
Exploring Optimizations on Shared-memory Platforms for Parallel Triangle
Counting Algorithms

Ancy Sarah Tom∗, Narayanan Sundaram†, Nesreen K. Ahmed†, Shaden Smith∗, Stijn Eyerman‡,
Midhunchandra Kodiyath‡, Ibrahim Hur‡, Fabrizio Petrini†, George Karypis∗

∗Dept. of Computer Science & Engineering, University of Minnesota,
†Parallel Computing Lab, Intel Corporation, ‡Intel Corporation
{tomxx030}@umn.edu, {shaden, karypis}@cs.umn.edu,

{narayanan.sundaram, nesreen.k.ahmed, stijn.eyerman, midhunchandra.kodiyath, ibrahim.hur, fabrizio.petrini}@intel.com

Abstract—The widespread use of graphs to model large scale
real-world data brings with it the need for fast graph analytics.
In this paper, we explore the problem of triangle counting,
a fundamental graph-analytic operation, on shared-memory
platforms. Existing triangle counting implementations do not
effectively utilize the key characteristics of large sparse graphs
for tuning their algorithms for performance. We explore such
optimizations and develop faster serial and parallel variants
of existing algorithms, which outperform the state-of-the-art
on Intel manycore and multicore processors. Our algorithms
achieve good strong scaling on many graphs with varying
scale and degree distributions. Furthermore, we extend our
optimizations to a well-known graph processing framework,
GraphMat, and demonstrate their generality.

1. Introduction

Finding the number of triangles in a graph is an important
operation in network analysis and graph mining with ex-
tensive applications. Among others, it is used to compute
certain graph characteristics (e.g., clustering coefficient and
transitivity ratio), detect community structure, study motif
occurrences, study and detect spamming activities, and un-
derstand the structure of biological networks [1, 2, 3, 4].

In recent years, driven by the size of the graphs that
needs to be analyzed, there has been significant research
in developing efficient and scalable serial and parallel algo-
rithms for computing the exact and approximate number of
triangles [3, 5, 6, 7, 8, 9].

Our work here, motivated by the recent GraphChal-
lenge [10], seeks to further the design space of existing
serial and shared-memory parallel exact triangle counting
approaches. We present various optimizations that leverage
characteristics of modern processor architectures and key
properties of sparse, real-world and synthetic graphs to
speed up the computations performed by the serial algo-
rithms. We show that our serial algorithms are over 9× faster
than competing serial algorithms on a wide range of real
and synthetic graphs. Furthermore, we show how these op-
timizations can be incorporated into GraphMat [11, 12], and
achieve comparable performance advantages. We present an
OpenMP parallel formulation of our serial algorithms that
achieve good strong scaling performance on Intel’s Haswell
and Intel’s Knights Landing architectures.

2. Definitions and notations

We will assume that the graphs that we operate on are
simple and undirected and are represented using the standard
G = (V,E) notation. We will use Adj(vi) to denote the
adjacency list of vi; i.e., the set of vertices that are adjacent
to vi, Adj>(vi) to denote the subset of vi’s adjacent vertices
that are numbered higher than vi, and Adj<(vi) to denote
the subset of vi’s adjacent vertices that are numbered lower
than vi. We will use d(vi) to denote the degree of vi, i.e.,
d(vi) = |Adj(vi)|. A triangle is a set of three vertices
{vi, vj , vk} if the edges (vi, vj), (vi, vk), and (vj , vk) exist
in E. The problem of triangle counting is to compute the
total number of unique triangles in G.

