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Abstract. Alpha-helical transmembrane proteins mediate many key bi-
ological processes and represent 20%–30% of all genes in many organ-
isms. Due to the difficulties in experimentally determining their high-
resolution 3D structure, computational methods to predict the location
and orientation of transmembrane helix segments using sequence infor-
mation are essential. We present, TOPTMH a new transmembrane he-
lix topology prediction method that combines support vector machines,
hidden Markov models, and a widely-used rule-based scheme. The con-
tribution of this work is the development of a prediction approach that
first uses a binary SVM classifier to predict the helix residues and then
it employs a pair of HMM models that incorporate the SVM predictions
and hydropathy-based features to identify the entire transmembrane he-
lix segments by capturing the structural characteristics of these proteins.
TOPTMH outperforms state-of-the-art prediction methods and achieves
the best performance on an independent static benchmark.

1 Introduction

Transmembrane helical (TMH) proteins play a crucial role in several cellular
functions, such as cell-to-cell communication, cell signaling, and transportation
of ions and small molecules [3], and are of key interest to the pharmaceutical in-
dustry as approximately 50% of all existing drugs are targeting transmembrane
proteins [15]. Experimental determination of the three dimensional structure of
TMH proteins is challenging, because they are difficult to crystallize and are
too large for NMR studies [21]. As such, TMH proteins represent only 1% of
known 3D protein structures [2], even though they account for about 20%–30%
of the encoded proteins in several organisms [31]. Computational methods that
can accurately predict the topology of TMH proteins by identifying the helical
segments along with their orientation relative to the interior of the cell (also
called cytoplasm) are currently the only high-throughput approach to charac-
terize structural aspects of transmembrane proteins (See Figure 1).
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Fig. 1. Transmembrane α helix.

Over the years, a number of different methods have been developed for pre-
dicting the topology of TMH proteins. In general, these methods need to predict
the following items: (i) the type of each residue (e.g., helix, loop, etc.), (ii) the
TMH segments, and (iii) their orientation. The various methods developed differ
on the number of distinct steps that they use to predict the above items. Some
methods predict each item individually, others utilize predictors that combine
some of these steps, and others predict all three items in a single step. The residue
types are predicted by either relying on the fact that membrane segments con-
tain primarily hydrophobic residues (e.g., TopPred [29]) or by utilizing machine-
learning approaches (e.g., neural networks, support vector machines) using as
features the amino acid sequence of the protein or evolutionary information in
the form of sequence profiles (e.g., PHDhtm [25], MEMSAT3 [10], SVMTop [20]).
The segments are identified using simple hydrophobicity plots [16] to ascertain
probable helical segments and then employ various rules based on the expected
lengths of the TMH segments to either accept, reject, or break long segments
[29, 20, 32]. The segment orientation is often determined by relying on the fact
that the regions between TMH segments that are positively charged tend to
reside in the intracellular regions of the membrane (positive-inside rule [29]).
The approaches that combine segment identification with orientation determi-
nation (e.g., MEMSAT3) employ dynamic programming methods to determine
the different segments of a TMH protein and its orientation relative to the cy-
toplasm. Finally, the approaches that predict all of the above items in a single
step utilize hidden Markov models (HMM) that capture the different structural
components of a TMH protein (e.g., TMH segment, inside loop, outside loop,
signal peptide, etc.) as separate modules. These models are trained on either the
amino acid sequence of the proteins (e.g., TMHMM [26] and HMMTOP [27])
or on sequence profiles (e.g., Phobius [17]) and predict the topology of a TMH
protein by determining its most probable path through that model using Viterbi
decoding [22].

This paper focuses on improving the accuracy of HMM-based approaches by
combining them with an SVM-based approach that predicts the types of each



residue. Specifically, we developed a TMH topology prediction algorithm, called
TOPTMH, that solves the residue-type prediction, segment identification, and
orientation determination in three distinct steps. The type of each residue is
annotated via an SVM-based approach utilizing a window-based encoding of the
residues’ profile information and a second order exponential kernel function [24,
23, 12]. The segments are identified by using a pair of HMMs that model the
different structural components of TMH proteins. The first HMM uses as input
the SVM predictions for each residue, whereas the second HMM uses as input
hydropathy information as measured by a recently introduced hydrophobicity
scale [8]. Finally, the orientation of the predicted segments is determined by
applying the positive-inside rule.

