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ABSTRACT
Fast and high-quality document clustering algorithms play an im-
portant role in providing intuitive navigation and browsing mech-
anisms by organizing large amounts of information into a small
number of meaningful clusters. In particular, hierarchical cluster-
ing solutions provide a view of the data at different levels of gran-
ularity, making them ideal for people to visualize and interactively
explore large document collections.

In this paper we evaluate different partitional and agglomerative
approaches for hierarchical clustering. Our experimental evalua-
tion showed that partitional algorithms always lead to better clus-
tering solutions than agglomerative algorithms, which suggests that
partitional clustering algorithms are well-suited for clustering large
document datasets due to not only their relatively low computa-
tional requirements, but also comparable or even better cluster-
ing performance. We present a new class of clustering algorithms
called constrained agglomerative algorithmsthat combine the fea-
tures of both partitional and agglomerative algorithms. Our exper-
imental results showed that they consistently lead to better hierar-
chical solutions than agglomerative or partitional algorithms alone.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; H.3.3 [Information
Search and Retrieval]: Clustering

General Terms
Algorithms
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1. INTRODUCTION
Hierarchical clustering solutions, which are in the form of trees

called dendrograms, are of great interest for a number of applica-
tion domains. Hierarchical trees provide a view of the data at dif-
ferent levels of abstraction. The consistency of clustering solutions
at different levels of granularity allows flat partitions of different
granularity to be extracted during data analysis, making them ideal
for interactive exploration and visualization. In addition, there are
many times when clusters have subclusters, and the hierarchical
structure are indeed a natural constrain on the underlying applica-
tion domain (e.g., biological taxonomy, phylogenetic trees) [9].

Hierarchical clustering solutions have been primarily obtained
using agglomerative algorithms [25, 17, 10, 11, 16], in which ob-
jects are initially assigned to its own cluster and then pairs of clus-
ters are repeatedly merged until the whole tree is formed. However,
partitional algorithms [20, 14, 22, 5, 31, 13, 27, 2, 8] can also be
used to obtain hierarchical clustering solutions via a sequence of re-
peated bisections. In recent years, various researchers have recog-
nized that partitional clustering algorithms are well-suited for clus-
tering large document datasets due to their relatively low computa-
tional requirements [6, 18, 1, 26]. However, there is the common
belief that in terms of clustering quality, partitional algorithms are
actually inferior and less effective than their agglomerative coun-
terparts. This belief is based both on experiments with low dimen-
sional datasets as well was as a limited number of studies in which
agglomerative approaches outperformed partitional K -means based
approaches. For example, Larsen [18] observed that group aver-
age greedy agglomerative clustering outperformed various parti-
tional clustering algorithms in document datasets from TREC and
Reuters.

In light of recent advances in partitional clustering [6, 18, 7, 2,
8], we revisited the question of whether or not agglomerative ap-
proaches generate superior hierarchical trees than partitional ap-
proaches. The focus of this paper is to compare various agglomera-
tive and partitional approaches for the task of obtaining hierarchical
clustering solution. The partitional methods that we compared use
different clustering criterion functions to derive the solutions and
the agglomerative methods use different schemes for selecting the
pair of clusters to merge next. For partitional clustering algorithms,
we used six recently studied criterion functions [32] that have been
shown to produce high-quality partitional clustering solutions. For
agglomerative clustering algorithms, we evaluated three traditional
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merging criteria (i.e., single-link, complete-link, and group average
(UPGMA)) and a new set of merging criteria derived from the six
partitional criterion functions. Overall, we compared six partitional
methods and nine agglomerative methods.

In addition to the traditional partitional and agglomerative algo-
rithms, we developed a new class of agglomerative algorithms, in
which we introduced intermediate clusters obtained by partitional
clustering algorithms to constrain the space over which agglomer-
ation decisions are made. We refer to them as constrained agglom-
erative algorithms. These algorithms generate hierarchical trees in
two steps. First, for each of the intermediate partitional clusters, an
agglomerative algorithm builds a hierarchical subtree. Second, the
subtrees are combined into a single tree by building an upper tree
using these subtrees as leaves.

We experimentally evaluated the performance of these methods
to obtain hierarchical clustering solutions using twelve different
datasets derived from various sources. Our experiments showed
that partitional algorithms always generate better hierarchical clus-
tering solutions than agglomerative algorithms and that the con-
strained agglomerative methods consistently lead to better solu-
tions than agglomerative methods alone and in most cases they
outperform partitional methods as well. We believe that the ob-
served poor performance of agglomerative algorithms is because
of the errors they make during early agglomeration. The superior-
ity of partitional algorithm also suggests that partitional clustering
algorithms are well-suited for obtaining hierarchical clustering so-
lutions of large document datasets due to not only their relatively
low computational requirements, but also comparable or better per-
formance.

