] for USPTO
and ACL2013, respectively. Finally, we set the latent space
dimensionality in the ranges [20, 100] with a step of 20.

The matrix Dval was used to select the best perform-
ing parameters (α and β for non-link regularized models
and α, β and θ for link regularized models) in terms of the
NDCG(all) score. The matrix Dtest was then used with
these best performing parameters to get the relevance rank-
ing scores for each model.

6. EXPERIMENTAL RESULTS
We structure the presentation of our results into five parts.

The first studies the effect of incorporating link information
with static and dynamic RLSI. The second compares the
retrieval performance of dynamic RLSI with smooth and
term-time-specific transition regularization techniques. The
third examines the effect of the different link weighting func-

http://www.ir-facility.org/prior-art-search1


Table 5: Effect of link regularization on DTRLSI.
USPTO ACL2013

Method NDCG(all) NDCG(early) NDCG(recent) NDCG(all) NDCG(early) NDCG(recent)
DTRLSI 0.1629 0.1375 0.1708 0.1662 0.1270 0.1680
DTRLSI+link(bin) 0.1655† 0.1465† 0.1715 0.1848† 0.1909† 0.1845†
DTRLSI+link(log) 0.1670† 0.1486† 0.1727 0.1843† 0.1912† 0.1840†
DTRLSI+link(lin) 0.1678† 0.1488† 0.1737† 0.1819† 0.1887† 0.1815†
DTRLSI+link(quad) 0.1653† 0.1503† 0.1700 0.1860† 0.2126 † ‡ 0.1848†

These results are based on 60-topic models. † in DTRLSI+link models indicates statistical significance over DTRLSI,
whereas ‡ indicates statistical significance over DTRLSI+link(bin). Bold-faced entries represent the best performance
obtained for each metric.

Table 6: Summary of best results achieved by static and dynamic RLSI without and with link regularization.
USPTO ACL2013

Method NDCG(all) NDCG(early) NDCG(recent) NDCG(all) NDCG(early) NDCG(recent)
SRLSI 0.1645 0.1339 0.1740 0.1757 0.1233 0.1782
DSRLSI 0.1632 0.1370 0.1714 0.1680 0.1262 0.1700
DTRLSI 0.1629 0.1375 0.1708 0.1662 0.1270 0.1680
SRLSI+link(lin) 0.1683 0.1424 0.1764∗ 0.1853 0.1501 0.1870∗
DSRLSI+link(lin) 0.1679 0.1425 0.1758 0.1867 0.1991† 0.1861
DTRLSI+link(quad) 0.1653 0.1503 † ‡ 0.1700 0.1860 0.2126 † ‡ 0.1848

These results are based on 60-topic models. † indicates statistical significance over SRLSI+link, ‡ indicates statistical
significance over DSRLSI+link, and * indicates statistical significance over DTRLSI+link. Bold-faced entries represent
the best performance obtained for each metric.

tions used in link regularized models. We present the results
in these three sections using 60 dimensions, which we con-
sidered to be a good representative for all other dimensions.
The fourth presents some qualitative analysis done on the
retrieval performance of the proposed models as compared
to the baselines. Finally, we present the timing performance
for all models.

6.1 Effect of Adding Link Information to Static
and Dynamic RLSI

Tables 3 and 4 show the retrieval performance achieved
by Static and Dynamic Smooth RLSI with and without link
regularization. These results show that incorporating link
information improves the performance of both models, es-
pecially for being able to rank high the relevant documents
that were published in earlier times. This confirms our initial
hypothesis that the citation network provides important in-
formation that can be used to rank high relevant documents
whose language may have changed due to the passage of
time.

Moreover, we can see that link regularization has im-
proved the performance for both models in ACL2013 much
more than in USPTO. We believe that this is due to having
a much larger number of links with respect to the number
of documents in ACL2013 than in USPTO (as shown in Ta-
ble 2). This allowed ACL2013 documents to be much more
connected than USPTO, which as a consequence helped link
regularization in properly estimating the latent documents
representation in ACL2013.

