
A Universal Formulation of Sequential Patterns

Mahesh Joshi George Karypis Vipin Kumar

Department of Computer Science

University of Minnesota, Minneapolis

fmjoshi,karypis,kumarg@cs.umn.edu

Technical Report #99-21

May 20, 1999

Abstract

This report outlines a more general formulation of sequential patterns, which uni�es
the generalized patterns proposed by Srikant and Agarwal [SA96] and episode discov-
ery approach taken by Manilla et al [MTV97]. We show that just by varying the
values of timing constraint parameters and counting methods, our formulation can be
made identical to either one of these. Furthermore, our approach de�nes several other
counting methods which could be suitable for various applications. The algorithm used
to discover these universal sequential patterns is based on a modi�cation of the GSP
algorithm proposed in [SA96]. Some of these modi�cations are made to take care of
the newly introduced timing constraints and pattern restrictions, whereas some mod-
i�cations are made for performance reasons. In the end, we present an application,
which illustrates the de�ciencies of current approaches that can be overcome by the
proposed universal formulation.

1 Introduction

Many scienti�c and commercial domains have seen an enormous growth of data in recent
times. It has become both useful and essential to process this data to learn interesting hidden
knowledge from it. The data collected from scienti�c experiments, or monitoring of physical
systems such as telecommunications networks, or from transactions at a supermarket, have
inherent sequential nature to them. The discovery of sequential relationships or patterns
present in such data is useful for various purposes such as prediction of events or identi�cation
of sequential rules that characterize di�erent classes of data.

Di�erent approaches have been taken so far to address this problem. Three prominent
approaches are the ones taken in [SA96, MTV97, BWJ96]. Our motivation for studying the
universal patterns was obtained when we tried to apply some of these existing approaches
to the di�erent kinds of temporal datasets we had to work with. Applying any or only one

1

of these approaches as-is to these datasets would not have helped us discover the kind of
information that we were looking for. The reasons for this relate to the two important issues
in the process of discovering sequential relationships. One issue is that of the structure of
the pattern in terms of its representation and constraints. In this respect, no single existing
approach had all the
exibility that we desired. The second issue is the method by which
a pattern's strength is computed. Usually, this is based on the number of times a pattern
occurs in the given dataset. What matters is the method by which the occurrences are
counted. Each of the existing approaches has its own method of counting, mainly motivated
by the application domain for which the approach was developed. But, no approach allows
the
exibility of supporting multiple methods within a single framework.

We realized that existing approaches can be uni�ed and generalized to a single repre-
sentation of a pattern, for which a single discovery algorithm can be used. Generality of
representation alone is not su�cient, however, in order to make a sequential pattern formu-
lation applicable in multiple scenarios. Di�erent application domains might want to assign
strength to a pattern in di�erent manners, because such di�erences yield di�erent semantics
to the discovered patterns. This can be handled by providing multiple ways of counting the
occurrences of patterns, such that all counting methods can be implemented with more or
less same e�ciency, using a single algorithmic framework.

In this paper, we present universal sequential patterns, which unify and extend current
approaches to make them more general in terms of representation, constraints, and methods
of computing pattern strengths. We begin by specifying the format of the input data that
we will work on. Then, we describe the most general form of representing and constraining
a sequential pattern in section 3. Di�erent counting methods and their semantic di�erences
are illustrated in section 4. If sequential patterns are used for prediction purposes, we need
prediction rules which can be extracted from the patterns. In section 5, we will brie
y
describe the methods of forming such sequential prediction rules and assigning di�erent
measures of interestingness to them. Following this, we give a brief sketch of the algorithm
to discover universal sequential patterns in section 6. In the last section, we present some
key applications to illustrate the de�ciencies of current approaches in certain scenarios that
can be overcome by the proposed universal formulation.

2 Nature of Input Dataset

The input is a sequence data characterized by three columns: object, timestamp, and events.
Each row records occurrences of events on an object at a particular time. An example is
shown in Figure 1. Alternative way to look at the input data is in terms of the timeline
representations of all objects (illustrated in Figure 5). It should be noted that the approach
taken in [SA96] uses the same format of input data, but approach taken in [MTV97] allows
specifying only one object.

