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User-Specific Feature-based Similarity Models for Top-n
Recommendation of New Items

ASMAA ELBADRAWY, University of Minnesota
GEORGE KARYPIS, University of Minnesota

Recommending new items for suitable users is an important yet challenging problem due to the lack of
preference history for the new items. Non-collaborative user modeling techniques that rely on the item fea-
tures can be used to recommend new items. However, they only use the past preferences of each user to
provide recommendations for that user. They do not utilize information from the past preferences of other
users which can potentially be ignoring useful information. More recent factor models transfer knowledge
across users using their preference information in order to provide more accurate recommendations. These
methods learn a low rank approximation for the preference matrix which can lead to loss of information.
Moreover, they might not be able to learn useful patterns given very sparse datasets. In this work we present
UFSM, a method for top-n recommendation of new items given binary user preferences. UFSM learns User-
specific Feature-based item-Similarity Models and its strength lies in combining two points: (i) exploiting
preference information across all users to learn multiple global item similarity functions, and (ii) learning
user-specific weights that determine the contribution of each global similarity function in generating rec-
ommendations for each user. UFSM can be considered as a sparse high-dimensional factor model where
the previous preferences of each user are incorporated within his latent representation. This way UFSM
combines the merits of item similarity models that capture local relations among items and factor models
that learn global preference patterns. A comprehensive set of experiments was conduced to compare UFSM
against state-of-the-art collaborative factor models and non-collaborative user modeling techniques. Results
show that UFSM outperforms other techniques in terms of recommendation quality. UFSM manages to
yield better recommendations even with very sparse datasets. Results also show that UFSM can efficiently
handle high-dimensional as well as low-dimensional item feature spaces.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Information filtering;
I.2.6 [Learning]: Parameter learning

General Terms: Algorithms, Experimentation, Measurement, Performance
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1. INTRODUCTION
Top-n Recommender systems are used in many online applications in order to identify
items of interest for the different users. These systems rely on historical information
as to which users liked which items in order to identify the sets of items to be recom-
mended. However, in most applications of recommender systems, new items are con-

Author’s addresses: A. Elbadrawy, Computer Science Department, University of Minnesota; G.Karypis,
Computer Science Department, University of Minnesota
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2013.



39:2 A. Elbadrawy et al.

tinuously added. For example, new products are introduced, new books and articles are
written, and news stories break. Being able to provide high quality recommendations
for these new items will lead to purchasing a new product, reading a recently published
scientific article, or watching a recently released movie. For new items, recommender
systems that rely on the items’ historical information cannot be used, as simply such
information is not available. A special type of recommender systems, referred to as
cold-start recommender systems, are used to recommend such new items.

Methods for cold-start recommender systems require that the items being recom-
mended are represented via a set of features that capture their intrinsic character-
istics. For example, a movie can have features about its genre, actors and director;
a book can have a textual description for the book’s content; and a scientific arti-
cle can have an abstract that describes its content. In the cold-start setting, these
item features are used to compensate for the lack of preference history for the new
items. Non-collaborative personalized user modeling techniques determine if a new
item will be liked by a user based on how similar it is to the items that the user pre-
viously liked [Billsus and Pazzani 1999]. These techniques provide recommendations
to each user relying only on the preference history of that user and they do not utilize
the past preferences of other users which can potentially be ignoring useful informa-
tion. State-of-the-art methods that are based on latent factors learn recommendation
models by transferring knowledge across users using their preferences [Gantner et al.
2010; Agarwal and Chen 2009; Rendle 2012; Park and Chu 2009]. However, the per-
formance of latent factor methods is compromised when the datasets are very sparse
and each item has a limited number of preferences [Ahmed et al. 2013]. At the same
time, latent factor methods provide low-rank approximation to the preference matrix,
which can potentially lead to loss of information.

In this work we present UFSM: A User-specific Feature-based item-Similarity
Model. UFSM learns multiple global similarity functions for estimating the similarity
between items based on their feature representations. These functions are informed
by the historical preferences of all users, which gives UFSM an advantage over non-
collaborative user modeling techniques. UFSM also learns user-specific memberships
that specifies for each user the weight by which each global similarity function con-
tributes to the new items’ recommendation scores as estimated for that user. UFSM
can be viewed as a sparse high-dimensional latent factor model. It is a special type of
the recently developed regression-based latent factor models [Agarwal and Chen 2009]
and the attribute to feature mapping models [Gantner et al. 2010] with the difference
that each user has his own set of mapping functions. These user-specific mapping func-
tions depend on the features of the items that the user has provided preference for, and
a common set of feature weights that are shared among all users. This allows the mod-
els learned by UFSM to be highly personalized and also leverage information from the
other users. The parameters of UFSM are estimated by optimizing either a squared
error or a Bayesian personalized ranking (BPR) loss function.

We evaluated the performance of UFSM on a variety of real datasets and compared
it against the state-of-the-art latent factor techniques and non-collaborative user mod-
eling techniques. Our results show that UFSM optimized using the BPR loss function
outperformed the other methods in terms of recommendation quality. These quality
improvements hold for low- and high-dimensional item feature spaces and for datasets
with different levels of sparsity.

The rest of the paper is organized as follows. Section 2 defines the notation that
will be used throughout the paper. Section 3 discusses the related work. Section 4 de-
scribes UFSM and the optimization methods that are used to estimate the model’s
parameters. Section 5 shows how UFSM can be represented using a factor model and
describes why UFSM can better model user preferences. Section 6 includes the evalu-
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ation methodology and Section 7 includes the results. Finally Section 8 concludes the
work presented in the paper.

2. NOTATIONS AND DEFINITIONS
Throughout the paper, all vectors are row vectors and are represented by bold lower
case letters (e.g., fi). Upper case letters are used for representing matrices (e.g.,
R,P,Q). The ith row of a matrix Q is represented as qi.

The historical preference information is represented by a matrix R. We will refer to
R as the “preference matrix”. Each row in R corresponds to a user and each column
corresponds to an item. The entries of R are binary, reflecting user preferences on
items. The preference given by user u for item i is represented by entry ru,i in R. The
symbol r̃u,i represents the score predicted by the model for the actual preference ru,i.

Sets are represented with calligraphic letters. The set of users U has size nU , and
the set of items I has a size nI . R+

u represents the set of items that user u liked (i.e.,
∀ i ∈ R+

u , ru,i = 1 ). R−u represents the set of items that user u did not like or did not
provide feedback for (i.e., ∀ i ∈ R−u , ru,i = 0 ).

Each item has a feature vector that represents some intrinsic characteristics of that
item. The feature vectors of all items are represented as the matrix F whose rows fi

correspond to the item feature vectors. The total number of item features is referred
to as nF .

