
A Uni�ed Algorithm for Load-balancing Adaptive Scienti�c

Simulations �

Kirk Schloegel and George Karypis and Vipin Kumar
( kirk, karypis, kumar ) @ cs.umn.edu

Army HPC Research Center
Department of Computer Science and Engineering

University of Minnesota,
Minneapolis, MN 55455

Technical Report: TR 00-033

May 29, 2000

Abstract

Adaptive scienti�c simulations require that periodic repartitioning occur dynamically throughout

the course of the simulation. The computed repartitionings should minimize both the inter-processor

communications incurred during the iterative mesh-based computation and the data redistribution costs

required to balance the load. Recently developed schemes for computing repartitionings provide the

user with only a limited control of the tradeo�s among these objectives. This paper describes a new

Uni�ed Repartitioning Algorithm that can gracefully tradeo� one objective for the other dependent

upon a user-de�ned parameter describing the relative costs of these objectives. We show that the Uni�ed

Repartitioning Algorithm is able to minimize the precise overheads associated with repartitioning as well

as or better than other repartitioning schemes for a variety of problems, regardless of the relative costs of

performing inter-processor communication and data redistribution. Our experimental results show that

the Uni�ed Repartitioning Algorithm is extremely fast and scalable to very large problems.

Keywords: Uni�ed Repartitioning Algorithm, Dynamic Graph Partitioning, Multilevel Di�usion,
Scratch-remap, Adaptive Mesh Computations

1 Introduction

For large-scale scienti�c simulations, the computational requirements of techniques relying on globally re�ned
meshes become very high, especially as the complexity and size of the problems increase. By locally re�ning
and de-re�ning the mesh either to capture ow-�eld phenomena of interest [1] or to account for variations
in errors [14], adaptive methods make standard computational methods more cost e�ective. The e�cient
execution of these adaptive scienti�c simulations on parallel computers requires a periodic repartitioning
of the underlying computational mesh. These repartitionings should minimize both the inter-processor
communications incurred in the iterative mesh-based computation and the data redistribution costs required

�This work was supported by DOE contract number LLNL B347881, by NSF grant CCR-9972519, by Army Research O�ce
contracts DA/DAAG55-98-1-0441, by Army High Performance Computing Research Center cooperative agreement number
DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does not necessarily reect the position or
the policy of the government, and no o�cial endorsement should be inferred. Additional support was provided by the IBM
Partnership Award, and by the IBM SUR equipment grant. Access to computing facilities was provided by AHPCRC, Minnesota
Supercomputer Institute. Related papers are available via WWW at URL: http://www-users.cs.umn.edu/~karypis

1



Compute a New Partitioning

Iterative Mesh-based Computation

Redistribute Data

Mesh Adaptation

Figure 1: A diagram illustrating the execution of adaptive scienti�c simulations on high performance parallel computers.

to balance the load. Recently developed schemes for computing repartitionings provide the user with only a
limited control of the tradeo�s among these objectives. This paper describes a new Uni�ed Repartitioning
Algorithm that can gracefully tradeo� one objective for the other dependent upon a user-de�ned parameter
describing the relative costs of these objectives.

Figure 1 illustrates the steps involved in the execution of adaptive mesh-based simulations on parallel com-
puters. Initially, the mesh is distributed on di�erent processors. A number of iterations of the simulation
are performed in parallel, after which mesh adaptation occurs. Here, each processor re�nes and de-re�nes
its local regions of the mesh resulting in some amount of load imbalance. A new partitioning based on the
adapted mesh is computed to re-balance the load, and then the mesh is redistributed among the processors,
respectively. The simulation can then continue for another number of iterations until either more mesh
adaptation is required or the simulation terminates.

If we consider each round of executing a number of iterations of the simulation, mesh adaptation, and
load-balancing to be an epoch, then the run time of an epoch can be described by

(tcomp + f(jEcutj))n+ trepart + g(jVmovej) (1)

where n is the number of iterations executed, tcomp is the time to perform the computation for a single
iteration of the simulation, f(jEcutj) is the time to perform the communications required for a single iteration
of the simulation, and trepart and g(jVmovej) represent the times required to compute the new partitioning
and to redistribute the data. Here, the inter-processor communication time is described as a function of the
edge-cut of the partitioning and the data redistribution time is described as a function of the total amount
of data that is required to be moved in order to realize the new partitioning.