3. Background and related work

The computations underlying triangle counting involve find-
ing the common vertices in the adjacency lists of two
adjacent vertices, since the number of triangles in which
an edge (vi, vj) belongs to is equal to |Adj(vi)∩Adj(vj)|.
This operation is commonly implemented using either an
approach that jointly traverses the two adjacency lists or
an approach that relies on a map data structure. In the
list-based approach, the adjacency lists of all vertices are
initially sorted in increasing order based on vertex id, and
then, for each edge (vi, vj), the adjacency lists of vi and
vj are jointly traversed to find the common vertices. The
complexity of the joint traversal is O(d(vi) + d(vj)). A
variation of this approach is called OrderedMerge by Shun
and Tangwongsan [7] and AdjacencyIntersection by Pari-
malarangan et al. [8]. In the map-based approach, for each
edge (vi, vj), an auxiliary data structure is used to mark the
set of vertices that are in Adj(vi) (or Adj(vj)), and Adj(vj)
(or Adj(vi)) is then traversed to probe the map and identify
the common vertices. When the cost of creating the map is
amortized over different pairs of edges, then the complexity
of this traversal is O(d(vj)) (or O(d(vi))). Different ap-
proaches have been developed for implementing the map. In
their AdjacencyMarking approach, Parimalarangan et al. [8]
use bit vectors for marking the vertices that are present.
In their OrderedHash approach, Shun and Tangwongsan [7]
use a single hash table to store all the adjacency lists in the
graph prior to performing any adjacency list intersections.
However, this increases the overall memory requirements of
the algorithm.

In order to ensure that each triangle is enumerated only
once, most algorithms for triangle counting enumerate them



by imposing an ordering on their vertices. The two most
common approaches [7, 8] are to enumerate the triangles in
a 〈vi, vj , vk〉 or a 〈vj , vi, vk〉 order where i < j < k. In the
〈vi, vj , vk〉 order, for vertex vi, all of its higher-numbered
adjacent vertices are considered and the intersection of their
adjacency lists involving vertices that are numbered higher
than vj are used to identify the possible vk vertices that form
the triangles. A similar approach is used in the 〈vj , vi, vk〉
ordering but, in this case, the starting vertex is vj , and the
candidate vis are vj’s adjacent vertices that are numbered
lower than itself. A result of the above orderings is that the
original undirected graph is treated as a directed graph and
the operations are performed by only considering the upper
triangular portion of the adjacency matrix. (In the case of
〈vj , vi, vk〉 ordering, the candidate vi vertices correspond to
the vertices that are incident on vj .) Finally, when the trian-
gles are enumerated using the above orderings, it was shown
that re-ordering the vertices in the graph in non-decreasing
degree prior to triangle counting leads to significantly better
performance [7, 8]. This re-ordering creates an adjacency
matrix whose density progressively increases and since the
upper triangular part of that matrix is used, the adjacency
lists of the high degree vertices contain a relatively small
number of higher-numbered vertices, which leads to efficient
computations.

4. Methods

We developed various list- and map-based triangle counting
algorithms that incorporate different optimizations for en-
hancing cache performance and reducing the overall amount
of computations. These algorithms share many high-level
characteristics and optimizations of the prior research (Sec-
tion 3) and like them, they utilize a non-decreasing degree
ordering of the vertices, operate on the upper-triangular
part of the adjacency matrix (we will use indicating that
by representing the graph as G(V,EU ) ), and pre-sort the
adjacency lists of each vertex so its adjacent vertices are in
increasing order. In addition, we utilize a CSR-based storage
scheme for the graph’s sparse adjacency structure.

4.1. List-based approach

The pseudo-code of our list-based approach, referred to as
list, is shown in Algorithm 1. For each vertex vi and its
adjacent vertex vj , we traverse their respective adjacency
lists to find the number of common vertices between them,
which is eventually added to the total triangle count. Since
the triangles are enumerated using the 〈vi, vj , vk〉 ordering,
we keep track of vj’s position within vi’s advancing list and
the scanning of vi’s list for computing the intersection starts
from the position after vj .

4.2. Map-based approaches

The overall structure of the first map-based approach that we
developed, referred to as hmap-ijk, is shown in Algorithm 2.