Various de�nitions of object and events can be used, depending on what kind of sequences
one is looking for. For example, in one formulation, object can be a telecommunication
switch, and event can be an alarm type occurring on the switch. With this, the sequences
discovered will indicate interesting patterns of occurrences of alarm types occurring at a

2

Object
A
A
A
B
B
B
B
D

timestamp
10
20
23
11
17
21
28
14

events
2, 3, 5
6, 1
1
4, 5, 6
2
7, 8, 1, 2
1, 6
1, 8, 7

Figure 1: Example Input Data

switch. In another formulation, object can be a day and event can be a switch or a switch-
alarm type pair. This will give interesting sequential relations between di�erent switches or
switch-alarm type pairs over a day.

3 Formulation: Representation and Constraints

The sequential relationships among events can be expressed in various forms. The most
general form of a valid sequential relationship can be represented by a directed acyclic graph
(Figure 2(a)). A node would represent an event or a set of events. Some nodes will be
associated with an event-set before the discovery process, which we call event constraints.
Other nodes would be associated with di�erent possible event-sets during the discovery
process. A directed edge from node A to node B would indicate that events of A occur before
events of B. A set of numbers is associated with each edge, which we call edge constraints.
These constraints indicate the allowed separation between the occurrences of events of its
incident nodes. For example, each edge can have a 2-element set fa,bg associated with it,
such that for an edge (A,B) {> (C,D), a represents the minimum required separation between
latest event of the (A,B) set and the earliest event of the (C,D) set. On the other hand,
b represents the maximum allowed di�erence in the earliest occurring event among (A,B)
and the latest occurring event among (C,D). Each node may also be associated with a set
of numbers, called node constraints, which governs the de�nition of when a set of events can
be associated with a node; for example, if there is one number [w] associated with a node,
then the set of events (C,D) can be associated with that node only if C and D occur within
w units of each other. Other than the edge and node constraints, there is one more set of
constraints, called global constraints, which is imposed on the entire pattern. For example
a constraint of the form < ag,bg > imposed on the entire pattern may mean that the total
duration of the pattern has lower limit of ag and upper limit of bg. Final characteristic
of this dag-based sequential relationship is that each edge can belong to one of the two
types: elastic or rigid. An elastic edge can be extended into multiple edges by adding nodes
dynamically in succession during the discovery process, as shown in Figure 2(a). Each of the

3

(X,Y,Z) Event-set

Elastic Edge

Rigid Edge

? To be filled by Discovery Process

[w] Node Constraints

<p,q> Global Constraints

{a,b,c} Elastic Edge Constraints

{a,b} Rigid Edge Constraints

(N)? (P,Q)

(N)
{a1,b1}

[w2][w1] [w1] {a3,b3}{a4,b1}

shrink

or

? ?(A,B)
[w1]

[w2][w1] [w4]

(C,B) (F,E,G)

? ?
{a1,b4}

{a2,b2}

{a2,b3}

{a3,b1}

{a3,b3} {a1,b1}

(D)(A)

(b) (c)

(a)

<ag,bg>

{a2,b2,c1}

(C,B) (F,E,G)

? ?

[w3][w2]

{a1,b4}

{a2,b2}
[w3] [w1]

{a2,b3,c2}

{a3,b1}

{a3,b3} {a1,b1}

[w4] [w1]

(D)(A)

{a3,b1,c1}{a1,b1}

? ?
[w3] [w3]

<0,w3>

{a2,b2,c2}

(N) (P,Q)(L) (M,N)
{a2,b2} {a2,b2}

[w2] [w2] [w2] [w1]

<= c1

{a2,b2}example of extension

Figure 2: (a) Most general formulation of a sequential relationship, (b) Single path formu-
lation, (c) Formulation due to [BWJ96].

4

newly added edges would have same edge constraints as the original elastic edge, and each
of the newly added nodes would have same node constraints as those of the starting node
(A in case of an edge from A to B). The extension capability of an elastic edge is limited
by a third constraint on the elastic edge, which limits the entire duration of the extended
edge. This is denoted by c in the triplet fa,b,cg associated with each elastic edge. An elastic
edge can also be shrunk by collapsing one of its incidence nodes onto the other. A rigid edge
cannot be changed in this manner during the discovery process.