Adaptive repartitioning a�ects all of terms in Equation 1. How well the new partitioning is balanced in-
uences tcomp. The inter-processor communications time is dependent on the edge-cut of the new par-
titioning. The data redistribution time is dependent on the total amount of data that is required to
be moved in order to realize the new partitioning. Recently developed adaptive repartitioning schemes
[4, 5, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25] tend to be very fast, especially compared to the time
required to perform even a single iteration of a typical scienti�c simulation. They also tend to balance the
new partitioning to within a few percent of optimal. Hence, we can ignore both tcomp

1 and trepart. However,
depending on the nature of the application, both f(jEcutj) and g(jVmovej) can seriously a�ect parallel run

1This is because, in the absence of load imbalance, tcomp will be primarily determined by the domain-speci�c computation
and cannot be minimized further.

2



time and drive down the parallel e�ciency. Therefore, it is critical for adaptive partitioning schemes to
minimize both the edge-cut and the data redistribution when computing the new partitioning. Viewed in
this way, adaptive graph partitioning is a multi-objective optimization problem.

Two approaches have primarily been taken when designing adaptive partitioners. The �rst approach is to
attempt to focus on minimizing the edge-cut and to minimize the data redistribution only as a secondary
objective [11, 12, 16, 17, 21, 22, 23, 24, 25]. A good example of such schemes are scratch-remap repartitioners
[11, 17, 21]. These use some type of state-of-the-art graph partitioner to compute a new partitioning from
scratch and then attempt to intelligently remap the subdomain labels to those of the original partitioning in
order to minimize the data redistribution costs. Since a state-of-the-art graph partitioner is used to compute
the partitioning, the resulting edge-cut tends to be extremely good. However, since there is no guarantee as
to how similar the new partitioning will be to the original partitioning, data redistribution costs can be high,
even after remapping [2, 17, 19]. The second approach is to focus on minimizing the data redistribution cost
and to minimize the edge-cut as a secondary objective [4, 13, 14, 15, 20]. A good example of this approach
are di�usion-based repartitioners [12, 16, 17, 23, 24, 25]. These schemes attempt to perturb the original
partitioning just enough so as to balance it. This strategy usually leads to low data redistribution costs,
especially when the partitioning is only slightly imbalanced. However, it can result in higher edge-cuts than
scratch-remap methods because perturbing a partitioning in order to balance it also tends to adversely a�ect
its quality.

These approaches to adaptive partitioning have two drawbacks. The �rst is that the two types of repar-
titioners allow the user to compute partitionings that focus on minimizing either the edge-cut or the data
redistribution costs, but give the user only a limited ability to control the tradeo�s among these objectives.
This control of the tradeo�s is su�cient if the number of iterations that a simulation performs between
load-balancing phases (i. e. the value of n in Equation 1) is either very high or very low. However, when n is
neither very high nor very low, neither type of scheme precisely minimizes the combined costs of f(jEcutj)n
and g(jVmovej). The second disadvantage exists for applications in which n is di�cult to predict or those
in which n can change dynamically throughout the course of the computation. As an example, one of the
key issues concerning the elastic-plastic soil-structure interaction computations required for earthquake sim-
ulation is that the number of iterations between load-balancing phases is both unpredictable and dynamic.
Here, zones in the 3D solid may become plastic and then unload (during increments of loading) so that the
extent of the plastic zone is changing. The change can be both slow and rapid. Slow change usually occurs
during initial loading phases, while the later deformation tends to localize in narrow zones rapidly and the
rest of the solid unloads rapidly (becomes elastic again) [6].