The advantages of this approach are three-fold. First, by using a discrimi-
native approach to learn a residue-type prediction model, the accuracy of these
predictions are higher than those obtained (indirectly) by the HMM model. Sec-
ond, by encoding the protein sequences via the SVM predictions, whose signal is
significantly higher than that of the raw sequence profile, the demands imposed
during HMM parameter estimation are substantially reduced allowing it to bet-
ter focus on learning how to correctly identify the different segments. Third,
by combining the outputs of the HMM models trained on the SVM predictions
and on the hydrophobicity scores, it allows TOPTMH to correctly identify the
TMH segments that have an amino acid composition that is similar to that of
signal peptides.

We experimentally evaluated the performance of TOPTMH on three widely
used datasets. Our evaluation was performed in two phases. First, we evaluated
the gains obtained by TOPTMH by comparing it against an approach that
uses a rule-based scheme to identify the TMH segments from the SVM pre-
dictions and another that uses just a single HMM model trained on the SVM
predictions. Our evaluation showed that the HMM-based segment identification
outperforms the rule-based approach by at least 50% in terms of the Qok score,
which measures per-segment accuracy, and that by combining both the SVM-
and the hydrophobicity-based HMM models, a further 3%–19% improvements
can be obtained. Second, we evaluated its performance by comparing it against
Phobius [17] and MEMSAT3 [10]. Our evaluation showed that TOPTMH out-
performs both of them across the different datasets. We also evaluated the per-
formance of TOPTMH on an independent static benchmark [14]. The results
on this blind evaluation showed that TOPTMH achieves the highest scores
on high-resolution sequences (Q2 score of 84% and Qok score of 86%) against
existing state-of-the-art systems while achieving low signal peptide error.

2 Background and Definitions

2.1 Transmembrane Helical Proteins

The structure of a typical TMH protein is shown in Figure 1. It consists of
a series of helical segments passing through the cell’s membrane (bilipid layer)
separated by loop segments that are either on the inside or the outside side of



the membrane. TMH segments can have two orientations: they can be going
from the inside to the outside or from the outside to the inside of the cell. This
orientation is relative to the location of N-terminus of the TMH protein. The
TMH topology prediction problem involves predicting the residues that make
up the helical segments and their orientation.

2.2 Position Specific Scoring Matrices

The position specific scoring matrix (PSSM) of a protein is obtained from a
multiple sequence alignment of that protein and a set of other proteins that
have a statistical significant sequence similarity (i.e., they are expected to be
homologs). For a sequence X of length n, its PSSM is represented by a n × 20
matrix PX . The n rows of this matrix correspond to the various positions in X
and the columns correspond to the 20 distinct amino acids. The position specific
scoring matrices used by TOPTMH were generated using the latest version of
the PSI-BLAST algorithm [1] (available in NCBI’s blast release 2.2.13), and were
derived from the multiple sequence alignment constructed after five iterations
using an e value of 10−2 for initial and subsequent sequence inclusions (i.e.,
we used blastpgp -j 5 -e 0.01 -h 0.01). The PSI-BLAST was performed
against the SWISS-PROT [4] database release 53.0 that contains 269,293 se-
quences. A post processing step was performed to extract the log-odds scores
(n× 20 matrix) of each protein sequence from the PSI-BLAST output to use as
the input feature for residue classification.

2.3 Hydrophobicity Scale

A hydrophobicity (HP) scale assigns a value to each of the 20 standard amino
acids based on its hydrophobicity. In the context of TMH prediction methods,
the Kyte and Doolittle [16] and the GES [6] HP scales are commonly used.
These scales are based on biophysical or statistical analysis of high-resolution
membrane protein structures and do not fully capture the cellular context of the
membrane proteins [8]. For this reason, TOPTMH uses a recently published [8]
HP scale (∆Gaa

app scale) that captures the energetics of the protein-lipid inter-
action in biological contexts and thus is more biologically relevant. It has been
shown that this scale is able to determine the topology of membrane proteins
with higher precision than other scales [30].