When describing latent-factor based models, we assume that the factorization of the
matrix R is expressed as R = PQt, where the P and Q matrices hold the user and item
latent factors, respectively. Row pu in P holds the latent representation of user u, and
the length of pu (that is, the number of latent factors) is h. Similar interpretation is
given to each row qi in Q with respect to item i.

In the cold-start scenario, we are given a set of new items and their corresponding
item features. For each user in the system we need to predict his preference scores for
all the new items. The preference scores are predicted using some model and for each
user, the new items are sorted using their predicted scores in non increasing order.
The n items at the top of the sorted list are recommended to the user. This process is
repeated for each user in the system.

3. RELATED WORK
The literature is rich with different classes of methods for solving the cold-start recom-
mendation problem. We focus on two main categories: non-collaborative user modeling
techniques that generate personalized recommendations relying only on each user’s
prior history, and collaborative latent factor techniques that exploit preference infor-
mation across the different users.

One of the earliest approaches for identifying which of the new items may be rele-
vant to a user is the user-modeling approach developed by Billsus and Pazzani [Billsus
and Pazzani 1999]. In this approach, the set of items that a user liked/disliked in the
past were used as the training set to learn a model for that user in order to classify
new items. The items were represented by some features (e.g., words in the case of
articles) and the learning algorithms used these features to build the user models.
Billsus and Pazzani experimented with two different algorithms: k-nearest neighbor
and naive Bayes. Thought this approach was primarily designed to assign a new item
into the “relevant” or “irrelevant” class, it can be easily generalized to compute a rel-
evance score to each item, which can then be used to rank the new items in order to
return the n most relevant items for each user.

In subsequent years, other researchers have investigated the use of more advanced
user modeling techniques. The work done in [Rodrı́guez et al. 2001] built personalized
user models in the context of classifying news feeds. This work modeled short-term
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user needs using the text-based features of the items recently viewed by the user, and
modeled long-term user needs using news topics/categories. The work done by [Banos
et al. 2006] built more accurate content-based user models for classifying news articles
by exploiting topic taxonomies and topic synonyms.

In recent years, latent factor models have emerged as a popular technique for devel-
oping collaborative filtering based recommender systems. In the case of the cold start
problem, these techniques incorporated the item features in the factorization process.
The most general of these techniques was the regression-based latent-factor models
(RLFM) [Agarwal and Chen 2009] that can work in different scenarios including item
cold-start. RLFM generalized the typical latent factor representation of the preference
matrix by adding another step in which the user/item features were transformed to the
latent space using linear regression. RLFM also included feature based user/item bias
terms. Applying RLFM to the case in which we have item features, no user features
and no preference-specific features, the preference ru,i is predicted as

r̃u,i = α+ bf t
i + puA

tf t
i , (1)

where α is a scalar bias term, b is a 1× nF regression coefficient vector, pu is u’s latent
factor representation, fi is the feature vector of item i and A is a matrix of regression
coefficients. The dimensions of A is the number of item features times the number of
latent factors. The term bf t

i represents a global item bias. Item i’s representation in
the latent space is given by Atf t

i , which is a transformation of i’s feature vector fi into
the latent space. The term puA

tf t
i is the main term that estimates the user preference

as the dot-product between u and i’s representations in the latent space. An extension
of the RLFM model was proposed in [Zhang et al. 2011] where more flexible regression
models were applied. However, the additional improvements were limited.

A method to learn attribute to feature mapping (AFM) was proposed in [Gantner
et al. 2010]. Item cold start was handled by first learning a factorization of the prefer-
ence matrix into user and item latent factors R = PQt. Next, a mapping function was
learned to transform the feature representation of items into their latent space repre-
sentation. In matrix notation, this is expressed as R = PQt = PAF t, where each row
in A corresponds to a latent factor and each column corresponds to an item feature.
Accordingly, the preference ru,i for user u and item i is now predicted as

r̃u,i = puAf
t
i . (2)

Bayesian Personalized Ranking (BPR) Matrix Factorization [Rendle et al. 2009] was
used to learn R = PQt. Also a BPR loss function was used in learning the mapping
function A. Results obtained on the MovieLens dataset showed that AFM works well
with low-dimensional item feature spaces, whereas its predictive performance can de-
grade when high-dimensional feature spaces are used.

Comparing RLFM with AFM, the differences are: (i) RLFM has feature-based bias
terms, (ii) RLFM learns all the model parameters simultaneously while AFM learns
the user factors first then it learns the feature-to-latent space mapping function in a
separate step, and (iii) AFM optimizes a BPR loss function with stochastic gradient
descent to learn model parameters whereas RLFM uses a stochastic process model
with maximum likelihood estimation to learn model parameters.

The CTR method proposed in [Wang and Blei 2011] had a special case that works
with new items. As mentioned in [Wang and Blei 2011], this method would be equiv-
alent to RLFM [Agarwal and Chen 2009] using item features and no user features.
Other techniques for addressing the item cold-start problem include probabilistic mod-
eling techniques [Zhang and Koren 2007; Zhang and Zhang 2010; Wang and Blei 2011],
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and techniques that utilize item features to densify the preference matrix in order to
improve the recommendation quality [Katz et al. 2011; Hu and Pu 2011].

4. UFSM: USER-SPECIFIC FEATURE-BASED SIMILARITY MODELS
The algorithms for solving the item cold-start problem that we developed are inspired
by the user modeling technique of [Billsus and Pazzani 1999] that relied on k nearest
neighbor classification (Section 3). In that scheme, when the training data for each
user contains only the relevant items and the value of k is sufficiently large to include
all of the user’s relevant items, the relevance/preference score of a new item i for user
u is given by

r̃u,i =
∑

j∈R+
u

sim(i, j) =
∑

j∈R+
u

fif
t
j = fi

∑
j∈R+

u

f t
j , (3)

where sim(i, j) is the cosine similarity between items i and j given that the feature vec-
tors of both items are of unit length1. This model suffers from three major drawbacks.
First, the similarity function is predefined and it does not utilize the historical prefer-
ences in order to estimate a similarity function that better predicts the observed pref-
erences. Second, all users use the same similarity function, which fails to account for
the fact that different users may like items for different reasons that are better mod-
eled via different similarity functions. Third, the preference score that is computed for
a new item with respect to user u relies entirely on the set of items previously liked by
u (i.e.,

∑
j∈R+

u
f t
j ), and as such it does not use information from any other users. How-

ever, under the assumption that there may be sets of users with similar likes/dislikes,
being able to incorporate information from different users can potentially lead to better
results.

UFSM is designed to overcome all of these drawbacks. First, each user has his own
similarity function, which leads to a higher degree of personalization. Second, these
user-specific similarity functions are derived as a linear combination of a fixed num-
ber of user-independent similarity functions, referred to as global similarity functions.
These global similarity functions are the same for all the users but they are combined
in a way that is specific for each user, resulting in distinct user-specific similarity func-
tions. Third, the global similarity functions and their user-specific combination weights
are estimated by taking into account the historical preferences of all users, allowing
them to leverage information across the entire dataset.