Recently, Castanos and Savage [2] presented an adaptive repartitioning algorithm that directly minimizes
the communication overheads of adaptive multigrid-based �nite-element computations. During each load-
balancing phase, their algorithm computes a repartitioning of the coarsest mesh of the hierarchy so as to
optimize an objective that is similar to Equation 2 (given below). The coarse-mesh repartitioning is then used
to partition the entire hierarchy of nested meshes. While this approach addresses the multi-objective nature
of the adaptive repartitioning problem, Castanos and Savage's repartitioning algorithm is serial. Therefore,
the scheme is suited only for problems in which: (i) the entire mesh re�nement history is retained (eg.,
multigrid solvers), and (ii) a nested partitioning of the successively �ner meshes is desired (i. e., for each
coarse element, the entire corresponding hierarchy of �ner elements belongs to the same processor).

Our Contributions In this paper, we present a parallel adaptive repartitioning scheme (called the Uni�ed
Repartitioning Algorithm) for the dynamic load-balancing of scienti�c simulations that attempts to solve the
precise multi-objective optimization problem. By directly minimizing the combined costs of f(jEcutj)n and
g(jVmovej), our scheme is able to gracefully tradeo� one objective for the other as required by the speci�c
application. Our experimental results show that when inter-processor communication costs are much greater
in scale than data redistribution costs, our scheme obtains results that are similar to those obtained by
an optimized scratch-remap repartitioner and better than those obtained by an optimized di�usion-based
repartitioner. When these two costs are of similar scale, our scheme obtains results that are similar to
the di�usive repartitioner and better than the scratch-remap repartitioner. When the cost to perform data

3



G
G

3

O

G4

G

2

1

G

3G

G

O

1G

2G

C
o

ar
se

n
in

g
 P

h
as

e
U

n
co

arsen
in

g
 P

h
ase

Initial Partitioning Phase

Multilevel K-way Partitioning

Figure 2: The three phases of multilevel k-way graph partitioning. During the coarsening phase, the size of the graph is
successively decreased. During the initial partitioning phase, a k-way partitioning is computed, During the multilevel re�nement
(or uncoarsening) phase, the partitioning is successively re�ned as it is projected to the larger graphs. G0 is the input graph,
which is the �nest graph. Gi+1 is the next level coarser graph of Gi. G4 is the coarsest graph.

redistribution is much greater than the cost to perform inter-processor communication, our scheme obtains
better results than the di�usive scheme and much better results than the scratch-remap scheme. Finally,
our experimental results show that our Uni�ed Repartitioning Algorithm is fast and scalable to very large
problems.

2 Uni�ed Repartitioning Algorithm

We have developed a new parallel Uni�ed Repartitioning Algorithm (URA) for dynamic load-balancing
of scienti�c simulations that improves upon the best characteristics of scratch-remap and di�usion-based
repartitioning schemes. A key parameter used in URA is the Relative Cost Factor (RCF). This parameter
describes the relative times required for performing the inter-processor communications incurred during
parallel processing and to perform the data redistribution associated with balancing the load. Using this
parameter, it is possible to unify the two minimization objectives of the adaptive graph partitioning problem
into the precise cost function

jEcutj + �jVmovej (2)

where � is the Relative Cost Factor, jEcutj is the edge-cut of the partitioning, and jVmovej is the total amount
of data redistribution. The Uni�ed Repartitioning Algorithm attempts to compute a repartitioning while
directly minimizing this cost function.

The Uni�ed Repartitioning Algorithm is based upon the multilevel paradigm that is illustrated in Figure 2.
We next describe its three phases: graph coarsening, initial partitioning, and uncoarsening/re�nement. In
the graph coarsening phase, coarsening is performed using a purely local variant of heavy-edge matching
[7, 16, 17, 25]. That is, vertices may be matched together only if they are in the same subdomain on the
original partitioning. This matching scheme has been shown to be very e�ective at helping to minimize both
the edge-cut and data redistribution costs and is also inheritly more scalable than global matching schemes
[16, 17, 25].

Selecting an initial partitioning scheme for an adaptive partitioner is complicated for a number of reasons.