No work has been done so far on the most general form of the sequential relationship
described above. However, simpli�ed versions of this dag have been used in the literature.
Two prominent approaches have been taken so far for identifying sequential relationships.
One approach, shown in Figure 2(b), restricts the nature of the relationship to a single path
of the dag as presented in [SA96] and [MTV97]. In both these works, there is only one elastic
edge in the dag, and there are no event constraints. The second approach taken in [BWJ96]
assumes the dag to have single root node (no incoming edges) and the structure of the dag
is assumed to be �xed during the discovery process; i.e. all the edges are rigid. Figure 2(c)
represents this approach. This approach allows event constraints. It also allows di�erent
edge constraints to be speci�ed in di�erent time units (or granularities).

Although the dag-based approach described in Figure 2(a) is the most generic in nature,
it can be looked at as a compact way of representing multiple single-path sequential relation-
ships. More precisely, a dag can be broken into all its constituent single path relationships by
enumerating all the paths between roots and leaves. Root here is a node with no incoming
edges, and leaf is a node with no outgoing edges. With this viewpoint, the algorithm which
discovers the relationship represented by a dag can be visualized as multiple passes of an
algorithm which discovers single path relationships. With this argument, there is no loss of
generality if only the relationship represented by a single path of the dag is considered as
the universal formulation. However, it should be pointed out that discovering relationships
directly in the form of a dag can be more e�cient than discovering relationships along all
such individual paths, because it has a potential to avoid the repitition of work that would
be incurred if individual paths are discovered independently. For the purposes of illustrating
the issues of this paper, we assume that the dag is broken into all its constituent paths (or
chains). We refer to such single path relationships with all its event, node, edge, and global
constraints, and two types of edges (rigid and elastic) as the univeral sequential pattern. The
node, edge, and global constraints are together refered to as timing constraints. It should
be noted that all edge constraints are speci�ed in same units (or granularity). Multiple
granularities as used in [BWJ96] could be converted to single (�nest) granularity before the
discovery algorithm.

Before describing the details of universal sequential patterns, it might be worthwhile to
note the di�erences and similarities between the approaches taken in [SA96, MTV97] in
the framework of the general form representation that was presented above. As was noted
earlier, the approaches are similar in the sense that they both discover relationships along a
single path, and they both do not have any event constraints. The formulations, however,
di�er in two aspects. One is their ability to specify timing constraints, and the other is
how they count the occurrences of a candidate pattern in a given dataset. The di�erence in

5

? ?

<0,w3>

? ?
[w3] [w3]

{a2,b2}

(a)

No Global Constraints No Edge or Node Constraints

(b)

Figure 3: Comparing Timing Constraints in sequential pattern formulations of (a) General-
ized Sequential Patterns due to [SA96], and (b) Episodes due to [MTV97].

the counting part will be elucidated when we present our unifying formulation in following
sections, but the di�erence in the timing constraints can be made clear by Figure 3. The
approach taken in [SA96] has no global constraints, whereas the approach taken in [MTV97]
has no edge or node constraints.

3.1 Universal Formulation in Detail

The universal formulation and an example of discovered pattern are given in Figure 4.
A universal sequential pattern is represented as a sequence of the form (A) (C,B) (D)

(F,E,G). Here A, B, etc. are the events that are timestamped. They can be telecommunica-
tion alarm types, switch-alarm type pairs, or items bought by a customer in a transaction,
or anything that can have a timestamp. Here timestamp is used as a generic term to denote
a measure of temporal nature. The example sequence above says that occurrence of event A
is followed by occurrence of event-set (C,B) which is followed by occurrence of event D, and
so on.

The occurrence of particular events can be �xed beforehand (event constraints). For the
discovery process to be meaningful, at least one node should have its event-set unspeci�ed.
With event constraints present, the discovery algorithm can be optimized to reduce the search
space, but in the remainder of discussion, we assume that there are no event constraints.

The node, edge, and global constraints translate into various input parameters which
govern the times at which the events in a sequence can occur. Figure 4 illustrates these
parameters, called timing constraints.

Here is the description of the parameters:

� ms : Maximum Span : The maximum allowed time di�erence between the latest
and earliest occurrences of events in the entire sequence.

� ws : Event-set Window Size : The maximum allowed time di�erence between the
latest and earliest occurrences of events in any event-set.

