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Alpha-helical transmembrane proteins mediate many key biological processes and repre-
sent 20%-30% of all genes in many organisms. Due to the difficulties in experimentally
determining their high-resolution 3D structure, computational methods to predict the
location and orientation of transmembrane helix segments using sequence information
are essential. We present, TOPTMH a new transmembrane helix topology prediction
method that combines support vector machines, hidden Markov models, and a widely-
used rule-based scheme. The contribution of this work is the development of a prediction
approach that first uses a binary SVM classifier to predict the helix residues and then it
employs a pair of HMM models that incorporate the SVM predictions and hydropathy-
based features to identify the entire transmembrane helix segments by capturing the
structural characteristics of these proteins. TOPTMH outperforms state-of-the-art pre-
diction methods and achieves the best performance on an independent static benchmark.

Keywords: Membrane Protein; Secondary Structure; Classification; Support Vector Ma-
chines; Hidden Markov Model.

1. Introduction

Transmembrane helical (TMH) proteins play a crucial role in several cellular
functions, such as cell-to-cell communication, cell signaling, and transportation
of ions and small molecules®, and are of key interest to the pharmaceutical in-
dustry as approximately 50% of all existing drugs are targeting transmembrane
proteins??. Experimental determination of the three dimensional structure of TMH
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proteins is challenging, because they are difficult to crystallize and are too large for
NMR studies?”. As such, TMH proteins represent only 1% of known 3D protein
structures?, even though they account for about 20%-30% of the encoded proteins
in several organisms3’. Computational methods that can accurately predict the
topology of TMH proteins by identifying the helical segments along with their ori-
entation relative to the interior of the cell (also called cytoplasm) are currently the
only high-throughput approach to characterize structural aspects of transmembrane
proteins.

Over the years, a number of different methods have been developed for predict-
ing the topology of TMH proteins. In general, these methods need to predict the
following items: (i) the type of each residue (e.g., helix, loop, etc.), (ii) the TMH
segments, and (iii) their orientation. The various methods developed differ on the
number of distinct steps that they use to predict the above items. Some methods
predict each item individually, others utilize predictors that combine some of these
steps, and others predict all three items in a single step. The residue types are
predicted by either relying on the fact that membrane segments contain primarily
hydrophobic residues (e.g., TopPred®) or by utilizing machine-learning approaches
(e.g., neural networks, support vector machines) using as features the amino acid
sequence of the protein or evolutionary information in the form of sequence profiles
(e.g., PHDhtm3!, MEMSAT3!3, SVMTop?®). The segments are identified using sim-
ple hydrophobicity plots?? to ascertain probable helical segments and then employ
various rules based on the expected lengths of the TMH segments to either accept,
reject, or break long segments 32538 The segment orientation is often determined
by relying on the fact that the regions between TMH segments that are positively
charged tend to reside in the intracellular regions of the membrane (positive-inside
rule®?). The approaches that combine segment identification with orientation deter-
mination (e.g., MEMSAT3) employ dynamic programming methods to determine
the different segments of a TMH protein and its orientation relative to the cyto-
plasm. Finally, the approaches that predict all of the above items in a single step
utilize hidden Markov models (HMM) that capture the different structural com-
ponents of a TMH protein (e.g., TMH segment, inside loop, outside loop, signal
peptide, etc.) as separate modules. These models are trained on the amino acid se-
quence of the proteins (e.g., TMHMM?3? or on sequence profiles (e.g., Phobius!?)
and predict the topology by determining its most probable path through that model
using Viterbi decoding?®.

This paper focuses on improving the accuracy of HMM-based approaches by
combining them with an SVM-based approach that predicts the types of each
residue. Specifically, we developed a TMH topology prediction algorithm, called
TOPTMH, that solves the residue-type prediction, segment identification, and ori-
entation determination in three distinct steps. The type of each residue is annotated
via an SVM-based approach utilizing a window-based encoding of the residues’ pro-
file information and a second order exponential kernel function®?-2%17, The segments
are identified by using a pair of HMMs that model the different structural compo-
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nents of TMH proteins. The first HMM uses as input the SVM predictions for each
residue, whereas the second HMM uses as input hydropathy information as mea-
sured by a recently introduced hydrophobicity scale®. Finally, the orientation of the
predicted segments is determined by applying the positive-inside rule.

The advantages of this approach are three-fold. First, by using a discriminative
approach to learn a residue-type prediction model, the accuracy of these predictions
are higher than those obtained (indirectly) by the HMM model. Second, by encoding
the protein sequences via the SVM predictions, whose signal is significantly higher
than that of the raw sequence profile, the demands imposed during HMM parameter
estimation are substantially reduced allowing it to better focus on learning how to
correctly identify the different segments. Third, by combining the outputs of the
HMM models trained on the SVM predictions and on the hydrophobicity scores,
it allows TOPTMH to correctly identify the TMH segments that have an amino
acid composition that is similar to that of signal peptides.