In UFSM, the preference score of a new item i for user u is given by

r̃u,i =
∑

j∈R+
u

simu(i, j),

where simu(i, j) is the user-specific similarity function given by

simu(i, j) =

l∑
d=1

mu,d gsimd(i, j),

where gsimd(.) is the dth global similarity function, l is the number of global similarity
functions, and mu,d is a scalar that determines how much the dth global similarity
function contributes to u’s similarity function. We will refer by mu to u’s membership
vector.

1Also note that an expression similar to Equation 3 can be derived from the item-based collaborative filtering
method [Sarwar et al. 2001] where the similarity between two items does not depend on the set of users that
co-preferred items i and j, but their feature vectors fi and fj .
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The similarity between two items i and j under the dth global similarity function
gsimd(.) is estimated as

gsimd(i, j) = wd(fi � fj)
t,

where � is the element-wise Hadamard product operator, fi and fj are the feature
vectors of items i and j, respectively, and wd is a vector of length nF with each entry
wd,c holding the weight of feature c under the global similarity function gsimd(.). This
weight reflects the contribution of feature c in the item-item similarity estimated un-
der gsimd(.). Note that wd is nothing more than a linear model on the feature vector
resulting by the Hadamard product.

Putting it all together, the estimated preference score r̃u,i of user u for item i is given
by

r̃u,i =
∑

j∈R+
u

simu(i, j)

=
∑

j∈R+
u

l∑
d=1

mu,d gsimd(i, j)

=

l∑
d=1

mu,d

 ∑
j∈R+

u

wd(fi � fj)
t


=

l∑
d=1

mu,d

nF∑
c=1

fi,c(wd,c

∑
j∈R+

u

fj,c).

(4)

The idea of having multiple weighted similarity measures was proposed in [Yih
2009] in the context of relevant advertisement retrieval. In this work, the document-
document similarity was estimated as a weighted sum over multiple predefined simi-
larity measures. These similarity measures compute the cosine similarity between the
two documents using different feature representations (e.g., term presence and term
frequency). The weight by which each similarity measure contributes to the final simi-
larity value was learned using labeled data. This is different from UFSM because the
similarity measures are predefined and the contribution weights are global for all the
documents.

4.1. Estimation of UFSM
UFSM learns a model Θ = [M,w1, . . . ,wl], where w1, . . . ,wl are the parameters of the
global similarity functions and M is a nU × l matrix of user memberships. The inputs
to the learning process are: (i) the preference matrix R, (ii) the item-feature matrix F ,
and (iii) the number of global similarity functions l that we want to learn.

We developed two types of UFSM models that are based on two different loss func-
tions: UFSMrmse and UFSMbpr. UFSMrmse uses the squared error loss function

Lrmse(Θ) =
∑
u∈U

∑
i∈I

(ru,i − r̃u,i(Θ))2, (5)

and UFSMbpr uses Bayesian personalized ranking loss function [Rendle et al. 2009]

Lbpr(Θ) = −
∑
u∈U

∑
i∈R+

u ,

j∈R−u

ln σ(r̃u,i(Θ)− r̃u,j(Θ)). (6)
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In both equations, ru,i and r̃u,i are the observed and estimated values of user u’s pref-
erence for item i whereas in Equation 6, σ(x) is the sigmoid function. The RMSE loss
function tries to learn a model that estimates the like and dislike preferences as pre-
cisely 1 and 0, respectively. The BPR loss function, on the other hand, tries to learn
item preference scores such that the items that a user liked have higher preference
scores than the ones she did not like, regardless of the actual item preference scores.
Since the predicted preference scores are used to rank the items in order to select the
highest scoring n items, the BPR loss functions better models the problem require-
ments and in general lead to better performance [Gantner et al. 2010; Rendle et al.
2009].

The value of r̃u,i is estimated as

r̃u,i =
∑

j∈R+
u ,

j 6=i

simu(i, j), (7)

which is identical to Equation 4 except that item i is excluded from the summation.
This is done to ensure that the variable being estimated (the dependent variable) is
not used during the estimation as an independent variable as well. We refer to this as
the Estimation Constraint.

4.2. Optimization of UFSM
The model parameters Θ = [M,w1, . . . ,wl] are estimated via an optimization process
of the form:

minimize
Θ=[M,w1,...,wl]

L(Θ) +Reg(Θ), s.t.

wdw
t
d = 1,∀ d = 1, . . . , l,

wdw
t
d′ = 0,∀ d 6= d′,

(8)

where L(Θ) represents the loss function and Reg(Θ) represents a regularization term
that controls the model’s complexity. The two constraints enforce orthogonality be-
tween the weight vectors wd’s associated with the global similarity functions. This
is done in order to ensure that the learned models are different2. These constraints
are softly applied by incorporating them into the regularization term Reg(Θ) using a
quadratic penalty function. Accordingly, the regularization function Reg(Θ) becomes:

Reg(Θ) =λ||M ||2F + µ1

l∑
d=1

(wdw
t
d − 1)2 + µ2

l∑
d=1

l∑
d′=d+1

(wdw
t
d′)

2. (9)

The term λ||M ||2F controls the complexity of the user memberships matrix M and thus
is used to avoid overfitting. The term (µ1

∑l
d=1(wdw

t
d−1)2) is used to make the vectors

wd be of unit length. The term (µ2

∑l
d=1

∑l
d′=d+1 wdw

t
d′) enforces orthogonality among

the wd vectors.
For both UFSMrmse and UFSMbpr, stochastic gradient descent (SGD) [Bottou 1998]

was used to learn the model parameters Θ. Choosing SGD was due to its efficiency.