� xg : Maximum Gap : The maximum allowed time di�erence between the latest
occurrence of an event in an event-set and the earliest occurrence of an event in its
immediately preceding event-set.

6

? ?
[ws]

{ng,xg}

<0,ms>

[ws]

(A) (C,B) (D) (F,E,G)

An Example of Discovered Pattern:

Formulation:

<= xg <= ws> ng

0 <= span <= ms

Figure 4: Universal Formulation of Sequential Patterns

� ng : Minimum Gap : The minimum required time di�erence between the earliest
occurrence of an event in an event-set and the latest occurrence of an event in its
immediately preceding event-set.

It can be seen that as far as timing constraints are concerned, above formulation is
equivalent to the formulation in [SA96] if ms ! inf; and it is equivalent to the episode
formulations in [MTV97]: serial episodes if ws < 0, xg � ms, and ng = 0, and parallel
episodes if ws = ms, xg � ms, ng � ms. Actually, for the formulation to be exactly
equivalent to those in [SA96] or [MTV97], the choice of counting method also matters,
which is discussed in the next section.

4 What is an interesting sequential pattern?

A sequence is said to be interesting if it occurs enough number of times satisfying the given
timing constraints (ms, ws, xg, ng).

There are two issues here. First issue is, how the sequence occurrences are counted.
This deals with di�erent counting methods, and we will shortly elaborate on it in great
detail. The second issue is, how many occurrences are enough? This is determined by the
support threshold, which is an input parameter. After doing the counting, the sequences
which do not occur enough number of times are �ltered out. The support threshold can be
speci�ed in terms of absolute count, or percentage with respect to some basis. The support
threshold is commonly used as a measure of interestingness of a pattern because of one of
its very important properties. The property is, a subsequence of any sequence has at least
as much support as the sequence, or put another way, the support for a sequence cannot be
any greater than the support of any of its subsequences. This property helps to reduce the

7

Timeline:

10 3530252015

Obj A:

Obj B:

2
3
5

1
6 1

2
5
6

7
8
1
2

1
6

Obj D:

1

7
8

4

Figure 5: Time-line representation of input data of Figure 1

algorithmic complexity of discovering interesting patterns by allowing a systematic growth
of patterns based on the apriori principle [SA96].

Coming back to the issue of how-to-count, there are �ve di�erent ways de�ned for counting
the number of occurrences. These can be divided into three conceptual groups.

First group, which consists of COBJ, just looks for an occurrence of a given sequence
in an object's timeline. One occurrence is enough to ensure that the sequence occurs in
that object. Second group is based on counting the windows in which the given sequence
occurs. This consists of CWIN and CMINWIN. Third group is based on counting the
distinct occurrences of a sequence. This consists of CDIST and CDIST O. Although the
occurrences are restricted to be contained in a window of size ms (maximum span), this
group is di�erent from the window-based counting group, because occurrences describe a
cause-e�ect relationship directly based on the events themselves. The window-based group
takes a di�erent approach. It is based on the premise that the user is observing events
occurring in a window, and is looking for the relationship to be exhibited in the window at
least once.

This di�erence will become clearer as we describe the methods below. Figure 5 is used
to illustrate their de�nition, whereas Figure 6 will elucidate the di�erence between di�erent
counting groups. Which approach is suitable will depend on the speci�c application that the
user has in mind, and on user's domain expertise in the area. The applications in section 7
will throw more light on this aspect.

8

� (counting method = COBJ) One occurrence per object.
The count here indicates the number of objects in which the sequence appears. For
example, sequence (2) (1,6) with ms=20, ws=0 has two occurrences: for A, (2) at
t=10 and (1,6) at t=20, and for B, (2) at t=17 and (1,6) at t=28. Note that, although
(2) (1,6) appears in B one more time with (2) at t=21 and (1,6) at t=28, it is counted
only once.

� (counting method = CWIN) One occurrence per span-window.
Span-window is de�ned as a window of duration equal to span (ms). Consecutive span-
windows have one time unit's di�erence in their respective start and end times. They
move across the entire time duration of each object, but none of the span-windows
spans across two di�erent objects. The counts for all the objects are added up. In
Fig. 3, with ms=20 and ws=5, sequence (2) (1,6) has 23 occurrences: it appears in
10 windows for A, with windows from t=1 to t=10, and in 13 windows for B, with
windows from t=9 to t=21. Note that, the window of span 20 starting at t=9 is de�ned
as the [9,29) interval.