We experimentally evaluated the performance of TOPTMH on three widely
used datasets. Our evaluation was performed in two phases. First, we evaluated
the gains obtained by TOPTMH by comparing it against an approach that uses
a rule-based scheme to identify the TMH segments from the SVM predictions and
another that uses just a single HMM model trained on the SVM predictions. Our
evaluation showed that the HMM-based segment identification outperforms the rule-
based approach by at least 50% in terms of the Q. score, which measures per-
segment accuracy, and that by combining both the SVM- and the hydrophobicity-
based HMM models, a further 3%—-19% improvements can be obtained. Second, we
evaluated its performance by comparing it against Phobius'* and MEMSAT3'3. Our
evaluation showed that TOPTMH outperforms both of them across the different
datasets. We also evaluated the performance of TOPTMH on an independent static
benchmark!®. The results on this blind evaluation showed that TOPTMH achieves
the highest scores on high-resolution sequences (Q2 score of 84% and Q. score of
86%) against existing state-of-the-art systems while achieving low signal peptide
error.

2. Background and Definitions
2.1. Transmembrane Helical Proteins

The structure of a TMH protein of a series of helical segments passing through
the cell’s membrane (bilipid layer) separated by loop segments that are either on
the inside or the outside side of the membrane. TMH segments can have two ori-
entations: they can be going from the inside to the outside or from the outside to
the inside of the cell. This orientation is relative to the location of N-terminus of
the TMH protein. The TMH topology prediction problem involves predicting the
residues that make up the helical segments and their orientation.
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2.2. Position Specific Scoring Matrices

The position specific scoring matrix (PSSM) of a protein is obtained from a mul-
tiple sequence alignment of that protein and a set of other proteins that have a
statistical significant sequence similarity (i.e., they are expected to be homologs).
For a sequence X of length n, its PSSM is represented by a n x 20 matrix Px. The
n rows of this matrix correspond to the various positions in X and the columns
correspond to the 20 distinct amino acids. The position specific scoring matrices
used by TOPTMH were generated using the latest version of the PSI-BLAST
algorithm! (available in NCBI’s blast release 2.2.13), and were derived from the
multiple sequence alignment constructed after five iterations using an e value of
10~2 for initial and subsequent sequence inclusions (i.e., we used blastpgp -j 5
-e 0.01 -h 0.01). The PSI-BLAST was performed against the SWISS-PROT*
database release 53.0 that contains 269,293 sequences. A post processing step was
performed to extract the log-odds scores (n x 20 matrix) of each protein sequence
from the PSI-BLAST output to use as the input feature for residue classification.

2.3. Hydrophobicity Scale

A hydrophobicity (HP) scale assigns a value to each of the 20 standard amino acids
based on its hydrophobicity. In the context of TMH prediction methods, the Kyte
and Doolittle?? and the GES” HP scales are commonly used. These scales are based
on biophysical or statistical analysis of high-resolution membrane protein structures
and do not fully capture the cellular context of the membrane proteins”. For this
reason, TOPTMH uses a recently published? HP scale (AGSs, scale) that captures
the energetics of the protein-lipid interaction in biological contexts and thus is more
biologically relevant. It has been shown that this scale is able to determine the

topology of membrane proteins with higher precision than other scales®®.

3. TOPTMH Algorithm

The TOPTMH algorithm solves the TMH prediction problem by first assigning a
score to each residue based on its likelihood to be in a helix state (residue annotation
step), then using these scores it determines the protein’s TMH segments (segment
identification step), and finally using the positive-inside rule it determines their
orientation (orientation determination step). These steps are described in the rest
of this section.

3.1. Residue Annotation Step

We developed an SVM-based TMH residue annotation approach that uses fea-
tures obtained from the protein’s PSSM. Its overall structure is similar to that
used by existing methods for SVM-based structural and functional annotation of
protein residues using position specific scoring matrices (e.g., secondary structure
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for globular proteins'”, solvent accessible surface area’?, disorder prediction®’, and
DNA-binding?°).

TOPTMH formulates the residue annotation problem as a binary classification
problem whose goal is to predict if a residue belongs to a helix state or not. For
each residue 7 of a protein sequence X, the input to the SVM is a (2w + 1)-length
subsequence (wmer) of X centered at position i. Each wmer is represented by a
vector z; of length (2w + 1) x 20 that is obtained by concatenating the rows of the
PSSM for each position of the wmer. This wmer-based input is used for both training
and prediction. The parameter w determines the length of the local environment
around the ith sequence position used while building and applying the model and
its optimal value is determined experimentally.