The rest of this paper is organized as follows. Section 2 provides
some information on how documents are represented and how the
similarity or distance between documents is computed. Section 3
describes different criterion functions as well as criterion function
optimization of hierarchical partitional algorithms. Section 4 de-
scribes various agglomerative algorithms and the constrained ag-
glomerative algorithms. Section 5 provides the detailed experimen-
tal evaluation of the various hierarchical clustering methods as well
as the experimental results of the constrained agglomerative algo-
rithms. Section 6 discusses some important observations from the
experimental results. Finally, Section 7 provides some concluding
remarks.

2. PRELIMINARIES
Through-out this paper we will use the symbols n, m, and k to

denote the number of documents, the number of terms, and the
number of clusters, respectively. We will use the symbol S to de-
note the set of n documents that we want to cluster, S1, S2, . . . , Sk
to denote each one of the k clusters, and n1, n2, . . . , nk to denote
the sizes of the corresponding clusters.

The various clustering algorithms that are described in this pa-
per use the vector-space model [24] to represent each document.
In this model, each document d is considered to be a vector in
the term-space. In particular, we employed the t f − id f term
weighting model, in which each document can be represented as
(tf1 log(n/df1), tf2 log(n/df2), . . . , tfm log(n/dfm)), where tfi is the
frequency of the i th term in the document and dfi is the number of
documents that contain the i th term. To account for documents of
different lengths, the length of each document vector is normalized
so that it is of unit length (‖dtfidf‖ = 1), that is each document is
a vector in the unit hypersphere. In the rest of the paper, we will
assume that the vector representation for each document has been
weighted using tf-idf and it has been normalized so that it is of
unit length. Given a set A of documents and their corresponding

vector representations, we define the composite vector DA to be
DA = ∑

d∈A d, and the centroid vector CA to be CA = DA|A| .
In the vector-space model, the cosine similarity is the most com-

monly used method to compute the similarity between two docu-

ments di and dj , which is defined to be cos(di , dj ) = di
t dj

‖di ‖‖dj ‖ .

The cosine formula can be simplified to cos(di , dj ) = di
tdj , when

the document vectors are of unit length. This measure becomes one
if the documents are identical, and zero if there is nothing in com-
mon between them (i.e., the vectors are orthogonal to each other).

Vector Properties.By using the cosine function as the mea-
sure of similarity between documents we can take advantage of
a number of properties involving the composite and centroid vec-
tors of a set of documents. In particular, if Si and Sj are two sets
of unit-length documents containing ni and n j documents respec-
tively, and Di , D j and Ci , Cj are their corresponding composite
and centroid vectors then the following is true:

1. The sum of the pair-wise similarities between the documents
in Si and the document in Sj is equal to Di

t D j . That is,
∑

dq∈Di ,dr ∈D j

cos(dq, dr ) = Di
t D j . (1)

2. The sum of the pair-wise similarities between the documents
in Si is equal to ‖Di ‖2. That is,

∑

dq,dr ∈Di

cos(dq, dr ) = ‖Di ‖2. (2)

Note that this equation includes the pairwise similarities in-
volving the same pairs of vectors.

3. HIERARCHICAL PARTITIONAL CLUS-
TERING ALGORITHM

Partitional clustering algorithms can be used to compute a hi-
erarchical clustering solution using a repeated cluster bisectioning
approach [26, 32]. In this approach, all the documents are initially
partitioned into two clusters. Then, one of these clusters contain-
ing more than one document is selected and is further bisected.
This process continues n − 1 times, leading to n leaf clusters, each
containing a single document. It is easy to see that this approach
builds the hierarchical agglomerative tree from top (i.e., single all-
inclusive cluster) to bottom (each document is in its own cluster).
In the rest of this section we describe the various aspects of the
partitional clustering algorithm that we used in our study.

3.1 Clustering Criterion Functions
A key characteristic of most partitional clustering algorithms is

that they use a global criterion function whose optimization drives
the entire clustering process. For those partitional clustering algo-
rithms, the clustering problem can be stated as computing a clus-
tering solution such that the value of a particular criterion function
is optimized.