4



Graph Num of Verts Num of Edges Description
auto 448,695 3,314,611 3D mesh of GM Saturn
mdual2 988,605 1,947,069 dual of a 3D mesh
mrng3 4,039,160 8,016,848 dual of a 3D mesh

Table 1: Characteristics of the graphs used in some of the experiments.

Experimental results [19] have shown that for some types of repartitioning problem instances, scratch-remap
repartitioners tend to obtain better results compared to di�usive repartitioners, while for other types of
problem instances, di�usive repartitioners tend to do better than scratch-remap repartitioners. Furthermore,
the e�ectiveness of each type of repartitioning scheme is highly dependent on the value of the Relative Cost
Factor. For these reasons, in the initial partitioning phase of URA, repartitioning is performed on the
coarsest graph twice by alternative methods. Optimized variants of scratch-remap and global di�usion [17]
are both used to compute new partitionings. The cost functions are then computed for each of these and
the one with the lowest cost is selected. This technique tends to give a very good starting point from which
to start multilevel re�nement, regardless of the type of repartitioning problem or the value of the Relative
Cost Factor. Note that the fact that URA computes two initial partitionings does not impact the scalability
of the algorithm as long as the size of the coarsest graph is suitably small [8].

Most current adaptive graph partitioning algorithms perform partition re�nement in order to minimize
the edge-cut of the new partitioning. Some of these schemes [16, 17] also attempt to minimize the data
redistribution cost as a tie breaking scheme. (That is, this objective is considered when the gain to the
edge-cut that will result from moving a vertex is the same for two or more subdomains.) However, even with
such a tie-breaking scheme, these do not directly minimize the precise cost function described in Equation 2.
A re�nement algorithm that does so, especially one that is applied in the multilevel context, can potentially
minimize the cost function much better than current re�nement schemes. In the uncoarsening phase of
URA, the cost function from Equation 2 is directly minimized during multilevel re�nement. Except for this
important modi�cation, the re�nement algorithm used in URA is similar to the parallel adaptive re�nement
algorithm described in [17]. Note that since each time a vertex is moved, the new cost function can be
computed in constant time using information local to the processor, these two algorithms have the same
asymptotic run times.

3 Experimental Results

In this section, we present experimental results comparing the cost function and run time results of the
Uni�ed Repartitioning Algorithm with optimized versions of scratch-remap (LMSR) [17] and multilevel
di�usion repartitioners (Wavefront Di�usion) [17].

Experimental Setup The experiments presented in this section were conducted on graphs derived from
�nite-element computations. These graphs are described in Table 1. For each graph, we modi�ed the vertex
and edge weights in order to simulate various types of repartitioning problems. Speci�cally, we constructed
four repartitioning problems for each graph that simulate adaptive computations in which the work imbalance
is distributed globally throughout the mesh. An example of an application in which this might occur is a
particle-in-mesh computation. Here, particles may be located anywhere within the mesh and are free move
to any other regions of the mesh. The result is that both the densely and sparsely populated regions are
likely to be distributed globally throughout the mesh. Typically, this type of repartitioning problem is easier
for di�usion-based schemes compared to scratch-remap schemes [17, 19]. We also constructed four problems
that simulate adaptive mesh computations in which adaptation occurs in localized regions of the mesh. An
example is the simulation of a helicopter blade. Here, the �nite-element mesh must be extremely �ne around

5



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

auto                                                              mdual2                                                             mrng3

WF LMSR 32-way Results Normalized by URA

Figure 3: The cost function results obtained from the Uni�ed Repartitioning Algorithm compared to the results obtained
from optimized scratch-remap (LMSR) and multilevel di�usion (WF) algorithms on 32 processors of a Cray T3E.

both the helicopter blade and in the vicinity of the sound vortex that is created by the blade in order to
accurately capture ow-�eld phenomena of interest. It should be coarser in other regions of the mesh for
maximum e�ciency. As the simulation progresses, neither the blade nor the sound vortex remain stationary.
Therefore, the new regions of the mesh that these enter need to be re�ned, while those regions that are
no longer of key interest should be de-re�ned. In this case, mesh re�nement and de-re�nement is often
performed in very localized regions of the mesh. This type of repartitioning problem tends to be easier for
scratch-remap schemes than di�usion-based schemes [17, 19].