3 TOPTMH Algorithm

The TOPTMH algorithm solves the TMH prediction problem by first assign-
ing a score to each residue based on its likelihood to be in a helix state (residue
annotation step), then using these scores it determines the protein’s TMH seg-
ments (segment identification step), and finally using the positive-inside rule it
determines their orientation (orientation determination step). These steps are
described in the rest of this section.



3.1 Residue Annotation Step

We developed an SVM-based TMH residue annotation approach that uses fea-
tures obtained from the protein’s PSSM. Its overall structure is similar to that
used by existing methods for SVM-based structural and functional annotation
of protein residues using position specific scoring matrices (e.g., secondary struc-
ture for globular proteins [12], solvent accessible surface area [24], disorder pre-
diction [24], and DNA-binding [24]).

TOPTMH formulates the residue annotation problem as a binary classifi-
cation problem whose goal is to predict if a residue belongs to a helix state or
not. For each residue i of a protein sequence X, the input to the SVM is a
(2w + 1)-length subsequence (wmer) of X centered at position i. Each wmer is
represented by a vector xi of length (2w+1)×20 that is obtained by concatenat-
ing the rows of the PSSM for each position of the wmer. This wmer-based input
is used for both training and prediction. The parameter w determines the length
of the local environment around the ith sequence position used while building
and applying the model and its optimal value is determined experimentally.

TOPTMH uses SVMlight [9] to learn the actual SVM model and utilizes
the second order exponential function (soe) [12] as its kernel function. The soe
kernel has been shown to produce better results than the traditional radial basis
function (rbf ) kernel for various sequence annotation prediction problems [12,
24, 23]. For a sequence, these predictions are available as a web service called
MONSTER 1. In the context of TOPTMH, the soe kernel function is given by

Ksoe(xi, yj) = exp

(
1 + K2(xi, yj)√

K2(xi, yj)K2(xi, yj)

)
, (1)

where xi and yj are the vector representations of two wmers, K2 is given by

K2(xi, yj) = 〈xi, yj〉+ 〈xi, yj〉2, (2)

and 〈xi, yj〉 denotes the dot-product of the xi and yj vectors.

3.2 Segment Identification Step

In order to determine the best approach for identifying the TMH segments we
developed and studied three different approaches. The first approach utilizes a
simple scheme based on empirical rules and the other two predict the topology by
employing hidden Markov models (HMM) [22]. The first HMM-based approach
uses a single HMM based solely on the SVM scores, whereas the second uses two
HMMs—one based on SVM scores and one based on hydrophobicity scales.

Rule-Based The rule-based segment identification approach post-processes the
SVM-based residue annotations and identifies the segments by applying some
1 http://bio.dtc.umn.edu/monster



heuristics rules that take into account the minimum and maximum lengths of
the TMH segments. Specifically, for each protein, this approach traverses the
SVM annotated residues and identifies all maximal contiguous segments that
were annotated as TMHs by the SVM. Any TMH segment whose length l is
shorter than the minimum length of Lmin residues is rejected (i.e., converted into
non-helix residues). If any of the remaining segments have l > Lmax, they are
split into two separate segments as follows. For the segments with l ≤ 2Lopt +C,
the segment is split by changing the middle C residues into loops. For segments
with l > 2Lopt + C, the segment is split by creating two helical segments con-
sisting of the first and last Lopt residues and converting the remaining central
residues into loops. The threshold values Lmin, Lmax, Lopt and C are set as 9,
38, 19 and 6 respectively. These values were initially chosen based on a litera-
ture review [29, 3, 32] and then optimized to provide the best results given the
SVM-based annotations produced by TOPTMH.