The clustering criterion functions that we used in our study can
be classified into four groups: internal, external, hybrid and graph-
based. The internal criterion functions focus on producing a clus-
tering solution that optimizes a function defined only over the docu-
ments of each cluster and does not take into account the documents
assigned to different clusters. The external criterion functions de-
rive the clustering solution by focusing on optimizing a function
that is based on how the various clusters are different from each

516



other. The graph based criterion functions model the documents as
a graph and use clustering quality measures defined in the graph
model. The hybrid criterion functions simultaneously optimize
multiple individual criterion functions.

Internal Criterion Functions.The first internal criterion func-
tion maximizes the sum of the average pairwise similarities be-
tween the documents assigned to each cluster, weighted according
to the size of each cluster. Specifically, if we use the cosine func-
tion to measure the similarity between documents, then we want the
clustering solution to minimize the following criterion function:

�1 =
k∑

r =1

nr



 1

n2
r

∑

di ,dj ∈Sr

cos(di , dj )



 =
k∑

r =1

‖Dr ‖2

nr
. (3)

The second criterion function is used by the popular vector-space
variant of the K -means algorithm [6, 18, 7, 26, 15]. In this al-
gorithm each cluster is represented by its centroid vector and the
goal is to find the clustering solution that maximizes the similar-
ity between each document and the centroid of the cluster that is
assigned to. Specifically, if we use the cosine function to measure
the similarity between a document and a centroid, then the criterion
function maximizes the following:

�2 =
k∑

r =1

∑

di ∈Sr

cos(di , Cr ). =
k∑

r =1

‖Dr ‖. (4)

Comparing the �2 criterion function with �1 we can see that the
essential difference between these criterion functions is that �2
scales the within-cluster similarity by the ‖Dr ‖ term as opposed
to nr term used by �1. The term ‖Dr ‖ is nothing more than the
square-root of the pairwise similarity between all the document in
Sr , and will tend to emphasize the importance of clusters (beyond
the ‖Dr ‖2 term) whose documents have smaller pairwise similar-
ities compared to clusters with higher pair-wise similarities. Also
note that if the similarity between a document and the centroid vec-
tor of its cluster is defined as just the dot-product of these vectors,
then we will get back the �1 criterion function.

External Criterion Functions.It is quite hard to define exter-
nal criterion functions that lead to meaningful clustering solutions.
For example, it may appear that an intuitive external function may
be derived by requiring that the centroid vectors of the different
clusters are as mutually orthogonal as possible, i.e., they contain
documents that share very few terms across the different clusters.
However, for many problems this criterion function has trivial so-
lutions that can be achieved by assigning to the first k − 1 clusters
a single document that shares very few terms with the rest, and
then assigning the rest of the documents to the kth cluster. For
this reason, the external function that we will discuss tries to sep-
arate the documents of each cluster from the entire collection, as
opposed trying to separate the documents among the different clus-
ters. This external criterion function was motivated by multiple
discriminant analysis and is similar to minimizing the trace of the
between-cluster scatter matrix [9, 28].

In particular, our external criterion function minimizes

k∑

r =1

nr cos(Cr , C),

where C is the centroid vector of the entire collection. From this
equation we can see that we try to minimize the cosine between the
centroid vector of each cluster to the centroid vector of the entire

collection. By minimizing the cosine we essentially try to increase
the angle between them as much as possible. Also note that the
contribution of each cluster is weighted based on the cluster size,
so that larger clusters will weight heavier in the overall clustering
solution. The above expression can be re-written as

k∑

r =1

nr cos(Cr , C) = 1

‖D‖

(
k∑

r =1

nr
Dr

t D

‖Dr ‖

)

,

where D is the composite vector of the entire document collection.
Note that since 1/‖D‖ is constant irrespective of the clustering so-
lution the criterion function can be re-stated as minimize:

�1 =
k∑

r =1

nr
Dr

t D

‖Dr ‖ . (5)

As we can see from Equation 5, even-though our initial motivation
was to define an external criterion function, because we used the co-
sine function to measure the separation between the cluster and the
entire collection, the criterion function does take into account the
within-cluster similarity of the documents (due to the ‖Dr ‖ term).
Thus, �1 is actually a hybrid criterion function that combines both
external and internal characteristics of the clusters.

Hybrid Criterion Functions.In our study, we will focus on
two hybrid criterion function that are obtained by combining cri-
terion �1 with �1, and �2 with �1, respectively. Formally, these
functions are defined as

maximize �1 = �1

�1
, and maximize �2 = �2

�1
. (6)

Note that since �1 is minimized, both �1 and �2 need to be max-
imized as they are inversely related to �1.