Algorithm 1 List-based triangle counting approach

1: procedure TC-LISTBASED( G(V,EU ) )
2: tc← 0 . Initialize triangle count in G
3: for all vi ∈ V do
4: for all vj ∈ Adj>(vi) do
5: tc← tc+ |Adj>(vi) ∩ Adj>(vj)|
6: return tc . Total triangle count in G

Algorithm 2 Map-based triangle counting approach

1: procedure TC-MAPBASED( G(V,EU ) )
2: tc← 0 . Initialize triangle count in G
3: for i ∈ {1, . . . ,msz} do . msz is the size of Map
4: Map[i]← 0

5: for all vi ∈ V do
6: for all vj ∈ Adj>(vi) do
7: Map.hash(vj)
8: for all vj ∈ Adj>(vi) do
9: for all vk ∈ Adj>(vj) do

10: if Map.exists(vk) then
11: tc← tc+ 1
12: for all vj ∈ Adj>(vi) do
13: Map.delete(vj)
14: return tc . Total triangle count in G

This algorithm follows the 〈vi, vj , vk〉 ordering scheme and
uses a hash-map to mark the adjacent vertices of vi. We
adopt a fast hashing scheme based on bitwise & operation,
which uses the lower l bits of the vertex id as the hash
value. This scheme leads to a hash-map whose size is 2l.
We choose a power of two for the size of the hash-map
that is just greater than the maximum number of non-zeros
along the rows of the upper-triangular adjacency matrix.
Furthermore, in order to reduce the collisions incurred while
using linear probing, we increase the hash-map size by a
factor of 16. Note that our algorithm just allocates that hash-
map array once and re-uses it for all vis.

Since the vertices are sorted in a non-decreasing degree
order, for each edge (vi, vj) with vi < vj , the length of
vi’s adjacency list will tend to be smaller than that of vj’s.
Consequently, for all pairs of vertices whose adjacency lists
need to be intersected, the hmap-ijk approach will store
into the hash table the shorter adjacency list and use the
longer adjacency list to probe it. Therefore, if vj’s adjacency
list is considerably larger than that of vi’s, then it is more
beneficial to employ the 〈vj , vi, vk〉 ordering and hash vj’s
adjacency list instead. To process vertices in this fashion,
for each vertex vj , we need to find all of its incident
vertices vi. This is achieved by creating a transpose of
the directed graph, or, in other terms, the lower-triangular
part of the adjacency matrix. In addition to this, we also
encode offsets in this data structure to quickly locate the
position in vi’s adjacency list that stores vertices that are
numbered higher than vj . This enables us to weed out
unnecessary intersection operations, which would otherwise



result in no common vertices. We refer to this approach
as hmap-jikv1. Additionally, certain vertices are connected
to all other vertices in the graph. These can be compared
to the hub vertices that are found in real world graphs.
On detecting such “full” vertices, we can simply take the
degree of vertex vi, d(vi), and add it to the triangle count.
We decreased our operation count considerably with this
optimization. This “full” vertex optimization is incorporated
into the list approach as well.

Since the graph is re-ordered in non-decreasing degree,
the high-degree vertices will be numbered last and those
will appear as fairly dense columns at the end of the adja-
cency matrix. In order to speedup the intersection of these
columns, we split the hash table into two parts, the head
and the tail. The tail is implemented as a direct access array
and stores the high-numbered vertices, whereas the head is
implemented using the hmap-jikv1 approach and stores the
rest of the vertices. This approach allows us, without using
too much memory and incurring large TLB costs, to quickly
check if the most frequently occurring vertices are present
in the map or not. To determine the size of the tail part, we
perform a parameter search of the size based on the degree
of the sorted vertices and capture it in an ad-hoc fashion.
We refer to this version as hmap-jikv2.

4.3. Parallelization

We developed OpenMP-based shared-memory formulations
of the serial algorithms described in the previous sections.
Our parallelization effort focused both on the computations
performed during triangle counting and those performed
during pre-processing. The parallelization of the triangle-
counting computations is quite straightforward. The work
can be decomposed over the outermost loop as each of
the vertices can be processed independently. In the case of
the 〈vi, vj , vk〉 ordering, the outermost loop involves vertex
vi, whereas in the 〈vj , vi, vk〉 ordering, the outermost loop
involves vertex vj . As the vertices in a real-world graph
exhibit skewed degree distributions, a dynamic partition-
ing of the vertices with a small chunk size handles the
load imbalance that a static partitioning would otherwise
introduce. The parallelization of the computations performed
during pre-processing is considerably more challenging and
involves the following: degree-based sorting, creating the
re-ordered upper-triangular adjacency matrix, sorting the
adjacency lists in increasing vertex id order, and transposing
the upper-triangular matrix to obtain the lower-triangular
matrix for the 〈vj , vi, vk〉 enumeration order. We deployed
various strategies for performing the above computations
concurrently that (i) split the various computations into
multiple phases so that subsequent phases can be done
concurrently and (ii) utilize OpenMP atomics during the
transpose operation.