HMM-Based The HMM-based segment identification approaches determine
the segments of a TMH protein by threading the sequence into an HMM model
that is designed to capture the various structural components of a TMH pro-
tein. These approaches were motivated by recent studies which showed that
HMM-based TMH prediction methods are well-suited for predicting the topol-
ogy of TMH proteins as they can directly learn from the data the various struc-
tural constraints associated with TMH protein segments and their relations to
the protein’s underlying sequence and/or PSSM [3, 18, 5]. However, unlike these
methods, the HMM-based approaches that we developed take into account the
SVM-scores produced by the residue annotation step, which provide better per-
residue predictions for the helix/non-helix states than the maximum likelihood
approaches used by HMMs. The architecture of our HMM model, shown in Fig-
ure 2, is designed to capture the known structural information of TMH proteins
and is similar to that employed by Phobius [17]. The model contains four major
compartments: (i) helix, (ii) inside loop, (iii) outside loop, and (iv) signal pep-
tide. The helix compartment is composed of two submodels each containing 35
states. One submodel is used for modeling helix segments that go from inside
towards the outside, and the other for the helix segments that go from outside
towards the inside. In each of these submodes, states 1–8 contain transitions to
only the next state, whereas states 9–34 can transition to the next state or to
state 35 (last state). Thus, any predicted helix segment will be of length 9–35
residues long. The outside loop compartment is divided into two submodels to
represent long and short non-cytoplasmic loops. Each of these submodels con-
tains 20 states to model loops that are at least 1–20 residues long. Each submodel
also has a state with self-transition to represent long cytoplasmic loops. The in-
side loop compartment also contains 20 states to allow it to model loops that
are 1–20 residues long. The signal peptide compartment was designed based on
Phobius model and it has three regions: the n-region (10 states), the h-region
(20 states), and the c-region (20 states). The last state of the c-region represents
a cleavage site transitioning to a outside loop state.



Fig. 2. The layout of the HMM model used in TOPTMH.

The HMM models were built using the UMDHMM [11] package (version
1.02), which was modified to take as input annotated protein sequences. The
threading of a sequence through the HMM model was done using the Viterbi [22]
algorithm.

HMM Based on SVM Scores (HMM-SVM). This approach builds an HMM
model that only takes into account the per-residue SVM scores produced by the
annotation step. To construct the training set, the SVM score for each residue
is computed. Since, HMMs are primarily designed to operate on finite size al-
phabets, the raw SVM scores are discretized into a finite number of bins with
each bin corresponding to a distinct symbol. The final training set for the HMM
corresponds to a set of proteins with known TMH topology represented as se-
quences of SVM-score based bins. A similar SVM-based prediction followed by
discretization is performed when this model is used to predict the topology
of a test protein. We discretized the SVM scores into equal-size intervals, and
assigned all residues with scores ≤ −3 and ≥ 3 into the first and last bin, re-
spectively.

HMM Based on SVM Scores and Hydrophobicity Scores (HMM-SVM+HP). This
model builds a pair of HMM models—one based on SVM scores (HMM-SVM)
and one based on the hydrophobicity values (HMM-HP) of known TMH se-
quences and combines the topology predictions from both HMM models. This
approach was motivated by the fact that in certain cases, the SVM-based residue
annotation may fail to identify certain hydrophobic TMH segments. This is fur-
ther discussed in Section 5.



Table 1. Discretization of Hydrophobicity values.

Labels Amino Acids HP Values

1 R, E, K, D 2.5 < h
2 N, H, P, Q 1.0 < h < 2.5
3 T, Y, G, S −0.1 < h < 0.9
4 F, V, C, A, M, W −0.4 < h < −0.1
5 I, L h < −0.5

HP Values denotes a range of hydrophobicity values decided based on [8]

The HMM-SVM model is identical to that described in the previous section.
The HMM-HP model is built by first encoding the amino acids of each TMH
protein as a sequence of discretized hydrophobicity values. Table 1 shows the
scheme used to discretize the hydrophobicity values for each amino acid. Both
the HMM-SVM and HMM-HP models are used independently to predict the
TMH segments. The final set of predictions consists of the segments predicted by
HMM-SVM and those segments predicted by HMM-HP that do not overlap with
any of the segments of HMM-SVM. Two segments are considered to overlap if
they have more than five residues in common. Since this approach combines both
the SVM- and HP-based HMM models, we will refer to it as HMM-SVM+HP.

3.3 Orientation Determination Step

Once the TMH segments have been identified, their orientation relative to the
N-terminus is determined by applying the positive-inside rule [29] using the
technique introduced in THUMBUP [32]. In this approach, each protein is first
coded into a binary sequence by assigning a one to the first protein residue and
all the arganine and lysine residues and a zero to the remaining residues. Then,
a score is computed for each loop by adding the values of its 15 neighboring
residues on each side. If the total score for odd-numbered loops is greater than
or equal to that of even loops, the N-terminus is inside the membrane, otherwise
it is outside.