Further experiments were performed on a real problem set from the simulation of a diesel internal combustion
engine2. This is a particles-in-cells computation. The mesh consists of 175-thousand mesh elements. At
�rst, no fuel particles are present in the combustion chamber. As the computation progresses, fuel particles
are injected into the chamber at a single point and begin to spread out. Thus, they may enter regions of the
mesh belonging to di�erent processors. Load imbalance occurs as processors are required to track di�erent
numbers of particles.

Results on Synthetic Data Sets Figures 3 through 5 show the cost functions obtained by the Uni-
�ed Repartitioning Algorithm compared to those obtained by the optimized scratch-remap and multilevel
di�usion algorithms, LMSR and Wavefront Di�usion [17], as implemented in ParMeTiS [9] on up to 128
processors of a Cray T3E. Speci�cally, these �gures show three sets of results, one from each of the graphs
described in Table 1. Each set is composed of �fteen pairs of bars. These pairs represent the averaged results
from the eight experiments (simulating global and localized imbalances) that are described above. For each
pair of bars, the Relative Cost Factor was set to a di�erent value. These values are .001, .002, .01, .02, .1,
.25, .5, 1, 2, 4, 10, 50, 100, 500, and 1000. Therefore, for each set of results, minimizing the edge-cut is the
dominate objective for the results on the left, while minimizing the data redistribution cost is the dominate
objective for the results on the right. The results in the middle represent varying tradeo�s between the two
objectives.

The bars in Figures 3 through 5 give the averaged relative performances of the optimized scratch-remap and
multilevel di�usion repartitioners normalized by those of the Uni�ed Repartitioning Algorithm. These are
obtained by evaluating Equation 2 for each resulting partitioning. Therefore, a result above the 1.0 index line

2These test sets were provide to us by Boris Kaludercic, HPC Product Coordinator, Computational Dynamics Ltd, London,
England.

6



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

auto                                                              mdual2                                                             mrng3

WF LMSR 64-way Results Normalized by URA

Figure 4: The cost function results obtained from the Uni�ed Repartitioning Algorithm compared to the results obtained
from optimized scratch-remap (LMSR) and multilevel di�usion (WF) algorithms on 64 processors of a Cray T3E.

indicates that the Uni�ed Repartitioning Algorithm minimized Equation 2 better than the corresponding
scheme.

Figures 3 through 5 show that the Uni�ed Repartitioning Algorithm is able to minimize the cost function as
well as or better than either of the other two schemes across the board. Speci�cally, when the Relative Cost
Factor is set low (i. e., minimizing the edge-cut is the key objective), the Uni�ed Repartitioning Algorithm
minimizes the cost function as well as the scratch-remap scheme and better than the multilevel di�usion
scheme. Note that the Uni�ed Repartitioning Algorithm does quite well here, because when the RCF is
set very low, it means that the edge-cuts of the partitionings are primarily being compared. Therefore, in
order to obtain costs that are similar to the scratch-remap scheme, URA must be computing partitionings
of similar edge-cut to a multilevel graph partitioner.

For the experiments in which the Relative Cost Factor is set high (i. e., minimizing the data redistribution
cost is the key objective), the Uni�ed Repartitioning Algorithm minimizes the cost function better than
the multilevel di�usion scheme and much better than the scratch-remap scheme. URA beat the di�usion
scheme here because it attempts to minimize the true cost function during multilevel re�nement. The
multilevel di�usion scheme, on the other hand, minimizes the edge-cut as the primary objective and the data
redistribution cost as the secondary objective during re�nement.

For the experiments in which the Relative Cost Factor was set near one, URA also tended to do as well as
or better than either of the other two schemes in minimizing the cost function. It is interesting to note that
the multilevel di�usion algorithm performs well in this region. This is because in the initial partitioning
phase of this algorithm, the partitioning is balanced while aggressively minimizing the data redistribution
cost. During the uncoarsening phase, the multilevel re�nement algorithm focuses on aggressively minimizing
the edge-cut. The result is that this scheme presents an almost even tradeo� between the edge-cut and the
data redistribution cost.