4.4. Extending the optimizations to GraphMat

GraphMat is a parallel and distributed graph processing
framework that uses a vertex programming frontend and

TABLE 1: Datasets used in the experiments.

Graph #vertices #edges #triangles

cit-Patents [10] 3,774,768 16,518,947 7,515,023
soc-orkut [13] 2,997,166 106,349,209 524,643,952
rmat22 [10] 2,393,285 64,097,004 2,067,392,370
rmat23 [10] 4,606,314 129,250,705 4,549,133,002
rmat24 [10] 8,860,450 260,261,843 9,936,161,560
rmat25 [10] 17,043,780 523,467,448 21,575,375,802
twitter [14] 41,652,230 1,202,513,046 34,824,916,864
friendster [10] 119,432,957 1,799,999,986 191,716

a sparse matrix backend to enable both high performance
and productivity for graph algorithms [11, 12]. In order to
implement the map-based algorithms (Section 4.2) using
GraphMat, which as our experiments will show are con-
siderably faster than the list-based approach, we use CSR
representation for the graphs instead of GraphMat’s default
DCSC representation since triangle counting requires the
neighbor list of each vertex. We implement the map-based
algorithm by implementing a graph program where each
vertex sends its in-neighbors its vertex id and a pointer to
its neighbor list (from the CSR representation). A vertex,
on receiving the message, sets a thread local hash map
to include all its neighbor and then compares the map
against the incoming neighbor list for matches. Each match
corresponds to a triangle. These counts are then reduced per-
vertex and then across all vertices. This fits neatly in a vertex
programming model. Since GraphMat already implements
optimized generalized sparse matrix-sparse vector multipli-
cation routines, it is able to utilize the backend optimization
(multithreading, load balancing across threads etc.) without
specialized optimizations for triangle counting.

5. Experimental methodology

Datasets. We used several large-scale, real-world and syn-
thetic graphs with varying degree distributions to evaluate
the performance of our algorithms. Various statistics related
to these graphs and the sources from where they were
obtained are shown in Table 1. We converted all the graph
datasets to undirected, simple graphs.

Experimental setup. Our experiments were conducted
on three architectures: (i) A dual socket system with
ten-core Intel Xeon E5-2650v3 (Haswell) processors,
totaling to 20 cores and 40 hypertheads, with 25MB of
last-level cache and 396GB of main memory. (ii) A dual
socket twenty-two core Intel Xeon E5-2699v4 (Broadwell)
processors, totaling to 44 cores and 88 hyperthreads, with
128GB of main memory. (iii) A 68-core Intel Xeon Phi
CPU 7250 processors (KNL) and 272 hyperthreads, with
16GB of MCDRAM and 98GB of DDR4. Our programs,
developed using C and OpenMP, were compiled using GCC
(v4.9.2) on Haswell and Intel C/C++ compilers (v17.0.3)
on KNL with -O3 optimization. GraphMat was compiled
with Intel C/C++ compilers (v17.0.2). Additionally, we
set environment variables OMP_PROC_BIND=TRUE and
KMP_AFFINITY=granularity=fine,compact,1



TABLE 2: Serial runtimes on Haswell and KNL.

Haswell KNL

list hmap-ijk hmap-jikv1 hmap-jikv2 list hmap-ijk hmap-jikv1 hmap-jikv2
Graph ppt tct ppt tct ppt tct ppt tct ppt tct ppt tct ppt tct ppt tct