4 Experimental Design

4.1 Datasets

We evaluated the prediction performance of the TOPTMH method on datasets
used by the Phobius and MEMSAT3 methods and by participating on the static
benchmark [13]. The datasets obtained from the Phobius study included a set
of 247 transmembrane proteins and a set of 45 transmembrane proteins that
contained signal peptide residues with transmembrane helix segments. We will
denote the first dataset as TM-Only and the second as TM-SP. The dataset



obtained from MEMSAT3 consisted of a set of 184 non-homologous transmem-
brane proteins denoted as Möller that also contained a few signal peptide
proteins.

The static benchmark consists of a set of 2247 sequences whose true an-
notations are not given to the public. A method predicts the annotations for
these sequences and uploads them to the evaluation server. The server assesses
the quality of the predictions and compares them to that obtained by other
methods. The 2247 sequences contain four distinct subsets. The first is the high-
resolution subset which contains sequences of proteins whose high resolution
structure is available, the second is the low-resolution subset that includes mem-
brane proteins detected using low resolution structures, the third subset is the
globular protein subset which includes globular protein sequences and the fourth
is the signal peptide subset that includes proteins sequences with signal peptide
residues. The sequences provided to the public is not grouped in the above men-
tioned subsets, but the results published on the evaluation server is presented
accordingly.

4.2 Training & Testing Methodology

For each of the TM-SP and TM-Only datasets, the different methods were
evaluated using a standard 10-fold cross validation protocol by splitting the pro-
teins into 10 different parts. The percent sequence identity between the different
folds were at most 30% and 35% for the TM-Only and TM-SP datasets, respec-
tively. The ten folds were identical to that used by Phobius making it possible
to directly compare our results with those obtained by Phobius.

The two-level HMM-SVM model was trained as follows. The training set was
further split into 10 different folds {f1, . . . , f10}. For each fold fi, the other nine
folds were used to train the SVM model and then used to predict the residues
for the proteins in fi. At the end of this step all the residues of the proteins
in the training set have SVM predictions. These predictions are then used to
train the HMM model for the training set. In addition, the entire training set
is used to build an SVM residue prediction model. Note that the test set is not
used anywhere during training. During testing, the residues of each test protein
are first predicted using the SVM model built on the entire training set, and
these predictions are provided as input to the HMM model to predict the TMH
segments.

The predictions for the static benchmark were obtained by training the SVM
and HMM models using all the sequences from TM-SP and TM-Only datasets.

4.3 Evaluation Metrics

The performance of TMH prediction is evaluated on a per-residue and on a
per-segment basis using well-established metrics [3]. The per-residue evaluation
measures the ability of a method to correctly annotate the different residues into
helices or non-helices (two classes). We used three per-residue metrics denoted by



Q%obs
2T , Q%prd

2T , and Q2. Q%obs
2T is the percentage of observed TMH residues that

are predicted correctly (helix recall), Q%prd
2T is the percentage of predicted TMH

residues that are predicted correctly (helix precision), and Q2 is the percentage
of correctly predicted residues (both helix and non-helix).

The per-segment evaluation measures the ability of a method to correctly
identify the actual TMH segments. We used three per-segment metrics denoted
by Q%obs

htm , Q%prd
htm , and Qok. Q%obs

htm is the percentage of observed TMH segments
that are predicted correctly (TMH segment recall), Q%prd

htm is the percentage of
predicted TMH segments that are predicted correctly (TMH segment preci-
sion), and Qok is the percentage of proteins for which all the TMH segments are
predicted correctly. Note that Qok is a very strict metric as each protein con-
tributes either a zero or an one. In the above metrics, a predicted TMH segment
is considered to be correctly identified if there is an overlap of ten residues be-
tween the predicted and observed helix segments2 In addition, a predicted helix
segment is counted only once. This is illustrated by considering the following
examples:

Obs1: TTTTTTTTTTTTTTTT------TTTTTTTTTTTTT
Pred1: -----TTTTTTTTTTTTTTTTTTTTTTTTTTT---

Obs2 : ---TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT--
Pred2: TTTTTTTTTTTTTT------TTTTTTTTTTTTTTT

In this example, Obs1 and Pred1 are the observed and predicted TMH segments
for a particular protein sequence. During evaluation, the second segment of the
Obs1 sequence will not be considered as correctly predicted, since the only seg-
ment predicted in Pred1 is already accounted for in the first segment of the Obs1
sequence. On the other hand, the second segment of the Pred2 sequence will be
considered as incorrectly predicted as the first segment will be considered for the
only segment in Obs2 sequence.