� (counting method = CMINWIN) Number of Minimal Windows of Occurrence.
A minimal window of occurrence is the smallest window in which the sequence occurs
given the timing constraints. In other words, a minimal window is the time interval
such that the sequence occurs in that time interval, but it does not occur in any of
the proper subintervals of it. This de�nition can be considered as a restrictive version
of CWIN, because its e�ect is to shrink and collapse some of the windows that are
counted by CWIN.

This method is similar in spirit to the concept of minimal occurrences in [MTV97],
but there is one di�erence. In [MTV97], there is no duration limit on the minimal
occurrence. Whereas, in our CMINWIN method, the size of the minimal window is
limited by the maximum span (ms) constraint.

All the minimal windows of occurrences are counted for each object, and then they are
added up over all objects. For example, with ms=20, sequence (2) (1,6) has only two
minimal window occurrences, one for A and one for B. The occurrence in B with (2) at
t=16 and (1,6) at t=28 is not a minimal window occurrence because it contain another
smaller window of occurrence with (2) at t=21 and (1,6) at t=28, which indeed is a
minimal window of occurrence. It can be seen that many windows that were counted by
CWIN method are collapsed into these two windows. For example, all those windows
in object A that had the pattern same pattern (2)(1,6), with (2) at t=10 and (1,6)
occurring in t=[20,23], are shrunk and collapsed into one minimal window [10,20].

� (counting method = CDIST O) Distinct Occurrences with Possibility of
Event-Timestamp Overlap.

An distinct occurrence of a sequence is de�ned to be the set of event-timestamp pairs
that satisfy the speci�ed timing constraints, such that there has to be at least one new
event-timestamp pair di�erent from the previously counted occurrence. Counting all
such distinct occurrences results in CDIST O method.

9

The number of occurrences counted using this method depends on the direction in
which an object's timeline is scanned. We assumed that the timeline is scanned in the
direction of increasing timestamps.

As with all previous methods, the sequence occurrence must have all its events hap-
pening on the same object. All occurrences of the sequence are added over all objects.

As an example, with ms=20, sequence (2) (1,6) has three distinct occurrences when
overlap is allowed, one for A and two for B. The occurrence in B with (2) at t=21 and
(1,6) at t=28 is a distinct occurrence because (2) at t=21 is the new event-timestamp
pair from the previously counted (2) at t=17 and (1,6) at t=28 occurrence.

� (counting method = CDIST) Distinct Occurrences with No Event-Timestamp
Overlap Allowed.

In CDIST O above, two occurrences of a sequence were allowed to have overlapping
event-timestamp pairs. In this CDIST method, we don't allow any such overlap. So,
e�ectively when an event-timestamp pair is considered for counting some occurrence
of a sequence, it is
agged o� and is never again considered for counting occurrences
of that particular sequence for that particular object.

As in CDIST O, the sequence occurrence must have all its events happening on the
same object, all occurrences of the sequence are added over all objects, and the timeline
is scanned in forward direction.

As an example, with ms=20, sequence (2) (1,6) has only two distinct occurrences, one
for A and one for B. The occurrence in B with (2) at t=21 and (1,6) at t=28 is not
a distinct one because events 1 and 6 at t=28 are already used in counting the �rst
occurrence which has (2) at t=17.

The relationships and di�erences between methods CWIN, CDIST, CDIST O, and CMIN-
WIN are further clari�ed by Figure 6, which assumes presence of only one object. If nO
indicates the number of occurrences counted with method O, then it can be noted that
nCMINWIN < nCWIN and nCDIST < nCDIST O. Look at relationships across the columns of
Figure 6(a). It can be noted that CWIN and CDIST O are similar in spirit because they
count all the windows and occurrences, respectively, and CMINWIN and CDIST are sim-
ilar because they count the minimal windows or occurrences. The cause-e�ect philosophy
followed by occurrence based approaches and the observation-window philosophy taken by
window based approaches clearly yield di�erent occurrence counts as illustrated in part (b)
of Figure 6.