TOPTMH uses SVMlight'? to learn the actual SVM model and utilizes the
second order exponential function (soe)'”
been shown to produce better results than the traditional radial basis function (rbf)
kernel for various sequence annotation prediction problems!”:3%29 In the context
of TOPTMH, the soe kernel function is given by

’Cg(xh y)
Ko (i, y5) = exp | 1+ . ; (1)
VI (i, y5) K2 (246, 95)
where z; and y; are the vector representations of two wmers, K? is given by
’C2($Z7yj) = <x17yj> +<xL7y]>27 (2)

and (z;,y;) denotes the dot-product of the x; and y; vectors.

as its kernel function. The soe kernel has

3.2. Segment Identification Step

In order to determine the best approach for identifying the TMH segments we de-
veloped and studied three different approaches. The first approach utilizes a simple
scheme based on empirical rules and the other two predict the topology by employ-
ing hidden Markov models (HMM)?28. The first HMM-based approach uses a single
HMM based solely on the SVM scores, whereas the second uses two HMMs—one
based on SVM scores and one based on hydrophobicity scales.

3.2.1. Rule-Based

The rule-based segment identification approach post-processes the SVM-based
residue annotations and identifies the segments by applying some heuristics rules
that take into account the minimum and maximum lengths of the TMH segments.
Specifically, for each protein, this approach traverses the SVM annotated residues
and identifies all maximal contiguous segments that were annotated as TMHS by
the SVM. Any TMH segment whose length [ is shorter than the minimum length
of Ly,in residues is rejected (i.e., converted into non-helix residues). If any of the
remaining segments have | > L,,,,, they are split into two separate segments as
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Fig. 1. The layout of the HMM model used in TOPTMH.

follows. For the segments with [ < 2L, + C, the segment is split by changing the
middle C residues into loops. For segments with [ > 2L,,; + C, the segment is split
by creating two helical segments consisting of the first and last L,,: residues and
converting the remaining central residues into loops. The threshold values Lin,
Loaz, Lopt and C are set as 9, 38, 19 and 6 respectively. These values were initially
chosen based on a literature review®%3:38 and then optimized to provide the best
results given the SVM-based annotations produced by TOPTMH.

3.2.2. HMM-Based

The HMM-based segment identification approaches determine the segments of a
TMH protein by threading the sequence into an HMM model that is designed to
capture the various structural components of a TMH protein. These approaches
were motivated by recent studies which showed that HMM-based TMH prediction
methods are well-suited for predicting the topology of TMH proteins as they can
directly learn from the data the various structural constraints associated with TMH
protein segments and their relations to the protein’s underlying sequence and/or
PSSM?3:1%:6 However, unlike these methods, the HMM-based approaches that we
developed take into account the SVM-scores produced by the residue annotation
step, which provide better per-residue predictions for the helix/non-helix states
than the maximum likelihood approaches used by HMMs.

The architecture of our HMM model, shown in Figure 1, is designed to capture
the known structural information of TMH proteins and is similar to that employed
by Phobius!*. The model contains four major compartments: (i) helix, (ii) inside
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loop, (iii) outside loop, and (iv) signal peptide. The helix compartment is composed
of two submodels each containing 35 states. One submodel is used for modeling
helix segments that go from inside towards the outside, and the other for the helix
segments that go from outside towards the inside. In each of these submodes, states
1-8 contain transitions to only the next state, whereas states 9-34 can transition
to the next state or to state 35 (last state). Thus, any predicted helix segment
will be of length 9-35 residues long. The outside loop compartment is divided into
two submodels to represent long and short non-cytoplasmic loops. Each of these
submodels contains 20 states to model loops that are at least 1-20 residues long.
Each submodel also has a state with self-transition to represent long cytoplasmic
loops. The inside loop compartment also contains 20 states to allow it to model loops
that are 1-20 residues long. The signal peptide compartment was designed based
on Phobius model and it has three regions: the n-region (10 states), the h-region
(20 states), and the c-region (20 states). The last state of the c-region represents a
cleavage site transitioning to a outside loop state.

The HMM models were built using the UMDHMM!® package (version 1.02),
which was modified to take as input annotated protein sequences. The threading of
a sequence through the HMM model was done using the Viterbi?® algorithm.