Although, the per-residue measures capture the accuracy of a method to
predict the annotation label for a residue, it is not able to assess the ability of
the method to identify the TMH segments separated by loop regions of different
lengths. Hence, TMH prediction algorithms are mostly evaluated using per-
segment metrics.

5 Results

5.1 Residue Annotation Performance

The performance achieved by the SVM-based residue annotation for different
values of w is shown in Table 2. This table shows the per-residue performance
metrics (Q2, Q%obs

2T and Q%prd
2T ) for a subset of the TM-Only dataset. We ob-

serve that in terms of the various metrics, the performance achieved for different
2 Earlier techniques used an overlap of only three [3] or five [17] residues, which is too

short and can artificially inflate the performance of a scheme.



Table 2. Residue Annotation Performance with varying wmer length.

wmer Q2 Q%obs
2T Q%prd

2T

2 86.6 78.1 76.9
5 88.2 85.3 75.5
7 88.3 84.7 77.4
11 88.3 85.5 76.6

The numbers in bold show the best wmer length performance as measured for that metric.

values of w is rather similar. The only exception is w = 2, where the performance
is substantially lower than the rest. Overall, the best performance was obtained
using wmer of length seven. For this reason, all the remaining experiments pre-
sented in this study use w = 7.

5.2 Segment Identification Performance

Table 3 presents the per-residue and per-segment based results of different TMH
segment identification approaches on the TM-Only and TM-SP datasets. For
the SVM-HMM approach, Table 3 shows three different sets of results that were
obtained by binning the SVM scores into 5, 7, and 12 bins (HMM-SVM-D5,
HMM-SVM-D7, and HMM-SVM-D12). The row labeled “Raw-SVM” shows the
results obtained by using as TMH segments the maximal contiguous segments
that were predicted as TMHs by the SVM (i.e., the set of segments that form
the input to the rule-based segment identification approach).

Comparing the per-residue performance achieved by the various approaches
we see that Raw-SVM achieves very good per-residue two-state accuracy (Q2).
It has the highest Q2 value for TM-Only and the second highest for TM-SP.
However, focusing on this metric alone is misleading because most of the residues
in transmembrane proteins are non-helix [19] and relatively high Q2 values can
be obtained by simply predicting most of the residues as being in a non-helix
state. Consequently, high Q2 values represent good performance only if they are
accompanied with high helix recall (Q%obs

2T ) values. In light of this discussion,
we see that the HMM-based segment identification approaches tend to achieve
considerably better recall values (especially for TM-SP) while their helix pre-
cision (Q%prd

2T ) is in some cases better than that of the Raw-SVM approach.
Among the different schemes, the rule-based approach achieves the best pre-
cision results, whereas the approach that combines the SVM- and HP-based
HMMs (HMM-SVM-D7+HP) achieves the best recall. However, unlike the high
precision achieved by the HMM-SVM-D7+HP approach, the rule-based scheme
achieves the lowest recall leading to the worst Q2 values.

Comparing the per-segment performance, we see that the Raw-SVM ap-
proach achieves Qok scores that range from 35%–40%, which are by far the
lowest among the different approaches. These results indicate that even though
Raw-SVM can correctly predict a large fraction of the helical residues, it fails



Table 3. TMH Segment Identification Performance.