cit-Patents 0.8 1.0 0.8 0.9 1.7 0.9 1.7 0.7 2.5 4.7 2.5 5.1 5.2 5.6 5.2 5.1
soc-orkut 4.6 48.1 4.5 32.3 11.1 17.9 11.1 18.4 14.3 130.0 14.2 105.3 30.1 54.8 30.0 70.9
rmat22 3.0 101.0 2.9 75.0 5.1 16.7 5.2 15.9 9.1 286.8 9.1 253.7 13.9 36.6 13.9 37.7
rmat23 6.2 249.3 6.3 185.0 11.0 41.1 10.8 37.6 18.7 708.5 18.7 627.4 30.2 92.7 30.2 88.2
rmat24 13.0 606.3 13.0 450.9 23.9 100.2 24.1 87.9 38.2 1745.5 38.2 1550.8 65.2 244.3 65.3 207.3
rmat25 27.4 1488.9 27.3 1112.7 53.2 241.2 53.3 205.2 78.2 4289.6 78.2 3854.1 140.8 481.2 139.2 486.2
twitter 56.4 1642.7 56.3 1218.0 123.8 434.5 123.5 404.4 152.1 4342.3 151.9 3993.4 302.9 902.9 301.4 952.3
friendster 100.9 752.2 101.2 469.7 261.4 332.8 261.4 334.0 263.4 2079.6 263.4 1652.6 679.4 967.9 678.4 1242.1

The columns labeled “ppt” show the time (in seconds) required by the pre-processing phase.
The columns labeled “tct” show the time (in seconds) required by the triangle counting phase.

to bind threads to cores in Xeon and Xeon Phi, respectively.
In all our experiments we used a chunk size of 16 to
dynamically partition the outermost loop’s iterations.

Comparison algorithms. We used OrderedMerge by Shun
and Tangwongsan [7] to compare against our implementa-
tions. It was compiled with the same versions of GCC and
Intel C/C++ compilers on Haswell and KNL, respectively.
In addition to this, we ran the serial baselines provided
by GraphChallenge website [10] to compare our runtimes
against that of minitri, a simple, triangle-based data analytics
code [15] on Haswell.

6. Results and discussion

6.1. Serial performance

Table 2 shows the amount of time required by our triangle-
counting algorithms on Haswell and KNL for the different
graphs. Focusing on the performance on Haswell, we see
that for all but the smallest cit-Patents graph, the triangle-
counting time of hmap-ijk is 32%–60% lower than that of
list. Similar trends are observed on KNL, but hmap-ijk’s
performance advantage is somewhat lower, ranging from 9%
to 25%. These results show that the hash-map approach used
by hmap-ijk is more efficient in computing the intersection
of the adjacency lists over list-traversal and that it benefits
from Haswell’s larger caches.

Comparing the performance of the 〈vj , vi, vk〉 enumer-
ation order over 〈vi, vj , vk〉, we see that the former leads
to significantly lower runtimes. With the exception of cit-
Patents, the triangle-counting time of hmap-jikv1 is con-
siderably smaller than that of hmap-ijk. On Haswell, it is
4.1×–4.4× faster for the rmat graphs and 1.4×–2.8× faster
for the other graphs, whereas on KNL the corresponding
figures are 6.8×–8.0× and 1.7×–4.4×, respectively. KNL’s
higher gains can be attributed to the fact that hmap-jikv1
does a better job in utilizing the KNL’s smaller per-core
caches than hmap-ijk.

Comparing the two variants of the 〈vj , vi, vk〉 enumer-
ation order on Haswell, we see that hmap-jikv2 leads to
a 1%–17% lower triangle-counting times over hmap-jikv1.

However, hmap-jikv2’s performance on KNL is mixed. For
the rmat graphs, it is 8%–17% faster than hmap-jikv1,
whereas, for the real-world graphs, hmap-jikv1 is 4%–29%
faster than hmap-jikv2. KNL’s mixed performance can be
partially attributed to the fact that the denser portions of the
real-world graphs are smaller; thus, limiting the potential
gains of using the tail array in hmap-jikv2. This behaviour
is also observed with some graphs on Haswell. However,
this is something that we are still investigating.

Finally, comparing the pre-processing times of the dif-
ferent schemes, we see that the variants using the 〈vj , vi, vk〉
enumeration ordering, require more time than the other two.
This is due to the additional cost of transposing the upper-
triangular adjacency matrix. Also note that as our various
optimizations were able to significantly reduce the time
required for triangle counting, the pre-processing time ends
up requiring a significant fraction of the overall runtime.