With this set of di�erent counting methods, it is interesting to note that when COBJ
method is used with ms ! inf, the formulation is exactly equivalent to that in [SA96]. The
formulation is exactly equivalent to that in [MTV97], when CWIN method is used along with
appropriate values of (ms,ws,xg,ng) as indicated in the section 3. Of course, our formulation
allows more than one objects, whereas the formulation of [MTV97] does not allow it, and our
formulation discovers the hybrid episodes (containing both serial and parallel) with equal
ease as that of serial or parallel episodes.

10

(b)

(a)

Count Windows

Count MinimalCount All

CWIN

Counting MethodObject’s Timeline
for This Object

Number of Occurrences

[Sequence Searched: (A)(B)]
[ms = 2 units]

A A B B B BA

1 2 3 4 5 6 7

A B

6

COBJ 1

A

CWIN

CMINWIN 4

CDIST_O 8

CDIST 5

CMINWIN

Count Occurrences CDISTCDIST_O

Figure 6: Comparing di�erent counting methods. (a) Relationship among methods that
count multiple occurrences per object (all but COBJ), (b) Di�erences among methods.

11

If the percentage based support threshold is used, then we need to determine the basis for
this support percentage. It depends on the counting method above is used. For the method
COBJ, the basis is total number of objects in the input data. For methods CWIN and
CMINWIN, the basis is the sum of the total number of span-windows possible in all objects.
For methods CDIST and CDIST O, the basis is maximum number of all possible distinct
occurrences of a sequence over all objects, which is the number of distinct timestamps present
in the input data of each object.

5 What is an interesting sequential rule ?

Section 4 discussed interesting sequential patterns. For each interesting sequential pattern
discovered, a sequential rule predicting the occurrence of last event-set in the sequence can be
deduced. For example, for a pattern (A) (B C), the rule deduced is of the form, If A occurs,
then event-set (B,C) occurs within the timing constraints speci�ed. This rule is represented as
(A) ! (B,C). Similarly, for a pattern (A,B) (C) (D), the rule predicting occurrence of D
after occurrence of (A,B) (C), is formed as (A,B) (C) ! (D).

Stating it formally, rule S1! IS, predicting IS, is formed using the sequential pattern, S
: S1 (IS), where S1 is the subsequence formed by omitting the last event-set, IS. We say that
this rule is interesting or strong if occurrence of S1 predicts occurrence of IS with a large
signi�cance. Signi�cance is de�ned as Con�dence / (co(IS) / Support basis), where Con�dence
is in turn de�ned as co(S) / co(S1). Here, co(S), co(S1) and co(IS) denote the number of
occurrences of sequential patterns S, S1, and IS, respectively. Obviously, the same method
must be used for counting occurrences of S, S1, and IS. Con�dence is a number less than 1,
and signi�cance can be any number greater than 0.

Intuitively, con�dence tells the conditional probability with which one can predict the
occurrence of the consequent, IS, after seeing an occurrence of the antecedent sequence, S1.
A rule which occurs with high con�dence and relatively less occurrences of the consequent,
together implying a high signi�cance, is strong because the antecedent predicts most of the
consequent's occurrences with high con�dence. There is another characteristic of the rule
called coverage that tells us about the fraction of times the entire sequential pattern occurs
with respect to the number of times the consequent occurs. Coverage is de�ned as co(S) /
co(IS). A rule with high signi�cance and high coverage has a better predictive power.

When the sequential pattern has only one event-set in it, the rule formed will predict the
occurrence of these events happening within the ws duration. In this case, the con�dence,
signi�cance, and coverage numbers associated with the rule are formed by averaging the
corresponding numbers over all the rules that predict occurrence of each of the events in the
event-set. As an example, if the pattern is (A,B,C), then three rules will be formed (A,B)!
(C), (B,C) ! (A), and (A,C) ! B; the signi�cance, con�dence, and coverage are computed
for each of these three rules and then they are averaged out.

Once the measures of interestingness are computed for all the discovered rules, they can
be ordered in any way the user wishes. Usually, an ordering that lists the rules in decreasing
order of signi�cance will list interesting and strong rules at the top. Ties can be broken using
con�dence, coverage, and support in that order.