2Our initial experiments showed that without these orthogonality constraints the resulting wd vectors of
the global similarity models gsimd(.) were often nearly parallel and as such redundant.
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For UFSMrmse, the update steps for M, w1, . . . ,wl based on a preference ru,i become

wd,c = wd,c − α1

( ∂

∂wd,c
(ru,i − r̃u,i)2 + µ1

∂

∂wd,c
(wdw

t
d − 1)2 + µ2

∂

∂wd,c

∑
d′ 6=d

(wdw
t
d′)

2
)
,

(10)

and

mu,d = mu,d − α2

( ∂

∂mu,d
(ru,i − r̃u,i)2 + λmu,d

)
. (11)

The gradients in Equations 10 and 11 are estimated as:
∂

∂wd,c
(ru,i − r̃u,i)2 = 2mu,d(r̃u,i − ru,i)

∑
q∈R+

u ,
q 6=i

fi,cfq,c, (12a)

∂

∂mu,d
(ru,i − r̃u,i)2 = 2(r̃u,i − ru,i)

∑
q∈R+

u ,
q 6=i

nF∑
c=1

fi,cfq,cwd,c, (12b)

∂

∂wd,c
µ1(wdw

t
d − 1)2 = 4µ2wd,c(wdw

t
d − 1)), (12c)

∂

∂wd,c
µ2

∑
d′ 6=d

(wdw
t
d′)

2 = 2µ1

∑
d′ 6=d

wd′,c(wdw
t
d′). (12d)

For UFSMbpr, the update steps for M,w1, . . . ,wl based on a triplet (u, i, j) and its
corresponding estimated relative rank r̃u,ij become

wd,c = wd,c + α1

( e−r̃u,ij

1 + e−r̃u,ij
× ∂

∂wd,c
r̃u,ij + µ1

∂

∂wd,c
(wdw

t
d − 1)2 + µ2

∂

∂wd,c

∑
d′ 6=d

(wdw
t
d′)

2
)
,

(13)

and

mu,d = mu,d + α2

( e−r̃u,ij

1 + e−r̃u,ij
× ∂

∂mu,d
r̃u,ij − λ mu,d

)
. (14)

The relative rank r̃u,ij(Θ) is estimated using Equation 4 as

r̃u,ij =

l∑
d=1

mu,d

 ∑
q∈R+

u ,
q 6=i

nF∑
c=1

(fi,c − fj,c)fq,cwd,c

 . (15)
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The gradients ∂
∂wd,c

r̃u,ij and ∂
∂mu,d

r̃u,ij are estimated using Equation 15 as

∂

∂wd,c
r̃u,ij = mu,d

∑
q∈R+

u ,
q 6=i

(fi,c − fj,c)fq,c, (16a)

∂

∂mu,d
r̃u,ij =

∑
q∈R+

u ,
q 6=i

nF∑
c=1

(fi,c − fj,c)fq,cwd,c. (16b)

The gradients ∂
∂wd,c

(wdw
t
d − 1)2 and ∂

∂wd,c

∑
d′ 6=d(wdw

t
d′)

2 in Equation 13 are esti-
mated according to Equations 12c and 12d, respectively.

The high-level structures of the algorithms used to estimate the UFSMrmse and the
UFSMbpr models are shown in Algorithms 1 and 2, respectively. In estimating the
UFSMrmse model, we sample a user u and an item i such that u liked i, update the
model parameters accordingly, then we sample for the same user an item j that u
did not like and update the model parameters accordingly. In estimating the UFSMbpr

model, we sample a user u and a pair of items (i, j) such that u liked i and did not like
j and the model parameters are updated based on this triplet (u, i, j). Note that in both
algorithms, the optimization process continues until convergence is detected. This part
is described in details in the Section 6.4 as it is related to the evaluation metrics that
are used to measure the performance of the different methods.

The factorization machines library [Rendle 2012] can be used to learn a model that
is similar to UFSM as discussed in Section 5.2.

4.3. Time analysis for learning the UFSM models
The time taken to estimate the parameters of UFSM depends on the number of sam-
pled instances per learning iteration nR, the average number of preferences per user
nuR, and the average number of features per item niF . With each learning iteration,
we sample a number of training instances/pairs nR that is equal to the total num-
ber of preferences. With each sample, the number of computations made are of order
O(nuR × niF ). Therefore, each learning iteration takes time of order O(nR × nuR × niF ).

5. UFSM VS. LATENT FACTOR METHODS
We show in this section how UFSM relates to the different latent factor methods and
what are the advantages that UFSM possess over these methods.

5.1. Representing UFSM as an AFM Model
In this section we show that the UFSM model can be considered as a sparse high-
dimensional latent factor model that is expressed as a special case of the AFM model
described in Section 3.

Given a UFSM model with l global similarity functions and parameters Θ =
[M,w1, . . . ,wl], it is possible to represent it as an AFM model (R = PAF t) by con-
structing the P and A matrices as follows.

Let the number of latent factors for AFM be h = l×nU . Let P be an nU ×h matrix of
user latent factors and for each user u, the latent space representation pu in P is set
as follows:
pu,0, pu,1, . . . , pu,(l(u−1)−1) = 0,
pu,(l(u−1)), . . . , pu,(lu) = mu,0, . . . ,mu,l,
pu,(lu+1), . . . , pu,h = 0.
Let A be an h × nF matrix such that the rows of A are divided into nU chunks of size
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Algorithm 1 UFSMrmse-Learn
1: procedure UFSMrmse LEARN
2: λ←M regularization weight
3: µ1, µ2 ←W regularization weights
4: α1, α2 ←W and M learning rates
5: Initialize Θ = [M,w1, . . . ,wl] randomly
6:
7: while not converged do
8: for each user u do
9: sample an item i s.t. i ∈ R+

u
10:
11: estimate ∂

∂wd,c
(ru,i − r̃u,i)2 using (12a)

12: estimate ∂
∂mu,d

(ru,i − r̃u,i)2 using (12b)
13: estimate ∂

∂wd,c
(wdw

t
d − 1)2 using (12c)

14: estimate ∂
∂wd,c

∑
d′ 6=d(wdw

t
d′)

2 using (12d)
15:
16: estimate r̃u,i using (7)
17: update mu,d ∀ d using (11)
18: update wd,c ∀ d, ∀c s.t. fi,c 6= 0
19:
20: sample an item j s.t. j ∈ R−u and repeat steps 11 to 18
21:
22: end for
23: end while
24:
25: return Θ = [M,w1, . . . ,wl]
26: end procedure

l each. The uth chunk in A corresponds to user u in R. The entry alu+d,c in chunk u
is set to wd,c

∑
j∈R+

u
fj,c. Using this construction, the preference score r̃u,i under AFM

(Equation 2) is

r̃u,i = puAf
t
i =

nU×l∑
d=1

pu,d

nF∑
c=1

fi,c alu+d,c =

l∑
d=1

mu,d

nF∑
c=1

fi,c(wd,c

∑
j∈R+

u

fj,c), (17)

which is identical to Equation 4 of UFSM. This shows that UFSM can be represented
using AFM such that each user has his own set of mapping functions that are derived
from his own item preferences. Accordingly, representing UFSM using AFM requires
a latent space with a large number of dimensions. In particular, the l global similarity
functions in UFSM are represented using (l × nU ) latent factors in AFM. Looking at
the nature of these latent factors, we see that each user u has his own set of l latent
factors that are derived from the features of the items that u previously liked. This
direct incorporation of user preferences reduces the loss of information due to low rank
approximation, which occurs with latent factor models.