TM-SP TM-Only

Per-Residues Scores

Methods Q2 Q%obs
2T Q%prd

2T Q2 Q%obs
2T Q%prd

2T

Raw-SVM 96.73 71.10 86.60 90.64 84.30 83.10
Rule 95.16 59.56 95.89 89.19 79.65 87.36
HMM-SVM-D5 96.28 76.39 84.87 89.40 85.54 82.25
HMM-SVM-D7 96.45 76.85 87.72 89.34 85.61 82.23
HMM-SVM-D12 96.24 77.56 84.45 89.31 86.13 81.35
HMM-SVM-D7+HP 97.08 84.80 88.50 89.46 86.21 82.04

Per-Segment Scores

Methods Qok Q%obs
htm Q%prd

htm Qok Q%obs
htm Q%prd

htm

Raw SVM 35.55 85.23 70.09 38.86 94.34 74.33
Rule 64.44 75.00 100.00 70.85 92.88 94.96
HMM-SVM-D5 64.44 84.09 87.05 71.66 95.39 93.73
HMM-SVM-D7 71.11 85.23 92.59 72.06 95.63 93.52
HMM-SVM-D12 60.00 85.22 85.22 70.04 95.80 92.87
HMM-SVM-D7+HP 84.44 93.18 93.18 73.68 96.12 93.33

to predict correctly large contiguous portions of each helical segment. On the
other hand, the per-segment performance achieved by the other segment iden-
tification approaches are considerably higher. Both the rule- and HMM-based
approaches are able to significantly improve over Raw-SVM for both the TM-SP
and TM-Only datasets. Among them, the approaches based on HMM-SVM out-
perform the rule-based approach by 2%–12%, even though the latter achieved
the highest Q%prd

htm scores (100% and 96.44% for TM-SP and TM-Only, respec-
tively).

The overall best Qok results were obtained by the HMM-SVM-D7+HP ap-
proach. In particular, the Qok values achieved by HMM-SVM-D7+HP are 19%
and 3% better than the next best performing scheme (HMM-SVM-D7) on the
TM-SP and TM-Only datasets, respectively. The large performance advantage
of HMM-SVM-D7+HP over HMM-SVM-D7 on the TM-SP dataset are primar-
ily due to increases in recall (Q%obs

htm ). HMM-SVM-D7+HP achieves a Q%obs
htm of

93.18% compared to the 85.23% achieved by HMM-SVM-D7. A possible ex-
planation for the relatively poor performance of HMM-SVM-D7 is that due to
the signal peptide segments present in some of the sequences in the TM-SP
dataset, the SVM model fails to identify some of the TMH residues. However,
these residues can be correctly identified when hydrophobicity scores are consid-
ered, and as such the combined HMM-SVM-D7+HP approach leads to better
overall results.



Table 4. Performance Comparison with Phobius.

TM-SP TM-Only

Method Accuracy Accuracy

TOPTMH 93.18 75.71
Phobius 91.10 63.60

Accuracy denotes the percentage of the correctly predicted proteins and a prediction
was counted correct when all predicted TMH segments overlap all observed TMH seg-
ments over a five residue stretch and loops were located correctly. Prediction accuracy
did not consider incorrect prediction of signal peptide segments to be consistent as [17].

Table 5. Performance Comparison with MEMSAT3 on the Möller dataset.

Method # TM SEG # TOPO # TOPO+LOC # TOPO+LOC(10)

TOPTMH 162 (88.04%) 149 (80.98%) 134 (72.83%) 131 (71.20%)
Phobius 152 (82.60%) 134 (72.80%) 126 (68.40%) 120 (65.20%)
MEMSAT3 156 (84.80%) 150 (81.50%) 147 (79.90%) 141 (76.60%)

# TM SEG denotes the number of predicted proteins that had correct number of TMH segments
irrespective of topology or location. # TOPO denotes the number of proteins for which the ori-
entation of the protein (N-terminus is inside or outside of the cytoplasm) was predicted correctly.
# TOPO+LOC denotes the number of proteins for which the topology and the TMH segment lo-
cations were predicted correctly. This score was calculated based on five residue segment overlap.
# TOPO+LOC(10) shows the # TOPO+LOC scores for ten residue segment overlap.

5.3 Performance Comparison with Previous Methods

We compared the TOPTMH method (i.e., HMM-SVM-D7+HP) with Phobius
and MEMSAT3, which are two of the best TMH prediction methods currently
available. Phobius uses a sophisticated HMM to mark the TMH and signal pep-
tide regions and MEMSAT3 uses a combination of neural network and dynamic
programming to identify the TMH segments. The results of these comparisons
are shown in Tables 4 and 5. To facilitate the comparisons between the different
schemes, the performance metrics used in these tables are similar to the metrics
used in Phobius and MEMSAT3 and allow us to directly compare TOPTMH
performance with these systems.