HMM Based on SVM Scores (HMM-SVM). This approach builds an HMM
model that only takes into account the per-residue SVM scores produced by the
annotation step. To construct the training set, the SVM score for each residue is
computed. Since, HMMs are primarily designed to operate on finite size alphabets,
the raw SVM scores are discretized into a finite number of bins with each bin corre-
sponding to a distinct symbol. The final training set for the HMM corresponds to a
set of proteins with known TMH topology represented as sequences of SVM-score
based bins. A similar SVM-based prediction followed by discretization is performed
when this model is used to predict the topology of a test protein. We discretized
the SVM scores into equal-size intervals, and assigned all residues with scores < —3
and > 3 into the first and last bin, respectively.

HMM Based on SVM Scores and Hydrophobicity Scores (HMM-
SVM+HP). This model builds a pair of HMM models—one based on SVM scores
(HMM-SVM) and one based on the hydrophobicity values (HMM-HP) of known
TMH sequences and combines the topology predictions from both HMM models.
This approach was motivated by the fact that in certain cases, the SVM-based
residue annotation may fail to identify certain hydrophobic TMH segments. This
is further discussed in Section 5.

The HMM-SVM model is identical to that described in the previous section. The
HMM-HP model is built by first encoding the amino acids of each TMH protein
as a sequence of discretized hydrophobicity values. Table 1 shows the scheme used
to discretize the hydrophobicity values for each amino acid. Both the HMM-SVM
and HMM-HP models are used independently to predict the TMH segments. The
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Table 1. Discretization of Hydrophobicity values.

Labels Amino Acids HP Values

1 R, E, K, D 25 <h

2 N, H, P, Q 1.0<h<25

3 T,Y, G, S -0.1<h <09
4 F,V,C,A,M, W —-04<h<-0.1
5 I, L h < —-0.5

)

HP Values denotes a range of hydrophobicity values decided based on®

final set of predictions consists of the segments predicted by HMM-SVM and those
segments predicted by HMM-HP that do not overlap with any of the segments of
HMM-SVM. Two segments are considered to overlap if they have more than five
residues in common. Since this approach combines both the SVM- and HP-based
HMM models, we will refer to it as HMM-SVM-+HP.

3.3. Orientation Determination Step

Once the TMH segments have been identified, their orientation relative to the N-
terminus is determined by applying the positive-inside rule3® using the technique
introduced in THUMBUP?2. In this approach, each protein is first coded into a
binary sequence by assigning a one to the first protein residue and all the arganine
and lysine residues and a zero to the remaining residues. Then, a score is computed
for each loop by adding the values of its 15 neighboring residues on each side. If the
total score for odd-numbered loops is greater than or equal to that of even loops,
the N-terminus is inside the membrane, otherwise it is outside.

4. Experimental Design
4.1. Datasets

We evaluated the prediction performance of the TOPTMH method on datasets
used by the Phobius and MEMSAT3 methods, on a high-resolution dataset, and by
participating on the static benchmark!8.

The datasets obtained from the Phobius study included a set of 247 transmem-
brane proteins and a set of 45 transmembrane proteins that contained signal pep-
tide residues with transmembrane helix segments. We will denote the first dataset as
TM-ONLY and the second as TM-SP. The dataset obtained from MEMSATS3 con-
sisted of a set of 184 non-homologous transmembrane proteins denoted as MOLLER
that also contained a few signal peptide proteins.

The high-resolution dataset consists of 176 transmembrane protein sequences
that have experimentally determined 3D structures. These proteins were collected
from the OPM?% and MPtopo'! databases. All the 3D TMH sequences from both
databases were collected and homology reduced at 40% sequence identity by using
cd-hit?3. The final dataset denoted as 3D is a combination of 68 OPM sequences
and 108 MPtopo sequences.
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The static benchmark consists of a set of 2247 sequences whose true annotations
are not given to the public. A method predicts the annotations for these sequences
and uploads them to the evaluation server. The server assesses the quality of the
predictions and compares them to that obtained by other methods. The 2247 se-
quences contain four distinct subsets. The first is the high-resolution subset which
contains sequences of proteins whose high resolution structure is available, the sec-
ond is the low-resolution subset that includes membrane proteins detected using
low resolution structures, the third subset is the globular protein subset which in-
cludes globular protein sequences and the fourth is the signal peptide subset that
includes proteins sequences with signal peptide residues. The sequences provided to
the public is not grouped in the above mentioned subsets, but the results published
on the evaluation server is presented accordingly.

4.2. Training & Testing Methodology

For each of the TM-SP and TM-ONLY datasets, the different methods were eval-
uated using a standard 10-fold cross validation protocol by splitting the proteins
into 10 different parts. The percent sequence identity between the different folds
were at most 30% and 35% for the TM-ONLY and TM-SP datasets, respectively.
The ten folds were identical to that used by Phobius making it possible to directly
compare our results with those obtained by Phobius.