The results presented in Figures 3 through 5 indicate that the Uni�ed Repartitioning Algorithm is able to
meet or beat the results obtained from either the scratch-remap or the multilevel di�usion repartitioner for a
variety of experiments regardless of the value for the Relative Cost Factor. The other two schemes perform
well only for limited ranges of values of the Relative Cost Factor.

7



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

.0
01 .0
1 .1 .5 2 10 10
0

10
00

auto                                                              mdual2                                                             mrng3

WF LMSR 128-way Results Normalized by URA

Figure 5: The cost function results obtained from the Uni�ed Repartitioning Algorithm compared to the results obtained
from optimized scratch-remap (LMSR) and multilevel di�usion (WF) algorithms on 128 processors of a Cray T3E.

Results on the Mesh from a Simulation of a Diesel Combustion Engine Table 2 gives the cost
function and average run time results for URA, the optimized scratch-remap algorithm (LMSR), and the
optimized multilevel di�usion algorithm (WF) on the diesel combustion engine test set for 8, 16, and 32
processors of a Cray T3E. The numbers at the top of each column indicate the Relative Cost Factor of
the experiments in that column. Table 2 shows that URA minimizes the cost functions better than either
of the other two schemes across the board. In this case, URA obtains somewhat better results than the
scratch-remap scheme even when the Relative Cost Factor is set low. These results con�rm that the URA
scheme is able to minimize the cost function as well as or better than current repartitioning schemes.

Table 2 shows that all three repartitioning schemes obtained similar average run time results on 8 and 16
processors. However, URA obtains signi�cantly worse average run time results on 32 processors than either
of the other schemes. This is due to thrashing that occurred during multilevel re�nement. This phenomenon
is this is discussed in more detail below.

Parallel Run Time Results Tables 3 and 4 give the run time results of the optimized multilevel di�usion
algorithm (WF), the optimized scratch-remap algorithm (LMSR), and URA for selected experiments from
Figures 3 through 5 on a Cray T3E and for similar experiments run on up to 8 processors of a cluster of
Pentium Pro workstations connected by a Myrinet switch. Table 3 shows that the repartitioning algorithms
studied in this paper are very fast. For example, they are all able to compute a 128-way repartitioning
of a four million node graph in only a couple of seconds on 128 processors of a Cray T3E. The Uni�ed
Repartitioning Algorithm shows somewhat worse scalability than the other two algorithms for high numbers
of processors on the Cray T3E. This is due to thrashing that occurs during multilevel re�nement. Here,
vertices are repeatedly moved out of their original subdomains in order to balance the partitioning and then
move right back into these subdomains in an e�ort to minimize the data redistribution term of the cost
function. (Therefore, this thrashing does not occur when the Relative Cost Factor is set low.) The thrashing
of vertices does not signi�cantly a�ect the ability of the algorithm to minimize the cost function, but it does
increase the run time of the uncoarsening phase.

Note that all of the reported run times were obtained on non-dedicated machines. Therefore, these results
may contain a certain amount of noise. This reason, along with cache e�ects, explains the few super-linear
speedups observed.

8



Scheme 0.001 0.01 0.1 1 10 100 1000 Avg. Time
8-processors

WF 12,149 12,615 17,273 63,856 529,687 5,187,997 51,771,097 0.45
LMSR 7,934 8,349 12,499 54,000 469,008 4,619,088 46,119,887 0.43
URA 6,700 7,119 11,285 50,696 346,872 3,049,575 30,285,375 0.44

16-processors
WF 18,914 19,450 24,802 78,323 613,535 5,965,655 59,486,855 0.33

LMSR 12,944 13,735 21,642 100,722 891,516 8,799,456 87,878,853 0.39
URA 11,381 12,157 20,852 62,239 398,284 4,107,916 40,775,713 0.36

32-processors
WF 35,018 35,533 40,684 92,191 607,261 5,757,961 57,264,960 0.29

LMSR 18,815 19,632 27,800 109,479 926,274 9,094,224 90,773,725 0.27
URA 18,027 18,856 27,190 82,021 559,527 5,028,104 49,949,802 0.42

Table 2: Objective function costs and run time results of the adaptive graph partitioners for various RCF values on problems
derived from a particles-in-cells simulation on a Cray T3E. The numbers at the top of each column indicate the RCF of the
experiments in that column.