6.2 Effect of Term-time-specific Transition Reg-
ularization on Dynamic RLSI

Table 5 shows the retrieval performance for dynamic RLSI
with term-time-specific transition regularization with and
without link regularization. Comparing DSRLSI and DTRLSI
without link regularization (as shown in Table 6), we can see
that there is no significant difference in their retrieval per-
formance. However, after adding link regularization, having

term-time-specific transition regularization achieves better
NDCG(early) scores, whereas NDCG(all) and NDCG(recent)
scores do not have significant differences among the two
schemes. This confirms our hypothesis that different terms
should have different transition regularization weights, since
terms change their senses with different rates over time, and
one way to capture this difference is based on terms’ us-
age frequency changes over time, as we explained earlier in
Section 4.2.

Note that in relation to the gains achieved due to the use
of the citation network, these results are consistent with the
results presented in Section 6.1.

6.3 Effect of Different Link Weighting Func-
tions

From Tables 3-5, we can see that by adding larger weights
to links that belong to document pairs with larger differ-
ences in their publication dates, the methods achieve better
retrieval performance than having the same weights on all
links. This confirms our intuition behind using time-aware
link weighting functions (Section 4.1.3) that the larger the
difference between the publication dates of two related doc-
uments, the more dissimilar their language use is.

By comparing the performance of these link weighting
functions, the quad function seems to outperform all other
weighting functions in terms of NDCG(early), except in SRLSI
for USPTO, whereas there is some variation in the perfor-
mance of all four functions for NDCG(recent). We believe
that this is because the quad function assigns much larger
weights to links that belong to document pairs with larger
differences in their dates, and hence it was more capable of
placing these pairs closer together in the latent space than
all other functions.

6.4 Qualitative Analysis
We also performed qualitative analysis on the retrieval

performance of SRLSI and DSRLSI with and without link
regularization, in order to study the effect of link regular-



Table 7: Titles of documents added (removed) by adding link regularization to SRLSI.
Query Title: Simultaneous Ranking and Clustering of Sentences: A Reinforcement Approach to Multi-Document Summarization
− Recognition of Linear Context-free Rewriting Systems
− Polynomial Learnability and Locality of Formal Grammars
− An Algorithm for Determining Talker Location using a Linear Microphone Array and Optimal Hyperbolic Fit
− Evaluating Discourse Processing Algorithms
− THALES: A Software Package for Plane Geometry Constructions with a Natural Language Interface
− Inherently Reversible Grammars, Logic Programming and Computability
+ Parsing with Flexibility - Dynamic Strategies and Idioms in Mind
+ Lexical Cohesion Computed by Thesaural Relations as an Indicator of the Structure of Text
+ Statistical Parsing of Messages
+ Chart Parsing of Robust Grammars
+ Text on Tap: the ACL/DCI
+ Word Association Norms, Mutual Information, and Lexicography

This list contains the documents published during the time span 1990-1995. The plus (minus) sign denotes the documents that
were added to (removed from) the top-10 retrieved documents by SRLSI+link as compared to SRLSI.

Table 8: Titles of documents added and removed by adding link regularization to DSRLSI.
Query Title: Simultaneous Ranking and Clustering of Sentences: A Reinforcement Approach to Multi-Document Summarization
− Semantic-Head-Driven Generation
− Comparing Two Grammar-based Generation - A Case Study
− A Uniform Architecture for Parsing, Generation and Transfer
− Generation and Translation - Towards A Formalism-Independent Characterization
− Generating from a Deep Structure
− Reversible Unification Based Machine Translation
− Handling Pragmatic Information With A Reversible Architecture
− Optimization Algorithms of Deciphering as the Elements of a Linguistic Theory
− An Augmented Context Free Grammar for Discourse
+ Word Association Norms, Mutual Information, and Lexicography
+ Noun Classification from Predicate Argument Structures
+ Automatic Learning for Semantic Collocation
+ A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text
+ Automatic Acquisition of Hyponyms on Large Text Corpora
+ Surface Grammatical Analysis for the Extraction of Terminological Noun Phrases
+ Class-Based n-gram Models of Natural Language
+ A Fast Algorithm for the Generation of Referring Expressions
+ Lexical Cohesion Computed by Thesaural Relations as an Indicator of the Structure of Text