TABLE 3: Parallel runtimes and speedups on Haswell and
KNL.

Haswell KNL

best best best best best best
hmap hmap hmap hmap hmap hmap
serial parallel parallel serial parallel parallel

Graph times times speedup times times speedup

cit-Patents 2.41b 0.38a 6.3× 10.22b 0.62a 16.5×
soc-orkut 28.98a 2.08a 13.9× 84.90a 1.91a 44.5×
rmat22 21.06b 1.74b 12.1× 50.53a 1.43b 35.3×
rmat23 48.38b 3.91b 12.4× 118.38b 2.65b 44.7×
rmat24 112.01b 8.79b 12.7× 272.65b 5.60b 48.7×
rmat25 258.48b 20.00b 12.9× 622.05a 12.25b 50.7×
twitter 527.83b 47.16b 11.2× 1205.83a 32.95a 36.6×
friendster 594.24a 49.62b 11.9× 1647.33a 35.24a 46.8×

The speedups obtained by the best parallel hmap-jik version over the
best serial hmap-jik version on Haswell and KNL.
On Haswell, the best times/speedups were obtained using 40 threads

and 136 threads on KNL.
The speedups are computed by taking into account the overall time

required by the algorithm, which includes the pre-processing and the
triangle-counting times.
The superscript a denotes that hmap-jikv1 is the best method, whereas

the superscript b denotes that hmap-jikv2 is the best method.
The times are in seconds.



4 8 16 32 45
#threads

4

8

16

32

45

re
la

tiv
e 

sp
ee

du
ps

rmat25 (Haswell)

hmapjikv1 (/v2)-ppt
hmapjikv1-tct
hmapjikv2-tct

4 8 16 32 45
#threads

4

8

16

32

45

re
la

tiv
e 

sp
ee

du
ps

twitter (Haswell)

4 8 16 32 45
#threads

4

8

16

32

45

re
la

tiv
e 

sp
ee

du
ps

friendster (Haswell)

5 10 20 40 80 160 320
#threads

5

10

20

40

80

160

320

re
la

tiv
e 

sp
ee

du
ps

rmat25 (KNL)

5 10 20 40 80 160 320
#threads

5

10

20

40

80

160

320

re
la

tiv
e 

sp
ee

du
ps

twitter (KNL)

5 10 20 40 80 160 320
#threads

5

10

20

40

80

160

320

re
la

tiv
e 

sp
ee

du
ps

friendster (KNL)

Figure 1: A log-log plot demonstrating the parallel scaling of hmap-jikv1 and hmap-jikv2 on Haswell and KNL. The scaling of pre-
processing (ppt) and triangle counting (tct) times are shown separately. The scaling of the pre-processing step is plotted only once as it
is the same for both hmap-jikv1 and hmap-jikv2. The runtime of the parallel algorithm on one thread was used as a baseline to compute
the speedups.

6.2. Parallel performance and scaling

Table 3 shows the best overall speedups obtained by our
OpenMP formulations of the hmap-jikv1 and hmap-jikv2
methods on Haswell and KNL. Compared to our best
performing serial baselines, our parallel formulations are
on average 40.48× faster on KNL and 11.68× faster on
Haswell.

Figure 1 plots the speedups achieved by hmap-jikv1 and
hmap-jikv2 for the twitter, friendster and rmat25 graphs.
Both hmap-jikv1 and hmap-jikv2 demonstrate similar scaling
capabilities. We also note a slight drop in the speedups on
KNL with 272 threads due to the effect of hyperthreading.

6.3. GraphMat performance

Table 4 shows GraphMat’s parallel runtimes on Broadwell
using 88 threads. For the core triangle counting kernel,
GraphMat is only ∼ 20% slower than the corresponding
hmat-jikv1 algorithm for the rmat25 graph, demonstrating
that our algorithm generalizes to other graph frameworks
(and GraphBLAS) as well. GraphMat spends more time
on pre-processing compared to the native implementation.
This is because GraphMat only reads files in mtx format,
which makes pre-processing and CSR construction more
expensive. This can be rectified in the future by supporting
other input format in GraphMat.

TABLE 4: GraphMat triangle counting run-
times on Broadwell.