The two-level HMM-SVM model was trained as follows. The training set was
further split into 10 different folds {f1,..., fio}. For each fold f;, the other nine
folds were used to train the SVM model and then used to predict the residues for
the proteins in f;. At the end of this step all the residues of the proteins in the
training set have SVM predictions. These predictions are then used to train the
HMM model for the training set. In addition, the entire training set is used to
build an SVM residue prediction model. Note that the test set is not used anywhere
during training. During testing, the residues of each test protein are first predicted
using the SVM model built on the entire training set, and these predictions are
provided as input to the HMM model to predict the TMH segments.

The predictions for the 3D dataset and the static benchmark were obtained
by training the SVM and HMM models using all the sequences from TM-SP and
TM-ONLY datasets.

4.3. Fvaluation Metrics

The performance of TMH prediction is evaluated on a per-residue and on a per-
segment basis using well-established metrics®. The per-residue evaluation measures
the ability of a method to correctly annotate the different residues into helices

or non-helices (two classes). We used three per-residue metrics denoted by Q%ﬁ’bs,

;/Offrd, and Q. Q?f,’bs is the percentage of observed TMH residues that are pre-

dicted correctly (helix recall), ?7’3”1 is the percentage of predicted TMH residues
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that are predicted correctly (helix precision), and @5 is the percentage of correctly
predicted residues (both helix and non-helix).

The per-segment evaluation measures the ability of a method to correctly iden-
tify the actual TMH segments. We used three per-segment metrics denoted by

QZ‘;‘jzﬂ Z‘sz, and Q. Qz/‘ﬁz‘g is the percentage(yof observed TMH segments that
oprd

are predicted correctly (TMH segment recall), Q" is the percentage of predicted
TMH segments that are predicted correctly (TMH segment precision), and Q. is
the percentage of proteins for which all the TMH segments are predicted correctly.
Note that Q. is a very strict metric as each protein contributes either a zero or an
one. In the above metrics, a predicted TMH segment is considered to be correctly
identified if there is an overlap of ten residues between the predicted and observed
helix segments.In addition, a predicted helix segment is counted only once. This is
illustrated by considering the following examples:

Predl: -—--- TTTTTTTTTTTTTTTTTTTTITITTITT-—-
Obs2 : ===TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT--
Pred2: TTTTTTTTTTTTTT------ TTTTTTTTTTTTTTT

In this example, Obsl and Predl are the observed and predicted TMH segments
for a particular protein sequence. During evaluation, the second segment of the
Obsl1 sequence will not be considered as correctly predicted, since the only segment
predicted in Pred1 is already accounted for in the first segment of the Obs1 sequence.
On the other hand, the second segment of the Pred2 sequence will be considered as
incorrectly predicted as the first segment will be considered for the only segment in
Obs2 sequence.

Although, the per-residue measures capture the accuracy of a method to predict
the annotation label for a residue, it is not able to assess the ability of the method
to identify the TMH segments separated by loop regions of different lengths. Hence,
TMH prediction algorithms are mostly evaluated using per-segment metrics.

5. Results
5.1. Residue Annotation Performance

The performance achieved by the SVM-based residue annotation for different values
of w is shown in Table 2. This table shows the per-residue performance metrics (Q2,
Q7 and Q?ﬁrd) for a subset of the TM-ONLY dataset. We observe that in terms
of the various metrics, the performance achieved for different values of w is rather
similar. The only exception is w = 2, where the performance is substantially lower
than the rest. Overall, the best performance was obtained using wmer of length
seven. For this reason, all the remaining experiments presented in this study use
w="1.
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Table 2. Residue Annotation Performance with varying wmer length.

wmer Q2 Q?’I?bs QZE),I{)Td
2 86.6 781 76.9
5 88.2 85.3 75.5
7 88.3 84.7 77.4
11 88.3 85.5 76.6

The numbers in bold show the best performing wmer for that metric. Q;/"q?bg denotes the helix recall

and Qz’jﬁ"ld denotes the helix precision for the per-residue based performance evaluation.

5.2. Segment Identification Performance

Table 3 presents the per-residue and per-segment based results of different TMH
segment identification approaches on the TM-ONLY and TM-SP datasets. For the
SVM-HMM approach, Table 3 shows three different sets of results that were ob-
tained by binning the SVM scores into 5, 7, and 12 bins (HMM-SVM-D5, HMM-
SVM-D7, and HMM-SVM-D12). The row labeled “Raw-SVM” shows the results
obtained by using as TMH segments the maximal contiguous segments that were
predicted as TMHS by the SVM (i.e., the set of segments that form the input to
the rule-based segment identification approach). Comparing the per-residue perfor-
mance achieved by the various approaches we see that Raw-SVM achieves very good
per-residue two-state accuracy (Q2). It has the highest Q2 value for TM-ONLY and
the second highest for TM-SP. However, focusing on this metric alone is mislead-
ing because most of the residues in transmembrane proteins are non-helix?* and
relatively high @5 values can be obtained by simply predicting most of the residues
as being in a non-helix state. Consequently, high @) values represent good perfor-

Table 3. TMH Segment Identification Performance.