12

Structure of the Algorithm: (Based on GSP [SA96])

form Set of Large Sequences, L1 each having 1 event;
k = 2;
while (Lk�1 is not empty)

join Lk�1 with Lk�1 to form Ck, set of Candidates having
k events; [Store Ck in a hash tree access structure] �

for each object's timeline
repeat

traverse hash tree to search for presence of possible candidates; �
count the occurrences of candidates at leaf nodes; �

until (no more traversing possible)
end

form Lk from Ck by retaining only the large candidates (having count above
support threshold);

end

Figure 7: Structure of the Algorithm. Similar to GSP [SA96]. The phases where modi�cation
is made are shown with an arrow.

6 Discovery of Universal Sequential Patterns

In this section, we brie
y describe the algorithm. The overall structure of the algorithm
is same as that of GSP [SA96], as outlined in Figure 7. The modi�cations are made to the
join phase and the counting phase.

If there are no event costraints, then the join phase is identical to that of GSP. In case of
event constraints, join phase can be modi�ed to produce only those patterns which satisfy
the event constraints.

The counting phase is modi�ed at two places. One is in the hash tree traversal part.
Other is in the part which counts the occurrences of sequences appearing at a leaf of the
hash tree.

In the hash tree traversal, an object's timeline is streamed through the hash tree such
that all events in the timeline are considered valid at the root node. Once an occurrence of
an event is �xed at a node, only those other event occurrences which �t within the timing
constraints (ms,ng,xg,ws), are considered eligible for hashing at that node to reach a child
node. The traversal continues until a leaf is reached. Two modi�cations are made in this
traversal algorithm. One is to take into account the maximum span, ms, parameter, which
is absent in GSP. It is accounted for while searching for the eligible event occurrence at the
child node. In GSP, the occurrence is searched for in the range [t-ws, t+max(ws,xg)]. In
modi�ed algorithm the range is [t-ws, max(t+max(ws,xg), t0+ms)], where t is the time at
which an event is found at the parent node and t0 is the earliest occurrence time of the

13

events found so far in the path taken from root to the parent node. Another modi�cation
in hash tree traversal is made for performance reasons. The modi�cation is to identify the
paths in the tree which will or should never be visited again by the given object's timeline
and to
ag such paths in order to avoid further unnecessary and time-consuming traversals
along them. This is especially very important for e�ciency purposes when a timeline is very
long and has large number of events in it.

The other part where the GSP algorithm is modi�ed is when a leaf node of a hash tree
is reached. The counting algorithm given in GSP stops after �nding the �rst occurrence of a
sequence in the timeline. This is okay for the COBJ counting method, but for other counting
methods, the search must continue beyond the �rst occurrence until the entire timeline is
consumed. Also, the event-timestamp pairs need
agging especially when CDIST method is
used. The modi�cation uses the GSP's counting algorithm in its inner loop, and the outer
loop is executed to �nd next occurrences according the counting method chosen by the user.

7 Applications of Universal Sequential Patterns

Let us see one representative application, where universal formulation presented in this paper
is required and the formulations suggested so far in the literature are not suitable.

� An Illustrative Application: Discovering Consumer Buying Patterns.

Let us consider an example of a grocery store.

Goal: To �nd out "which items' sales trigger sales in other items within
a period of one week" so that the information can help in managing
weekly inventory.

Formulation:
Object: Customer
Event: Items bought by the customer
Timestamp: Date of transaction

Constraints:
xg = 2 days, ng = 0 days, ws = 0 days, ms = 7 days.

This constraints restrict all the items in an event-set to be bought
on the same day (ws=0), the pattern span does not exceed 7 days (ms),
and a pattern like (Eggs)(Bread) will be supported by a customer only
if he buys Eggs today and Bread tomorrow or day-after-tomorrow (xg=2).
Finally, ng=0 means that items A and B bought on the same day cannot
occur on two di�erent nodes separated by an edge.

Counting Method:

14

Let us consider a pattern (Orange Juice)(Mayonnaise)(Frozen Burger).

COBJ: If pattern above is found to be frequent with this method, then it
can be concluded that many customers who buy Orange Juice today will
buy Mayonnaise within a couple days followed by Frozen Burger within a
couple of days more, but they will buy all these items within a
week. The frequent patterns generated with this method will tell
how many customers are likely to exhibit that pattern. Note that,
this method does not try to increase the strength of the pattern if some
of the customers exhibited this pattern multiple number of times, which
might be important in some cases.