Graph ppt tct total

cit-Patents 1.24 0.21 1.45
soc-orkut 5.05 0.77 5.82
rmat22 3.86 0.84 4.70
rmat23 7.53 1.82 9.35
rmat24 15.25 4.21 19.46
rmat25 30.97 9.43 40.40
twitter 95.44 24.37 119.81

“ppt” is the pre-processing time in seconds.
“tct” is the triangle-counting time in seconds.
“total” is ppt+tct.

6.4. Comparison with previous approaches

Comparing the serial baseline provided on the GraphChal-
lenge website [10], minitri [15] took 229.656 seconds to
count the triangles in cit-Patents on Haswell. Our best-
performing serial algorithm on that dataset requires 1.7
seconds (hmap-ijk), which corresponds to a 135× speedup.
On the rmat22 graph, minitri required more than two hours
(we killed the process after that time), whereas our best
performing serial algorithm required just 21.06 seconds
(hmap-jikv2). We did not run more experiments using minitri
due to the long running hours.

We compare our work with the OrderedMerge algorithm
as it achieves the best overall performance [7]. Table 5
shows the results of these comparisons. These results show



TABLE 5: Comparisons with the state of the art on Haswell and KNL.

Haswell KNL

best best ordered- ordered- hmap best best ordered- ordered- hmap
hmap hmap merge merge parallel hmap hmap merge merge parallel

Graph serial parallel serial parallel speedup serial parallel serial parallel speedup

cit-Patents 2.41b 0.38a 1.97 0.17 10.22b 0.62a 6.74 0.09
soc-orkut 28.98a 2.08a 64.45 8.36 4.02× 84.90a 1.91a 126.00 1.75
rmat22 21.06b 1.74b 153.50 13.30 7.64× 50.53a 1.43b 324.00 4.75 3.32×
rmat23 48.38b 3.91b 380.00 35.87 9.17× 118.38b 2.65b 796.50 10.97 4.14×
rmat24 112.01b 8.79b 916.50 87.23 9.92× 272.65b 5.60b 1950.00 26.83 4.79×
rmat25 258.48b 20.00b 2210.00 211.00 10.55× 622.05a 12.25b 4750.00 66.90 5.46×
twitter 527.83b 47.16b 2050.00 1250.00 26.51× 1205.83a 32.95a 4910.00 69.70 2.12×
friendster 594.24a 49.62b 610.00 57.50 1.16× 1647.33a 35.24a

Serial and parallel runtimes in seconds of our best-performing map-based algorithms and the best-performing algorithm (ordered-merge) of [7].
The reported times are the overall time required by the algorithms, which include the pre-processing and the triangle-counting times.
The speedup is computed by dividing the parallel runtime of our algorithms against the parallel runtime of ordered-merge.
On Haswell, the parallel results for our approaches and ordered-merge were obtained using 40 threads. On KNL, the parallel results for our

approaches were obtained using 136 threads and 272 threads for ordered-merge as that number of threads achieved the best performance.
Underlined entries correspond to the best-performing scheme.
The superscript a denotes that hmap-jikv1 is the best method, whereas the superscript b denotes that hmap-jikv2 is the best method.

that with the exception of the small graphs, the serial run-
times of our map-based algorithms are considerably faster
than the corresponding runtimes of OrderedMerge. More-
over, comparing the times of OrderedMerge against our list-
based approach (Table 2) we can see that list is faster than
OrderedMerge as well. The performance advantage of our
approaches also hold with respect to the parallel runtimes.
However, we observe that the parallel runtime of hmap-jikv2
on friendster [10] is very close to that of OrderedMerge. As
friendster is an extremely sparse graph, with very few tri-
angles for a graph of its scale, the pre-processing steps per-
formed does not greatly benefit the triangle counting compu-
tation. Thus, pre-processing dominates the overall runtime
and leads to similar runtimes between OrderedMerge and
hmapjik-v2. Furthermore, because the pre-processing steps
of our 〈vj , vi, vk〉 enumeration approaches have not yet been
parallelized as effectively as the triangle-counting step, the
relative parallel performance advantage of our algorithms
on KNL is somewhat lower than that of the corresponding
serial algorithms. This is shown in Figure 1.