Comparing TOPTMH’s performance against Phobius (Table 4) we see that
TOPTMH achieves accuracies that are 2% and 10% higher than those achieved
by Phobius on the TM-SP and TM-Only datasets, respectively. The perfor-
mance advantage of TOPTMH over Phobius also holds for the Möller dataset
(Table 5) as well. TOPTMH performed better in all three categories by cor-
rectly predicting 162, 149, and 134 proteins compared to the 152, 134, and 126
proteins predicted by Phobius, respectively.

Comparing TOPTMH’s performance against MEMSAT3 (Table 5) we see
that TOPTMH was able to predict the correct number of TMH segments for
more proteins (162 vs 156) and predict the correct topology for a similar number
of proteins (149 vs 150). However MEMSAT3 was able to predict more proteins



with both correct topology and location than TOPTMH (147 vs 134). We be-
lieve that this is primarily due to the fact that due to the binary classification of
the protein sequences in helix and non-helix residues, TOPTMH was not able
to effectively differentiate between inside and outside loops and thus could not
perform similar to MEMSAT3.

TOPTMH Performance on the Static Benchmark. The performance of
TOPTMH on the static benchmark is shown on Table 6. The TOPTMH results
shown in these tables correspond to the results obtained using the HMM-SVM-
D7+HP topology prediction approach. From these results we see that TOPTMH
achieved the highest Qok score of 86% for the high-resolution sequences and the
highest Q2 scores of 84% and 90% for the high- and low-resolution sequences,
respectively. Moreover, TOPTMH has performed about 7% better in TMH
prediction than both MEMSAT3 and Phobius. Note that even though HMM-
TOP2 achieved Q%obs

htm and Q%prd
htm scores that were higher than the corresponding

scores achieved by TOPTMH, its Qok score of is lower than that achieved by
TOPTMH. This is due to the fact that even though HMMTOP2 identified more
TMH segments in total than TOPTMH, it was not as successful in predicting
proteins for which all of the TMH segments were identified correctly.

Table 6. TMH Benchmark Results.

High Resolution Accuracy Low Resolution Accuracy

Per-segment Per-residue Per-segment Per-residue

Method Qok Q%obs
htm Q%prd

htm Q2 Q%obs
2T Q%prd

2T Qok Q%obs
htm Q%prd

htm Q2 Q%obs
2T Q%prd

2T

TOPTMH 86 95 96 84 75 90 66 92 88 90 84 80
PHDpsihtm08 84 99 98 80 76 83 67 95 94 89 87 77
HMMTOP2 83 99 99 80 69 89 66 94 93 90 85 83
MEMSAT3 80 98 97 83 78 88 63 92 87 88 86 76
Phobius 80 92 93 80 69 84 65 90 88 90 81 79
DAS 79 99 96 72 48 94 39 93 81 86 65 85
TopPred2 75 90 90 77 64 83 48 84 79 88 74 71
TMHMM1 71 90 90 80 68 81 72 91 92 90 83 80
SOSUI 71 88 86 75 66 74 49 88 86 88 79 72
PHDhtm07 69 83 81 78 76 82 56 85 86 87 83 75

Results for TOPTMH and MEMSAT3 were obtained by collecting predictions for test set of the
TMH static benchmark [13] and submitting the results to the benchmark server. Phobius [17] pre-
diction were collected loading the benchmark test sequences to the Phobius web server [13] and
submitting the output to the benchmark server. All the other results were provided by the TMH
static benchmark evaluation web-site.



6 Conclusions

In this paper we developed the TOPTMH method to predict the transmem-
brane α-helix topology using sequence information. TOPTMH uses PSI-BLAST
constructed profiles and hydrophobicity information within a hybrid SVM- and
HMM-based framework. This novel hybrid method captures the power of SVM-
based models to discriminate between the helical and non-helical residues with
the power of HMMs to identify length-dependent topological structures. Exper-
iments on the Phobius and Möller datasets showed that TOPTMH achieves
high per-residue and per-segment accuracies and that on an independent static
benchmark it outperforms existing state-of-the-art methods such as PHDpsi-
htm08 [25], HMMTOP2 [28], MEMSAT3 [10], Phobius [17], and TopPred2 [7].
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