Graph Scheme 8-processors 16-processors 32-processors 64-processors 128-processors
auto WF 2.34 1.49 0.86 0.61 0.55
auto LMSR 2.30 1.46 0.75 0.56 0.51
auto URA 2.37 1.53 1.09 0.88 1.03

mdual2 WF 3.25 1.84 1.01 0.77 0.68
mdual2 LMSR 3.21 1.82 0.96 0.63 0.58
mdual2 URA 3.26 1.89 1.25 1.08 1.71
mrng3 WF 10.75 6.15 3.20 1.88 1.45
mrng3 LMSR 10.75 6.13 3.18 1.76 1.21
mrng3 URA 10.90 6.31 3.48 2.55 2.43

Table 3: Parallel run times of selected experiments for the adaptive graph partitioners WF, LMSR, and URA on a Cray
T3E.

Scheme 2-processors 4-processors 8-processors
WF 12.13 6.36 3.07

LMSR 12.18 6.12 3.03
URA 12.41 6.46 3.17

Table 4: Parallel run times of experiments performed on the graph auto for the adaptive graph partitioners WF, LMSR, and
URA on a cluster of Pentium Pro workstations connected by a Myrinet switch.

9



4 Conclusions

We have presented a Uni�ed Repartitioning Algorithm for dynamic load-balancing of scienti�c simulations
and shown that this scheme is fast and e�ective. Our Uni�ed Repartitioning Algorithm is signi�cant because
it is able to gracefully tradeo� the objectives of minimizing the edge-cut and the amount of data redistribution
required to balance the load regardless of the relative costs of these. In fact, the scheme is so general in
this sense that the algorithm even can be used as a static graph partitioner. That is, the scheme acts as
a multilevel graph partitioner when the Relative Cost Factor is set to zero (i. e., the data redistribution
cost is not considered when computing the partitioning). The Uni�ed Repartitioning Algorithm is also
signi�cant because it represents a key component in developing tools for automatically performing dynamic
load-balancing. For example, dynamic load-balancing tools such as DRAMA [10] and Zoltan [3] can measure
the times required to perform inter-processor communications and data redistribution for an application and
use this information to automatically compute an accurate Relative Cost Factor to be used as an input for
the repartitioning algorithm.

5 Extensions to be Included in the Full Paper

In the full paper, we plan to include a more complete description of the scheme and additional results
from experiments derived from real application domains. We also plan to modify the re�nement algorithm
of URA so as to eliminate the thrashing of vertices discussed in Section 3. We are con�dent that this
can be accomplished by the same technique used in the parallel formulation of our multi-constraint graph
partitioner [18]. Incorporating this technique into our Uni�ed Repartitioning Algorithm should further
improve the already good parallel run time results reported in this paper, while maintaining the e�ectiveness
of the algorithm.

Acknowledgements

We would like to thank Boris Kaludercic, HPC Product Coordinator, Computational Dynamics Ltd, London,
England for providing us with the data for the diesel combustion engine test sets.

References

[1] R. Biswas and R. C. Strawn. A new procedure for dynamic adaption of three-dimensional unstructured grids. Applied

Numerical Mathematics, 13:437{452, 1994.

[2] J. Castanos and J. Savage. Repartitioning unstructured adaptive meshes. In Proc. Intl. Parallel and Distributed Processing

Symposium, 2000.

[3] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C. Vaughan. Design of dynamic load-balancing tools for parallel
applications. In Proc. of the Intl. Conference on Supercomputing, 2000.

[4] P. Diniz, S. Plimpton, B. Hendrickson, and R Leland. Parallel algorithms for dynamically partitioning unstructured grids.
Proc. 7th SIAM Conf. Parallel Proc., 1995.