Although a UFSM model can be represented using AFM, the reverse is not true.
That is, there is no UFSM equivalent for every AFM model. Moreover, AFM cannot
be used to find the model that corresponds to UFSM without the introduction of addi-
tional constraints to enforce the special structure required by UFSM.
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Algorithm 2 UFSMbpr-Learn
1: procedure UFSMbpr LEARN
2: λ←M regularization weight
3: µ1, µ2 ←W regularization weights
4: α1, α2 ←W and M learning rates
5: Initialize Θ = [M,w1, . . . ,wl] randomly
6:
7: while not converged do
8: for each user u do
9: sample a pair (i, j) s.t. i ∈ R+

u , j ∈ R−u
10:
11: estimate ∂

∂wd,c
r̃u,ij using (16a)

12: estimate ∂
∂mu,d

r̃u,ij using (16b)
13: estimate ∂

∂wd,c
(wdw

t
d − 1)2 using (12c)

14: estimate ∂
∂wd,c

∑
d′ 6=d(wdw

t
d′)

2 using (12d)
15:
16: estimate r̃u,ij using (15)
17: update mu,d ∀ d using (14)
18: update wd,c ∀ d, ∀ c s.t. fi,c or fj,c 6= 0 using (13)
19: end for
20: end while
21:
22: return Θ = [M,w1, . . . ,wl]
23: end procedure

5.2. Using the Factorization Machine Model to Learn UFSM
In this section we show how the factorization machine framework (FM) proposed in
[Rendle 2012] and implemented within the LibFM library can be used to generate
a model that is similar to UFSM. FM incorporates features in learning factoriza-
tion models while accounting for dependencies among the different features. It can
also learn feature-based bias terms. In FM, each training instance is represented by
(ru,i,xui), where ru,i is an entry in the preference matrix R and xui is a vector of in-
put features for ru,i. Ignoring the bias terms for simplicity, the recommendation score
under FM is estimated as

r̃u,i =

k∑
c=1

k∑
c′=c+1

xui,c xui,c′ vcv
t
c′ , (18)

where k is the length of the feature vectors, xui,c is the value of feature c in feature
vector xui, and vc is the vector of latent factors representing feature c.

FM can be used to generate a model similar to UFSM as follows. For each training
instance (ru,i,xui), the vector xui has length nU + nF (i.e., k = nU + nF ). The first nU
features of xui are binary with only xui,u = 1, and the other features set to 0 ( that
is xui,c = 0, 1 ≤ c ≤ nU , c 6= u). The remaining nF features are set as xui,nU+c =
fi,c

∑
j∈R+

u
fj,c, 1 ≤ c ≤ nF .

Then according to Equation 18, the recommendation score r̃u,i is estimated as

r̃u,i =

nU+nF∑
c=nU+1

xui,u xui,c vuv
t
c +

nU+nF∑
c=nU+1

nU+nF∑
c′=c+1

xui,c xui,c′ vcv
t
c′ . (19)
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The first term results from having the first nU features set to all 0’s except for entry
xui,u which was set to 1. The second term shows interactions between the rest of the
features. Substituting the feature values described above into Equation 19 and rear-
ranging the sums, we get

r̃u,i =

l∑
d=1

vu,d

nF∑
c=1

fi,c

v(c+nU ),d

∑
j∈R+

u

fj,c


+

nF∑
c=1

nF∑
c′=c+1

fi,cfi,c′

 ∑
j∈R+

u

fj,c

 ∑
j∈R+

u

fj,c′

 l∑
d=1

v(c+nU ),dv(c′+nU ),d.

(20)

The first term in Equation 20 is identical to Equation 4 of UFSM with vu,d corre-
sponding to mu,d and v(c+nU ),d corresponding to wd,c. The second term in Equation 20
accounts for dependencies among the different item features. In the UFSM setting,
this term accounts for dependencies among the feature pairs that appear in the his-
tory of different users. That is, it accounts for dependencies among the feature pairs
that the users find interesting. It is clear that FM subsumes UFSM since the feature
vectors can be constructed in any arbitrary way in order to fulfill any model-specific
assumptions.

6. EXPERIMENTAL EVALUATION
6.1. Datasets
We used five datasets (CiteULike, Amazon Books, Book Crossing, MovieLens-IMDB
and MovieLens-HetRec) to evaluate the performance of UFSM.

CiteULike (CUL)3 is an online service that allows researchers to add scientific ar-
ticles to their libraries. For each user, the articles that were added in his library are
considered as preferred articles (i.e., their preference values in matrixR are set to 1and
there are no explicit 0 preferences). We have collected the articles’ titles and abstracts
and used them as the item’s content. Amazon Books (ABB) is a dataset collected from
the best selling books at Amazon and their ratings. The ratings were binarized by set-
ting all ratings above 3 to 1 and all ratings below or equal to 3 to 0. Each book had
one or two paragraphs of textual description that was used as the item’s content. Book
Crossing (BX) is a dataset extracted from the Book Crossing dataset [Ziegler et al.
2005] such that each user/book provided/received at least four ratings. We have col-
lected the book descriptions form Amazon using the ISBN and used them as the items’
features. The rating scale is 1-10. The ratings were binarized by setting all ratings
above 6 to 1 and all ratings below or equal to 6 to 0. MovieLens-IMDB (ML-IMDB)
is a dataset extracted from the IMDB and the MovieLens-1M datasets4 by mapping
the MovieLens and IMDB movie IDs and collecting the movies that have plots and
keywords. The ratings were binarized the same way as we did with the ABB dataset.
The movies plots and keywords were used as the item’s content. MovieLens-HetRec
(ML-HR(genre)) is the dataset described in [Cantador et al. 2011]. The ratings were
binarized the same way as we did with the ABB dataset. The movie genres were used
as the item’s content.

For the CUL, BX, ABB and ML-IMDB datasets, the words that appear in the item
descriptions were collected, stop words were removed and the remaining words were
stemmed to generate the terms that were used as the item features. All words that

3http://www.citeulike.org/
4http://www.movielens.org, http://www.imdb.com
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appear in less than 20 items and all words that appear in more than 20% of the
items were omitted. The remaining words were represented with TF-IDF scores. The
item feature matrix F was normalized row-wise in all the datasets except for the ML-
HR(genre), which has 20 features corresponding to movie genres.

Various statistics about these datasets are shown in Table I. Most of these datasets
contain items that have high-dimensional feature spaces. The only exception is ML-
HR(genre) whose items are represented in a 20-dimensional feature space. Also com-
paring the densities of the different datasets we can see that the two MovieLens
datasets have significantly higher density than that of the other three datasets.