Because we did not have access to the code of [8],
we were not able to perform direct comparisons. However,
according to the results in [8], their triangle counting al-
gorithms outperforms OrderedMerge by 2.33× on a dual-
socket 8-core Intel Xeon E5 2680 system, and 2.44× (ge-
ometric mean of speedups) on Intel Xeon Phi SE10P co-
processor [8]. This suggests that our tuned and optimized
approaches perform better than the algorithms in [8].

7. Conclusion

In this paper, we presented parallel triangle counting algo-
rithms that are tuned to utilize features of modern proces-
sor architectures and characteristics of large sparse graphs,
for efficient processing on shared-memory platforms. Our
comprehensive experimental evaluations showed that these
algorithms achieve efficient performance and strong scaling

on Intel Xeon processors. We also demonstrate that these
algorithms can be generalized to other graph processing
frameworks by porting them to GraphMat.

Acknowledgments

This work was supported in part by NSF (IIS-0905220, OCI-
1048018, CNS-1162405, IIS-1247632, IIP-1414153, IIS-
1447788), Army Research Office (W911NF-14-1-0316), In-
tel Software and Services Group, and the Digital Technology
Center at the University of Minnesota. Access to research
and computing facilities was provided by the Digital Tech-
nology Center and the Minnesota Supercomputing Institute.

References
[1] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-

worldnetworks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.
[2] M. Girvan and M. E. Newman, “Community structure in social

and biological networks,” Proceedings of the national academy of
sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[3] M. Latapy, “Main-memory triangle computations for very large
(sparse (power-law)) graphs,” Theoretical Computer Science, vol. 407,
no. 1-3, pp. 458–473, 2008.

[4] N. Shrivastava, A. Majumder, and R. Rastogi, “Mining (social) net-
work graphs to detect random link attacks,” in Data Engineering,
2008. ICDE 2008. IEEE 24th International Conference on. IEEE,
2008, pp. 486–495.

[5] S. Arifuzzaman, M. Khan, and M. Marathe, “Patric: A parallel algo-
rithm for counting triangles in massive networks,” in Proceedings of
the 22nd ACM international conference on Information & Knowledge
Management. ACM, 2013, pp. 529–538.

[6] O. Green, P. Yalamanchili, and L.-M. Munguı́a, “Fast triangle count-
ing on the gpu,” in Proceedings of the 4th Workshop on Irregular
Applications: Architectures and Algorithms. IEEE Press, 2014, pp.
1–8.

[7] J. Shun and K. Tangwongsan, “Multicore triangle computations with-
out tuning,” in Data Engineering (ICDE), 2015 IEEE 31st Interna-
tional Conference on. IEEE, 2015, pp. 149–160.

[8] S. Parimalarangan, G. M. Slota, and K. Madduri, “Fast parallel triad
census and triangle listing on shared-memory platforms,” in Parallel
and Distributed Processing Symposium Workshop (IPDPSW), 2017
IEEE International. IEEE, 2017.



[9] S. Arifuzzaman, M. Khan, and M. Marathe, “Distributed-memory
parallel algorithms for counting and listing triangles in big graphs,”
arXiv preprint arXiv:1706.05151, 2017.

[10] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and
J. Kepner, “Static graph challenge: Subgraph isomorphism,” IEEE
HPEC, 2017.

[11] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey, “Graphmat: High
performance graph analytics made productive,” Proc. VLDB Endow.,
vol. 8, no. 11, pp. 1214–1225, Jul. 2015. [Online]. Available:
http://dx.doi.org/10.14778/2809974.2809983

[12] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L.
Willke, and P. Dubey, “Graphpad: Optimized graph primitives for
parallel and distributed platforms,” in 2016 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), May 2016, pp.
313–322.

[13] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.
[Online]. Available: http://networkrepository.com

[14] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 591–600.

[15] M. M. Wolf, J. W. Berry, and D. T. Stark, “A task-based linear
algebra building blocks approach for scalable graph analytics,” in
High Performance Extreme Computing Conference (HPEC), 2015
IEEE. IEEE, 2015, pp. 1–6.