[5] J. Flaherty, R. Loy, C. Ozturan, M. Shephard B. Szymanski, J. Teresco, and L. Ziantz. Parallel structures and dynamic
load balancing for adaptive �nite element computation. Appl. Numer. Maths, 26:241{263, 1998.

[6] B. Jeremic and C. Xenophontos. Application of the p-version of the �nite element method to elasto-plasticity with
localization of deformation. Communications in Numerical Methods in Engineering, 15(12):867{876, 1999.

[7] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on

Scienti�c Computing, 20(1):359{392, 1998.

[8] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs. Siam Review, 41(2):278{300,
1999.

[9] G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel graph partitioning and sparse matrix ordering library.
Technical report, Univ. of MN, Dept. of Computer Sci. and Engr., 1997.

10



[10] B. Maerten, D. Roose, A. Basermann, J. Fingberg, and G. Lonsdale. DRAMA: A library for parallel dynamic load balancing
of �nite element applications. In Ninth SIAM Conference on Parallel Processing for Scienti�c Computing, 1999.

[11] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured meshes. Journal of Parallel and

Distributed Computing, 52(2):150{177, 1998.

[12] C. Ou and S. Ranka. Parallel incremental graph partitioning using linear programming. Proceedings Supercomputing '94,
pages 458{467, 1994.

[13] C. Ou, S. Ranka, and G. Fox. Fast and parallel mapping algorithms for irregular and adaptive problems. Journal of

Supercomputing, 10:119{140, 1996.

[14] A. Patra and D. Kim. E�cient mesh partitioning for adaptive hp �nite element meshes. Technical report, Dept. of Mech.
Engr., SUNY at Bu�alo, 1999.

[15] J. Pilkington and S. Baden. Dynamic partitioning of non-uniform structured workloads with space�lling curves. Technical
report, Dept. of Computer Science and Engineering, Univ. of California, 1995.

[16] K. Schloegel, G. Karypis, and V. Kumar. Multilevel di�usion schemes for repartitioning of adaptive meshes. Journal of

Parallel and Distributed Computing, 47(2):109{124, 1997.

[17] K. Schloegel, G. Karypis, and V. Kumar. Wavefront di�usion and LMSR: Algorithms for dynamic repartitioning of
adaptive meshes. Technical Report TR 98-034, Univ. of Minnesota, Dept. of Computer Sci. and Engr., 1998.

[18] K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel algorithms for multi-constraint graph partitioning. In Proc.

EuroPar-2000, 2000. Accepted as a Distinguished Paper.

[19] K. Schloegel, G. Karypis, V. Kumar, R. Biswas, and L. Oliker. A performance study of di�usive vs. remapped load-
balancing schemes. ISCA 11th Intl. Conf. on Parallel and Distributed Computing Systems, pages 59{66, 1998.

[20] A. Sohn. S-HARP: A parallel dynamic spectral partitioner. Technical report, Dept. of Computer and Information Science,
NJIT, 1997.

[21] A. Sohn and H. Simon. JOVE: A dynamic load balancing framework for adaptive computations on an SP-2 distributed-
memory multiprocessor. Technical Report 94-60, Dept. of Computer and Information Science, NJIT, 1994.

[22] R. VanDriessche and D. Roose. Dynamic load balancing of iteratively re�ned grids by an enhanced spectral bisection
algorithm. Technical report, Dept. of Computer Science, K. U. Leuven, 1995.

[23] A. Vidwans, Y. Kallinderis, and V. Venkatakrishnan. Parallel dynamic load-balancing algorithm for three-dimensional
adaptive unstructured grids. AIAA Journal, 32:497{505, 1994.

[24] C. Walshaw, M. Cross, and M. G. Everett. Dynamic mesh partitioning: A uni�ed optimisation and load-balancing
algorithm. Technical Report 95/IM/06, Centre for Numerical Modelling and Process Analysis, University of Greenwich,
1995.

[25] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning for adaptive unstructured meshes. Journal
of Parallel and Distributed Computing, 47(2):102{108, 1997.

11