Table I. Statistics for the 5 datasets used for testing

Dataset # users # items # features # preferences # prefs/user # prefs/item density

CUL 3,272 21,508 6,359 180,622 55.2 8.4 0.13%

ABB 13,097 11,077 5,766 175,612 13.4 15.9 0.12%

BX 17,219 36,546 8,946 574,127 33.3 15.7 0.09%

ML-IMDB 2,113 8,645 8,744 739,973 350.2 85.6 4.05%

ML-HR(genre) 2,113 10,109 20 855,598 404.9 84.6 4.01%

6.2. Comparison with Other Methods
We compare UFSM against non-collaborative user modeling techniques and collabo-
rative latent factor based techniques.

(1) Non-Collaborative User Modeling Techniques
The two techniques described here are inspired by the ideas in [Billsus and Pazzani
1999].
— Simple Cosine-Similarity (CoSim): A personalized user modeling technique

that was described at the beginning of Section 4. The preference score ru,i of user
u for item i is estimated using Equation 3. For each user u, we estimate u’s pref-
erence scores over all the test items, then the estimated preference scores are
sorted and the top-n items are selected. The evaluation metrics are computed
over this list of recommended items.

— Personalized Feature Weighting (PFW): A non-collaborative technique that
learns user models independently. A feature weighting vector wu of length nF
is estimated for each user u to reflect the importance of the different item fea-
tures for each user. The preference score ru,i of user u for item i is estimated as
r̃u,i =

∑
j∈R+

u
wu(f t

i � f t
j ). The problem is formulated as a personalized rank-

ing problem and a BPR loss function is used to learn each of the user models
wu, ∀u ∈ U . Using a BPR-loss achieved better results compared to using an
RMSE-loss function. The optimization problem used to estimate each wu takes
the form

minimize
wu

−
∑

i∈R+
u ,

j∈R−u

ln σ(r̃u,i(wu)− r̃u,j(wu)) + µ||wu||22,

where the second term is used for regularization. The number of sampled pairs
that were used to learn a user model wu were eight times the size of Ru.

(2) Collaborative Latent Factor-based Techniques
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— RLFMI: The Regression-based Latent Factor Modeling technique that was de-
scribed in Section 3. We experimented with both the original RLFM technique
described in [Agarwal and Chen 2009] and the version that is implemented
in LibFM that accounts for inter-feature interactions (referred to as RLFMI).
RLFMI consistently gave slightly better results over all the datasets and for
this reason we only reported the results for RLFMI. We used the Factorization
Machine library LibFM [Rendle 2012] with SGD learning to obtain the RLFMI
results.

— AFMbpr: The attribute to feature mapping technique [Gantner et al. 2010] that
was described in Section 3, which we implemented ourselves. The subscript bpr
describes the BPR loss function that was used to learn the model parameters.

— AFMIrmse: The AFM technique as implemented in LibFM. AFMIrmse accounts
for inter-feature interactions among the item features. The reported results
were obtained using LibFM with SGD optimizer and RMSE loss function.

6.3. Evaluation Methodology and Metrics
We evaluated the performance of the different methods using the following procedure.
For each dataset we split its corresponding user-item preference matrix R into two ma-
tricesRtrain andRtest. TheRtest matrix contains a randomly selected 10% of the columns
of R and the Rtrain matrix contains the remaining 90% of the columns. Since each col-
umn corresponds to an item, the set of items in Rtest are disjoint from those in Rtrain.
The information in Rtrain was used to train each of the models, which were then used
to predict for each user the preference scores for the items in Rtest. These scores were
then used to sort the items in descending order and the first n items were returned
as the top-n recommendations for each user. The evaluation metrics (described next)
are computed using the top-n recommendations that are made for each user. Note that
after making the train-test split, some users end up having no items in the test set.
For the CUL, BX and ABB datasets, 13%, 33%, and 40% of the users had no items
in the test set, respectively. For this reason we only evaluated the performance of the
different methods on the users that had at least one item in their test set. For the
two MovieLens datasets, all users had items in the test set. This split-train-evaluate
procedure is repeated three times for each dataset, and the obtained values for the
evaluation metrics are averaged over the three runs and reported in the results.

We used two metrics to assess the performance of the various methods. The first is
the Recall at n metric (Rec@n). Given the list of the top-n recommended items for user
u, Rec@n measures how many of the items liked by u appeared in that list. Rec@n is
computed for each user u ∈ U and then averaged over all users. The second metric is
Discounted Cumulative Gain at n (DCG@n). Given the list of the top-n recommended
items for user u, the DCG@n of user u is defined as

DCG@n = imp1 +

n∑
p=2

impp

log2(p)
,

where the importance score impp of the item with rank p in the top-n list is

impp =

{
1/n, if item at rank p ∈ R+

u,test

0, if item at rank p /∈ R+
u,test.

Just like Rec@n, the DCG@n is computed for each user and then averaged over all the
users. The main difference between Rec@n and DCG@n is that DCG@n is sensitive to
the rank of the items in the top-n list. Note that we also computed the Precision at n
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metric (Prec@n); however, the ranking of the methods under Prec@n was the same as
their ranking under Rec@n and for this reason we only report the Rec@n values.

6.4. Model Training and Selection
In estimating UFSM’s parameters, the train setRtrain was furthur divided into training
and validation sets with weights 90% and 10%, respectively. The model was estimated
using the training set and the validation set was used to detect convergence as fol-
lows. After each major SGD iteration of Algorithms 1 and 2, the Rec@n was estimated
over the validation set and the model was saved if it achieved a better Rec@n value
than that obtained in any of the earlier iterations. The learning process ends when no
improvement in Rec@n is observed for ten major iterations. At the end of the learning
process the model that has achieved the best Rec@n on the validation set was returned.

For estimating UFSMbpr and UFSMrmse, each major SGD iteration involves draw-
ing a number of samples that is equal to the number of entries in R. According to
Algorithms 1 and 2, each sample involves a user, an item that he liked and/or an item
that he did not like. The CUL dataset contained only preferences about articles that
each user has liked. In this case the disliked articles are sampled from among the un-
known entries in R (i.e., the articles that the user did not add to his library). All the
other datasets contain both like and dislike user preferences. For these datasets, the
dislike preferences are sampled from among both the real dislikes and the unknown
entries. We tried regularization parameters in the range [1e − 5, 1] and a number of
global similarity functions l = 1, 2, . . . , 7 for estimating UFSMbpr and UFSMrmse.

For estimating AFMIrmse and RLFMI, LibFM was provided with the train and val-
idation sets and the model that achieved the best performance on the validation set
was returned. The training set must contain both 0’s and 1’s. Since the CUL dataset
does not contain 0’s, we sampled 0’s from the unknown values. We performed a series
of experiments in which we sampled a number of 0’s equal to 1×, 5×, 10× and 15× the
number of 1’s in R. The overall performance of these models was very similar. For this
reason we only reported results for the 1× sampling rate. For estimating AFMIrmse,
AFMbpr and RLFMI, we tried regularization parameters in the range [1e− 5, 1], and a
number of latent factors h = 10, 20, 30, . . . , 150. For the ML-HR(genre) dataset that has
only 20 item features, we tried a number of latent factors h = 1, 2, 3, . . . , 20.