TM-SP TM-ONLY

Per-Residues Scores
Methods Q2 Q?fbs Q;ofzrd Q2 Q?q?bs Q‘;(;{)rd
Raw-SVM 96.73 71.10 86.60 90.64 84.30 83.10
Rule 95.16 59.56 95.89 89.19 79.65 87.36
HMM-SVM-D5 96.28 76.39 84.87 89.40 85.54 82.25
HMM-SVM-D7 96.45 76.85 87.72 89.34 85.61 82.23
HMM-SVM-D12 96.24 77.56 84.45 89.31 86.13 81.35
HMM-SVM-D7+HP 97.08 84.80 88.50 89.46 86.21 82.04

Per-Segment Scores
Methods Qok QZ&;;ZS Z‘ﬁ;d Qon Q‘Z)tc:zs Z?;r:d
Raw SVM 35.55 85.23 70.09 38.86 94.34 74.33
Rule 64.44 75.00 100.00 70.85 92.88 94.96
HMM-SVM-D5 64.44 84.09 87.05 71.66 95.39 93.73
HMM-SVM-D7 71.11 85.23 92.59 72.06 95.63 93.52
HMM-SVM-D12 60.00 85.22 85.22 70.04 95.80 92.87
HMM-SVM-D7+HP 84.44 93.18 93.18 73.68 96.12 93.33

Q2 and Q. represent the overall prediction accuracy for per-residue based and per-segment based

evaluation. Q72" denotes the helix recall and Q;%’de denotes the helix precision for the per-

%pr
residue based performance evaluation. sz’t‘;zs denotes the helix segment recall and Qfﬁ;d denotes

the helix segment precision for the per-segment based performance evaluation.
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mance only if they are accompanied with high helix recall (Q%2%*) values. In light of
this discussion, we see that the HMM-based segment identification approaches tend
to achieve considerably better recall values (especially for TM-SP) while their he-
lix precision ( ?frd) is in some cases better than that of the Raw-SVM approach.
Among the different schemes, the rule-based approach achieves the best precision re-
sults, whereas the approach that combines the SVM- and HP-based HMMs (HMM-
SVM-D7+HP) achieves the best recall. However, unlike the high precision achieved
by the HMM-SVM-D7+4+HP approach, the rule-based scheme achieves the lowest
recall leading to the worst Q5 values.

Comparing the per-segment performance, we see that the Raw-SVM approach
achieves Q. scores that range from 35%—-40%, which are by far the lowest among
the different approaches. These results indicate that even though Raw-SVM can
correctly predict a large fraction of the helical residues, it fails to predict correctly
large contiguous portions of each helical segment. On the other hand, the per-
segment performance achieved by the other segment identification approaches are
considerably higher. Both the rule- and HMM-based approaches are able to sig-
nificantly improve over Raw-SVM for both the TM-SP and TM-ONLY datasets.
Among them, the approaches based on HMM-SVM outperform the rule-based ap-
proach by 2%-12%, even though the latter achieved the highest QZ‘;’;;d scores (100%
and 96.44% for TM-SP and TM-ONLY, respectively).

The overall best @, results were obtained by the HMM-SVM-D7+HP approach.
In particular, the Q,; values achieved by HMM-SVM-D7+HP are 19% and 3%
better than the next best performing scheme (HMM-SVM-D7) on the TM-SP and
TM-ONLY datasets, respectively. The large performance advantage of HMM-SVM-
D7+HP over HMM-SVM-D7 on the TM-SP dataset are primarily due to increases
in recall ( Z‘)t‘;zs). HMM-SVM-D7+HP achieves a Qﬁ%s of 93.18% compared to the
85.23% achieved by HMM-SVM-D7. A possible explanation for the relatively poor
performance of HMM-SVM-D7 is that due to the signal peptide segments present
in some of the sequences in the TM-SP dataset, the SVM model fails to identify
some of the TMH residues. However, these residues can be correctly identified
when hydrophobicity scores are considered, and as such the combined HMM-SVM-
D7+HP approach leads to better overall results.