This list contains the documents published during the time span 1990-1995. The plus (minus) sign denotes the documents that
were added to (removed from) the top-10 retrieved documents by DSRLSI+link as compared to DSRLSI.

ization on placing related documents with large differences
in their publication dates in the latent space. We randomly
selected some query documents and analyzed their top-10
lists of documents retrieved by each model from the pool of
documents published during the period 1990-1995, by look-
ing at their titles. Tables 7 and 8 show the titles of the list
of documents that were removed from the top-10 retrieved
documents list after adding link regularization to SRLSI and
DSRLSI, respectively, for a sample query document, as well
as the list of documents that substituted them. Both SRLSI
+link and DSRLSI+link were able to rank higher documents
related to text analysis (compared to SRLSI and DSRLSI,
respectively) that used different language from the query
document.

For example, the retrieved paper entitled “Lexical Cohe-
sion Computed by Thesaural Relations as an Indicator of
the Structure of Text” used the term “lexical cohesion” to
define a set of words that represent the same topic. The
same definition is used in the query document by using the
term “topic themes”, which shows an example of term-to-
term evolution that was captured by link regularization.

6.5 Timing Performance of the Models
Table 9 shows the timing performance for learning each

model. As shown in the table, adding link regularization
results in a slight increase in the time taken to learn each

model. Comparing SRLSI with DSRLSI and DSRLSI with
DTRLSI (without and with link regularization), we can see
that the time is approximately the double, e.g., DSRLSI
takes double the time that SRLSI takes.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented methods for document similar-

ity search that use two types of information to improve the
retrieval performance in longitudinal document collections:
citation information and changes in terms’ usage frequency
over time. We used these two types of information to reg-
ularize the latent representation of documents and terms
while estimating them using static and dynamic topic mod-
els. We added link regularization to both static and dynamic
topic models in order to bring closer together related doc-
uments that might have different content. Moreover, we
used term-time-specific transition regularization in dynamic
topic models to better regularize the transitions between
the latent representation of terms in consecutive time spans
according to their usage frequency changes instead of hav-
ing smooth transition regularization for all terms in all time
spans.

We compared the retrieval performance of our proposed
models against the existing baselines on the task of docu-
ment similarity search, where the user is interested in search-
ing the collection for documents that are similar to a re-



Table 9: Timing Performance for All Models in Minutes.
SRLSI SRLSI+link DSRLSI DSRLSI+link DTRLSI DTRLSI+link

USPTO 84 107 175 217 383 416

ACL2013 30 42 111 133 265 283

These times are averaged over all the runs when using 60 dimensions and all combinations
of the other parameters (see Section 5.3) for each model.

cent query document. Our results (summarized in Table 6)
showed that incorporating link information with both static
and dynamic RLSI is useful for similarity search, especially
for retrieving relevant documents that were written at far
away dates from the queries. In addition, we showed that
link regularized dynamic topic models with term-time-specific
transition regularization is better than with having smooth
transition regularization for early document’s retrieval, since
term-time-specific transition regularization allows the terms
to have transitions with different rates over time based on
their frequency changes.

In the future, we plan to extend this work by leveraging
other signals of language change, such as changes in the POS
distributions of each term over time, which were studied
in [17]. We believe that these signals will help further im-
prove the retrieval performance of dynamic RLSI along with
the changes in the terms’ usage frequency, as was shown in
the qualitative analysis done in [17].
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