For estimating the PFW models, for each user u we sampled triplets (u, i, j), where
u liked item i and did not like item j, and updated u’s model accordingly. For each
user u we sampled a number of triplets that is 60× the number of non-zero entries in
the training set of u. The model that achieved the best recall on u’s validation set was
returned.

7. RESULTS AND DISCUSSION
We structure the presentation of the results into two parts. The first (Section 7.1)
compares the performance of UFSM with the other methods described in Section 6.2.
The second (Sections 7.2 – 7.4) shows the effect of the different model parameters and
dataset characteristics on the recommendation quality of UFSM.

7.1. Comparison with other methods
Table II shows the performance achieved by the various methods across the different
datasets. These results correspond to the best set of results that we obtained for the dif-
ferent values for the various parameters associated with each method (e.g., number of
latent factors, number of global similarity functions, and regularization parameters).

The results show that UFSMbpr achieves the best overall performance across the dif-
ferent datasets, both in terms of Rec@n and DCG@n. For the two MovieLens datasets,
its performance difference over the second best performing scheme is considerable
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Table II. Performance of UFSM and Other Techniques on the Different Datasets

Method CUL BX ABB

Params Rec@10 DCG@10 Params Rec@10 DCG@10 Params Rec@10 DCG@10

CoSim - 0.336 0.076 - 0.176 0.070 - 0.283 0.101
PFW µ1=5e-1 0.341 0.077 µ1=3e-1 0.181 0.073 µ1=5e-1 0.287 0.107

RLFMI h=30, λ=1e-3 0.174 0.041 h=40, λ=1e-4 0.036 0.003 h=40, λ=1e-3 0.025 0.008
AFMIrmse h=30, λ=1e-3 0.170 0.043 h=30, λ=1e-2 0.033 0.003 h=30, λ=1e-3 0.022 0.007
AFMbpr h=30, λ=1e-1 0.298 0.069 h=30, λ=1e-2 0.101 0.031 h=30, λ=5e-2 0.153 0.066

UFSMrmse l=1, µ1=1e-1 0.334 0.077 l=1, µ1=22e-1 0.170 0.070 l=1, µ1=1e-1 0.276 0.098
UFSMbpr l=6, µ1=1e-4,

µ2=5e-5,
λ=1e-3

0.370 0.086 l=3, µ1=3e-5,
µ2=5e-5,
λ=1e-3

0.199 0.076 l=1, µ1=5e-3 0.295 0.112

Method ML-IMDB ML-HR(genre)

Params Rec@10 DCG@10 Params Rec@10 DCG@10

CoSim - 0.105 0.080 - 0.065 0.039
PFW µ1=9e-1 0.148 0.082 µ1=5e-1 0.079 0.040

RLFMI h=50, λ=1e-3 0.071 0.058 h=12, λ=1e-2 0.052 0.042
AFMIrmse h=40, λ=1e-3 0.065 0.041 h=12, λ=1e-2 0.041 0.018
AFMbpr h=30, λ=2e-2 0.147 0.093 h=12, λ=1e-2 0.090 0.045

UFSMrmse l=1, µ1=5e-2 0.109 0.081 l=2, µ1=5e-2, µ2=5e-5, λ=5e-2 0.043 0.012
UFSMbpr l=1, µ1=5e-3 0.179 0.150 l=3, µ1=5e-3, µ2=1e-4, λ=3e-3 0.128 0.092

The “Params” column shows the main parameters for each method. For RLFMI, AFMIrmse and AFM, h is
the number of latent factors and λ is the regularizer used to learn the model parameters. For UFSMrmse

and UFSMbpr , l is the number of similarity functions, and λ, µ1 and µ2 are the regularization parameters
described in Section 4.2 for the UFSM method. The “Rec@10” and “DCG@10” columns show the values ob-
tained for these evaluation metrics. The entries that are underlined represent the best performance obtained
for each dataset.

(21.8% and 42.2%), whereas for the CUL, BX and ABB datasets, the gains are 8.5%,
9.7% and 2.8%, respectively.

The performance of UFSMrmse is considerably worse than that of UFSMbpr. This
is consistent with previous research that showed that ranking-based loss functions
are better suited for ranking binary user preferences than the RMSE loss function
[Gantner et al. 2010]. This is also evident by the relative performance advantage of
AFMbpr over AFMIrmse. We expect that the relative performance of UFSMrmse will
improve if the training procedure is provided with user ratings instead of binary user
preferences since the RMSE loss function is suitable for estimating actual user ratings.

Comparing the performance of the latent factor based methods RLFMI, AFMIrmse,
and AFMbpr among themselves, we can see that AFMbpr does considerably better,
substantially outperforming the other two across all datasets. We believe this is due to
the BPR loss function as the nearly identical AFMIrmse method that uses an RMSE
loss function does considerably worse. Also the results show that among RLFMI and
AFMIrmse, both of which used an RMSE loss function, the former does somewhat
better especially for the denser ML-IMDB and ML-HR(genre) datasets.

Among the two non-collaborative based schemes, PFW does considerably better than
CoSim across all the datasets. This is not surprising as PFW is inherently more pow-
erful since it uses a ranking loss function to estimate a model from the data. Neverthe-
less, the gains that it achieves over CoSim are rather small for the very sparse datasets
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(CUL, BX and ABB), and for the ML-HR(genre) dataset whose items are described in
a low dimensional space.

One surprising aspect of the results is that the non-collaborative based methods
(CoSim and PFW) did quite well relative to the latent factor models. For nearly all
the datasets both schemes outperformed the latent factor models. The exceptions were
the two MovieLens datasets where AFMbpr performed better or quite comparable to
PFW. As mentioned in [Billsus and Pazzani 1999], such personalized neighborhood
methods can provide recommendations even with a single preference per user, unlike
other more sophisticated learning techniques which usually require a large number
of training examples in order to be able to detect a meaningful pattern. Moreover,
as mentioned in [Koren 2008], neighborhood methods can efficiently detect localized
relationships as they only rely on a few yet significant item-item relations. Latent
factor methods, on one hand, are more suited for detecting overall preference patterns
while, on the other hand, they are not as efficient as neighborhood methods in detecting
associations among related items. This can explain why CoSim and PFW performed
better than the latent factor methods on the three sparser datasets.