5.3. Performance Comparison with Previous Methods

In this section we compare the performance achieved by the TOPTMH method that
uses the HMM-SVM-D7+HP topology prediction approach against that achieved
by some of the previously developed TMH prediction methods on various datasets.

5.3.1. TOPTMH Performance Comparison with Phobius and MEMSATS.

Tables 4 and 5 compares the performance achieved by TOPTMH against that
achieved by Phobius and MEMSATS3, which are two of the best TMH prediction
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Table 4. Performance Comparison with Phobius.

TM-SP TM-ONLY
Method Accuracy Accuracy
TOPTMH 93.18 75.71
Phobius 91.10 63.60

Accuracy is the percentage of correctly predicted proteins. A prediction is correct when all predicted
TMH segments overlap all observed TMH segments over a five residue stretch and loops were located
correctly.

methods currently available. Phobius uses a sophisticated HMM to mark the TMH
and signal peptide regions and MEMSAT3 uses a combination of neural network
and dynamic programming to identify the TMH segments. To facilitate direct com-
parisons between TOPTMH and these methods, the performance metrics in these
tables are similar to those used in the evaluations of Phobius and MEMSATS3.

Comparing TOPTMH’s performance against Phobius (Table 4) we see that
TOPTMH achieves accuracies that are 2% and 10% higher than those achieved
by Phobius on the TM-SP and TM-ONLY datasets, respectively. The performance
advantage of TOPTMH over Phobius also holds for the MOLLER dataset (Table 5)
as well. TOPTMH performed better in all three categories by correctly predicting
162, 149, and 134 proteins compared to the 152, 134, and 126 proteins predicted by
Phobius, respectively.

Comparing TOPTMH’s performance against MEMSAT3 (Table 5) we see that
TOPTMH was able to predict the correct number of TMH segments for more
proteins (162 wvs 156) and predict the correct topology for a similar number of
proteins (149 vs 150). However MEMSAT3 was able to predict more proteins with
both correct topology and location than TOPTMH (147 vs 134). We believe that
this is primarily due to the fact that due to the binary classification of the protein
sequences in helix and non-helix residues, TOPTMH was not able to effectively
differentiate between inside and outside loops and thus could not perform similar
to MEMSATS.

Table 5. Performance Comparison with MEMSAT3 on the MOLLER dataset.

Method # TM SEG # TOPO # TOPO+LOC _ # TOPO+LOC(10)
TOPTMH 162 (88.04%) 149 (80.98%) 134 (72.83%) 131 (71.20%)
Phobius 152 (82.60%) 134 (72.80%) 126 (68.40%) 120 (65.20%)
MEMSAT3 156 (84.80%) 150 (81.50%) 147 (79.90%) 141 (76.60%)

# TM SEG denotes the number of predicted proteins that had correct number of TMH segments irre-
spective of topology or location. # TOPO denotes the number of proteins for which the orientation of
the protein (N-terminus is inside or outside of the cytoplasm) was predicted correctly. # TOPO+LOC
denotes the number of proteins for which the topology and the TMH segment locations were predicted
correctly. This score was calculated based on five residue segment overlap. # TOPO+LOC(10) shows the
# TOPO+LOC scores for ten residue segment overlap.
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5.3.2. TOPTMH Performance on the Static Benchmark.

Table 6 shows the performance achieved by TOPTMH on the static benchmark.
From these results we see that TOPTMH achieved the highest Q. score of 86% for
the high-resolution sequences and the highest Q2 scores of 84% and 90% for the high-
and low-resolution sequences, respectively. Moreover, TOPTMH has performed
about 7% better in TMH prediction than both MEMSAT3 and Phobius. Note that
even though HMMTOP2 achieved QZ"tﬁf’f and Qﬁ%d scores that were higher than
the corresponding scores achieved by TOPTMH, its @Q,x score of is lower than
that achieved by TOPTMH. This is due to the fact that even though HMMTOP2
identified more TMH segments in total than TOPTMH, it was not as successful

in predicting proteins for which all of the TMH segments were identified correctly.

5.3.3. TOPTMH Performance on the 3D Dataset.

Table 7 shows the per-segment based results achieved by TOPTMH, Phobius,
TMHMM22! (HMM based method), and MEMSAT3 on the 3D dataset. Two sets
of results are presented. The first shows the performance achieved on the entire 3D
dataset, whereas the second, shows the performance achieved on a subset (3D-SUB)
that contains only sequences that have less than 40% sequence identity to the set of
sequences used to train TOPTMH’s model. The 3D-SUB contains 118 sequences.
The results for MEMSAT3 were obtained by running it locally, whereas the results
for Phobius and TMHMM?2 were obtained by querying their respective web-servers.