CDI ST: If the pattern above is found to be frequent with this method, then
it implies that many distinct occurrences of the pattern were exhibited
when they were added up over all customers. If the goal is to increase the
sales of Frozen Burgers, then this counting method gives more practical
meaning to pattern. This is because distinct occurrences with no overlap
mean that we could �nd su�ciently many distinct sequences of these items
without counting any item more than once. So, the count re
ects on how
many cans of orange juice and how many Mayonnaise and Burger packs were
actually sold.

CWIN, CMINWIN, CDIST O: Although these counting methods can be applied,
they may not be valuable from the practical viewpoint, because none of them
would re
ect on the true sales of the items involved in the pattern
because overlap is allowed in all of them. This means that same can of
Orange Juice can contribute to many occurrences or many windows.

This example illustrates that not every counting method can be applicable in
all the domains. Nature of the application domain and user's knowledge
regarding the domain will determine which counting method to use.

Where Does Universal Formulation Help?:
It seems that the generalized sequential patterns formulation of [SA96]
could have helped in this scenario, but that formulation has only one
counting method (COBJ), which does not allow to gain more insight into the
patterns which are given by the other method (CDIST) of universal formulation.
Moreover, generalized sequential patterns of [SA96] do not place any limit
on the total pattern duration. Hence, if the available data is collected over a
large number of weeks, then in order to make generalized sequential patterns
applicable, multiple 7-day-long datasets would need to be formed and analyzed
separately. Many issues would arise in that case, such as which 7-day intervals
to choose, how to combine the patterns generated with each dataset, etc.

15

Also the method of [MTV97] is not applicable. The fact that the method does
not allow multiple objects needs to be handled �rst. This requires extra
preprocessing of input dataset, which includes merging of the datasets for
all the customers into a single dataset and separating individual customer's
timelines by a gap greater than ms value, so that patterns do not span
across two di�erent customers. Even if this extra cost of preprocessing is
tolerated, the method does not support COBJ or CDIST counting methods.
The only counting method it supports is CWIN, which does not seem to
have much practical value in this scenario (as explained above). Also, it
does not allow to specify the xg and ng constraints, which can be crucial
in this application.

Many more applications are possible. We will list a few of them here.

� Possible Application Areas for Universal Sequential Patterns:

1. Discovering sequential relationships between di�erent telecommunication switches
and alarms triggering on them.

2. Analyzing data from scienti�c experiments conducted over a period of time.

3. Discovering relationships between stock market events (e.g.
uctuations happen-
ing on market indices, individual stock prices).

4. Analyzing medical records of patients for temporal patterns between diagnosis,
treatment, symptoms, and examination results, etc.

5. Discovering Patterns Among Di�erent Socio-Economic Events.

It should be noted that each application domain will require a careful combination of
timing constraints, event constraints, and counting methods, in order to produce meaningful
patterns. With universal formulation, one can easily try out multiple such combinations,
specify di�erent structures of the relationships, and the same algorithm is applicable in all
the cases. This is real strength of the universal sequential patterns. The models that were
previously suggested in the literature do not have enough set of constraints for a user to focus
on speci�c kinds of patterns, and they do not support di�erent counting methods. Allowing
di�erent counting methods to be supported in one unifying formulation, ultimately allows
a user to encode di�erent hypotheses he/she has about the sequential relationships. This
can range from hypothesizing nothing but a few timing constraints to putting all possible
constraints encoding all the previously known knowledge the user has about the application
domain.

16

References

[SA96] R. Srikant and R. Agrawal, Mining Sequential Patterns: Generalization and
Performance Improvements, Proc. of the Fifth Int'l Conference on Extending
Database Technology (EDBT), Avignon, France, March 1996.

[MTV97] H. Mannila, H. Toivonen, and A. I. Verkamo, Discovery of frequent episodes
in event sequences, Technical Report C-1997-15, Dept. of Computer Science,
University of Helsinki, 1997.

[BWJ96] C. Bettini, X. S. Wang, and S. Jajodia, Testing Complex Temporal Relationships
Involving Multiple Granularities and Its Application to Data Mining, Proc. of
ACM PODS'96, pp.68-78, Montreal, 1996.

17