7.2. Effect of the number of global similarity functions
Table III shows the performance achieved by UFSMbpr for different number of global
similarity functions. These results show that for all datasets with high-dimensional
feature spaces (CUL, BX, ABB and ML-IMDB) the performance achieved for the dif-
ferent number of global similarity functions does not change significantly. In fact for
all of these datasets, the performance achieved using a single global similarity func-
tion is either the best (ABB and ML-IMDB) or very close to the best (CUL and BX).
On the other had, for the ML-HR(genre) dataset, significant gains can be achieved by
using more than one global similarity function. However, even for that dataset, there
is little change in performance past three global similarity functions.

We believe that the reason why UFSM performs well with relatively small number
of global similarity functions can be attributed to the fact that its underlying model
can compactly capture the preferences of the users, even when these preferences are
quite diverse. Recall from section 5 that the UFSM model can be represented as a
sparse latent factor model in which the number of factors is l × nU . Even thought
some of these factors are probably similar (e.g., for the users that have very similar
membership functions), the resulting effective dimensionality can still model diverse
user preferences.

Another factor is the dimensionality and sparsity of the item-feature matrix F . To
show this, consider the case in which we have a sparse high-dimensional F that has
a large number of features describing the items; as it is the case with all the datasets
except ML-HR(genre). In this case, each feature potentially appears with a small num-
ber of items. For the CUL, BX, ML-IMDB and ABB datasets, each feature appears on
average with less that 1% of the items. Accordingly, the subset of features appearing
in the preference history of one user can be highly disjoint from the subset of features
appearing in the history of other users. In this case, given a global similarity function
gsim and its feature weight vector w, only the weights corresponding to the features
that appear in a user’s history can influence the estimation of the preference scores
for that user, and the other feature weights have no effect since these features do not
appear in the user’s history. Therefore, each global similarity function can model dif-
ferent preferences for different users and this can result in good performance using a
small number of global similarity functions. On the other hand, in the case of a low-
dimensional item-feature matrix F with limited number of features (i.e., F is a long
thin matrix), a single feature can appear in many items as it is the case with the
ML-HR(genre) dataset where each feature appears on average with more than 10%
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Table III. Time for learning UFSMbpr

# Global Similarity Functions Rec@10

CUL BX ABB ML-IMDB ML-HR(genre)

1 0.3672 0.1983 0.2951 0.1792 0.1080

2 0.3665 0.1979 0.2948 0.1786 0.1205

3 0.3585 0.1986 0.2944 0.1786 0.1285

4 0.3669 0.1975 0.2895 0.1779 0.1280

5 0.3690 0.1976 0.2897 0.1781 0.1279

6 0.3704 0.1974 0.2904 0.1776 0.1283

7 0.3694 0.1971 0.2894 0.1772 0.1281

Table IV. Effect of the Estimation Constraint on the performance of UFSMbpr on the different
datasets.

Method Rec@10

CUL BX ABB ML-IMDB ML-HR(genre)

UFSMbpr with constraint 0.3672 0.1983 0.2951 0.1793 0.1284

UFSMbpr without constraint 0.3583 0.1913 0.2872 0.1785 0.1278

For the CUL, BX, ABB and ML-IMDB datasets, the results were generated using l = 1,
whereas for the ML-HR(genre) dataset, the results were generated using l = 3.

of the items. In this case each feature can appear in the history of many users and
the subset of features appearing in the preference history of one user can be highly
overlapping with the subset of features appearing in the history of other users. In this
case, a larger number of global similarity functions might be needed in order to define
the key features that identify the preferences for each of the different users.

7.3. Effect of the Estimation Constraint
Recall from Section 4.1 that when we estimate the user preferences during training we
do not include i in estimating its own preference score r̃u,i. To show the effect of this
constraint on the performance of UFSM, we estimated UFSMbpr with and without
using it. Table IV shows the Rec@10 that we obtained for these two scenarios. These
results show that excluding the known preference during the estimating process leads
to higher Rec@10. These results are consistent with those reported in [Kabbur et al.
2013] in the context of estimating a factored representation of an item-item model.

7.4. Effect of Changing the Number of Recommended Items
Figure 1 shows the Rec@n for all the methods for values of n = 5, 10, 15, 20, and
25 on the ABB and the ML-HR(genre) datasets. UFSMbpr outperforms all the other
methods for all values of n. For the ABB dataset, the rankings of the different methods
do not change as n changes. For the ML-HR(genre) dataset, the different methods
roughly maintain their rankings as n changes with one exception being the RLFMI
and AFMIrmse methods whose Rec@n values are so close to one another.

7.5. Timing Performance of UFSM
Table V shows the training times for the different datasets for estimating UFSMbpr.
Times for estimating UFSMrmse are similar. As mentioned in Section 4.3, time to es-
timate UFSM depends on the total number of samples per learning iteration nR, the
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Fig. 1. Performance of the different methods with changing value of n for the ABB (left) and the ML-
HR(genre) (right) datasets.
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Table V. Time for estimating UFSMbpr in minutes.

CUL BX ABB ML-IMDB ML-HR(genre)

44.74 62.79 20.23 566.31 15.66

average number of preferences per user nuR, and the average number of features per
item niF . The ML-IMDB dataset takes the longest training time since all of the three
factors have high values in this dataset. The ML-HR(genre) dataset takes the shortest
training time since it has a relatively very small niF .

8. CONCLUSION AND FUTURE WORK
In this paper we presented UFSM, a method for top-n item cold start recommenda-
tion. UFSM learns multiple feature-based global item similarity functions with user-
specific combination weights. Each global similarity function has feature weights that
determine the contribution of each feature to the similarity score under this global sim-
ilarity function. UFSM can learn multiple global similarity functions as needed to ac-
count for the preferences of the different users. The user-specific combination weights
allow UFSM to estimate similarity functions that are personalized for each user. In
addition, we showed that UFSM can be mathematically represented as a sparse factor
model in a latent space whose dimensionality is proportional to the number of users.
The latent factors of each user directly incorporate the user’s past preferences in order
to account for the similarity of new items with the previously preferred items.

While in this work the global similarity functions of UFSM were represented using
cosine similarity, other forms of similarity measures can be used in order to adjust
UFSM to the designated application. Likewise, while the recommendation scores for
each user are estimated using a set of user-specific features (i.e., the features of the
items that the user has previously liked), it is possible to generate other forms of user-
specific features in ways that can suite different applications. For example, if temporal
information is available, one can construct user-specific features that make more use
of the more recent preferences and discard the older ones.

We compared UFSM against non-collaborative user modeling techniques and state-
of-the art latent factor-based techniques. Our results showed that UFSM outperforms
all other methods in terms of recommendation quality on datasets with low- and high-
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dimensional item feature spaces. Finally our results showed that using the BPR loss
function in estimating the model parameters gives better recommendations compared
to using a squared error loss function.

In the future, we plan to investigate the performance of UFSM on actual ratings
instead of binary preferences. We expect that the performance of UFSMrmse would
improve since the squared error loss function can better handle actual user ratings
than binary user preferences.
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