Comparing TOPTMH against Phobius and TMHMM?2 we see that it produces
predictions whose accuracy in terms of Q.x is 17%—26% better for both 3D and
3D-SuB. The superior result of TOPTMH over Phobius and TMHMM?2 shows
that the hybrid SVM-HMM based method can predict with better accuracy than
HMM only methods. The performance advantage of TOPTMH over MEMSATS3 is

Table 6. TMH Benchmark Results.

High Resolution Accuracy Low Resolution Accuracy
Per-segment Per-residue Per-segment Per-residue
%oprd %oprd %oprd Y%oprd
Method  Qox Qpioh @y’ @0 Q" QP Qe @ity Qrig” Qo Q" Q3"

TOPTMH 86 95 96 84 75 90 66 92 88 90 &4 80
PHDpsihtm08 84 99 98 80 76 83 67 95 94 89 87 7
HMMTOP233 83 99 99 80 69 89 66 94 93 90 85 83
MEMSAT3 80 98 97 83 T8 88 63 92 87 88 86 76
Phobius 80 92 93 80 69 84 65 90 88 90 81 79
DASP 79 99 9% 72 48 94 39 93 81 86 65 85
TopPred28 75 90 90 77 64 83 48 84 79 88 74 71
TMHMM132 71 90 90 80 68 81 72 91 92 90 83 80
SOSUI° 71 88 8 75 66 74 49 88 8 88 79 72
PHDhtm07 69 83 81 78 76 82 56 85 8 87 83 75
The results for TOPTMH, MEMSATS3, and Phobius were obtained by collecting predictions for the

test set of the TMH static benchmark'® and submitting the results to the benchmark server. All
the other results were provided by the TMH static benchmark evaluation web-site.
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Table 7. Performance comparisons for 3D dataset.

3D Dataset (176) 3D-SuB Dataset (118)
Method Qox Qe Quf" Qi Qi gt
TOPTMH 77.27 90.93 97.21 70.34 87.08 95.80
Phobius 61.36 87.43 96.05 54.24 84.71 95.00
TMHMM?2 61.93 87.43 86.78 59.32 85.14 96.39
MEMSAT3 73.86 89.77 97.45 70.34 87.26 97.16

The 3D-SuUB is the subset of 3D dataset that contains only sequences that have less than 40% sequence
identity to the set of sequences used to train TOPTMH’s model. The results for MEMSAT3 were ob-
tained by running it locally; the results for Phobius and TMHMM2 were obtained from their web-servers.

less consistent. TOPTMH outperforms MEMSATS3 on the 3D dataset by 4% (Qok)
but it performs comparably on the 3D-SuUB dataset.

6. Discussion

In order to understand the cases that TOPTMH fails to predict correctly, we
analyzed TOPTMH’s results for the 3D dataset. TOPTMH predicted the TMH
segments with very high precision ( f{‘ﬁ:d of 97.21%), but failed to identify about

9% of the TMH segments (Q75°%* of 90.93%) (Table 7). In analyzing the incorrectly
predicted sequences, we found that the errors fall under four well-defined categories.
The first category contains errors in which TOPTMH merged two consecutive
short TMH segments and thus it failed to predict the second segment (~37% of the
errors). Many of these merged short consecutive segments correspond to reentrant
regions>* (they enter and exit the membrane on the same side), that according to the
work of Viklund et al** they should have been annotated as a single segment. The
second category contains errors in which TOPTMH failed to predict short TMH
segments (/=15% of the errors). This includes TMH segments that are shorter than
the minimum length of nine residues that TOPTMH’s HMM model is designed to
capture (Section 3.2.2). In addition, it includes TMH segments that are mostly nine
residues long for which the signals captured by SVM from the protein sequences were
too weak for HMM to identify these regions as TMH segments. The third category
contains errors that are due to SVM’s failure to correctly predict the types of some
of the residues in the TMH segments (~30% of the errors). Finally, the fourth
category contains errors that are due to over-prediction from the hydrophobicity-
based HMM model (~15% of the errors).

7. Conclusions

In this paper we developed the TOPTMH method to predict the transmembrane
a-helix topology using sequence information. TOPTMH uses PSI-BLAST con-
structed profiles and hydrophobicity information within a hybrid SVM- and HMM-
based framework. This novel hybrid method captures the power of SVM-based
models to discriminate between the helical and non-helical residues with the power
of HMMs to identify length-dependent topological structures. Experiments on the
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Phobius and MOLLER datasets showed that TOPTMH achieves high per-residue
and per-segment accuracies and that on an independent static benchmark it out-
performs existing state-of-the-art methods such as PHDpsihtm083', HMMTOP233,
MEMSAT3'3, Phobius'4, and TopPred28.
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