Graph Based Criterion Functions.An alternate way of
viewing the relations between the documents is to use similarity
graphs. Given a collection of n documents S, the similarity graph
Gs is obtained by modeling each document as a vertex, and having
an edge between each pair of vertices whose weight is equal to the
similarity between the corresponding documents. Viewing the doc-
uments in this fashion, a number of internal, external, or combined
criterion functions can be defined that measure the overall clus-
tering quality. In our study we will investigate one such criterion
function called MinMaxCut, that was proposed recently [8]. Min-
MaxCut falls under the category of criterion functions that combine
both the internal and external views of the clustering process and is
defined as [8]

minimize
k∑

r =1

cut(Sr , S− Sr )
∑

di ,dj ∈Sr
sim(di , dj )

,

where cut(Sr , S− Sr ) is the edge-cut between the vertices in Sr to
the rest of the vertices in the graph S− Sr . The edge-cut between
two sets of vertices A and B is defined to be the sum of the edges
connecting vertices in A to vertices in B. The motivation behind
this criterion function is that the clustering process can be viewed
as that of partitioning the documents into groups by minimizing the
edge-cut of each partition. However, for reasons similar to those
discussed in Section 3.1, such an external criterion may have trivial
solutions, and for this reason each edge-cut is scaled by the sum
of the internal edges. As shown in [8], this scaling leads to better
balanced clustering solutions.

If we use the cosine function to measure the similarity between
the documents, and Equations 1 and 2, then the above criterion
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function can be simplified to [32]:

minimize �1 =
k∑

r =1

Dr
t D

‖Dr ‖2
. (7)

3.2 Criterion Function Optimization
Our partitional algorithm uses an approach inspired by the K -

means algorithm to optimize each one of the above criterion func-
tions, and is similar to that used in [26, 32]. The details of this
algorithm are provided in the remaining of this section.

Initially, a random pair of documents is selected from the collec-
tion to act as the seedsof the two clusters. Then, for each document,
its similarity to these two seeds is computed, and it is assigned to
the cluster corresponding to its most similar seed. This forms the
initial two-way clustering. This clustering is then repeatedly re-
fined so that it optimizes the desired clustering criterion function.

The refinement strategy that we used consists of a number of
iterations. During each iteration, the documents are visited in a
random order. For each document, di , we compute the change in
the value of the criterion function obtained by moving di to one
of the other k − 1 clusters. If there exist some moves that lead to
an improvement in the overall value of the criterion function, then
di is moved to the cluster that leads to the highest improvement.
If no such cluster exists, di remains in the cluster that it already
belongs to. The refinement phase ends, as soon as we perform an
iteration in which no documents moved between clusters. Note that
unlike the traditional refinement approach used by K -means type
of algorithms, the above algorithm moves a document as soon as
it is determined that it will lead to an improvement in the value of
the criterion function. This type of refinement algorithms are of-
ten called incremental[9]. Since each move directly optimizes the
particular criterion function, this refinement strategy always con-
verges to a local minima. Furthermore, because the various crite-
rion functions that use this refinement strategy are defined in terms
of cluster composite and centroid vectors, the change in the value
of the criterion functions as a result of single document moves can
be computed efficiently.

The greedy nature of the refinement algorithm does not guar-
antee that it will converge to a global minima, and the local min-
ima solution it obtains depends on the particular set of seed docu-
ments that were selected during the initial clustering. To eliminate
some of this sensitivity, the overall process is repeated a number of
times. That is, we compute N different clustering solutions (i.e.,
initial clustering followed by cluster refinement), and the one that
achieves the best value for the particular criterion function is kept.
In all of our experiments, we used N = 10. For the rest of this
discussion when we refer to the clustering solution we will mean
the solution that was obtained by selecting the best out of these N
potentially different solutions.

3.3 Cluster Selection
We experimented with two different methods for selecting which

cluster to bisect next. The first method uses the simple strategy of
bisecting the largest cluster available at that point of the clustering
solution. Our earlier experience with this approach showed that
it leads to reasonably good and balanced clustering solutions [26,
32]. However, its limitation is that it cannot gracefully operate in
datasets in which the natural clusters are of different sizes, as it will
tend to partition those larger clusters first. To overcome this prob-
lem and obtain more natural hierarchical solutions, we developed a
method that among the current k clusters, selects the cluster which
leads to the k + 1 clustering solution that optimizes the value of the
particular criterion function (among the different k choices). Our

experiments showed that this approach performs somewhat better
than the previous scheme, and is the method that we used in the
experiments presented in Section 5.

3.4 Computational Complexity
One of the advantages of our partitional algorithm and that of

other similar partitional algorithms, is that it has relatively low
computational requirements. A two-way clustering of a set of docu-
ments can be computed in time linear on the number of documents,
as in most cases the number of iterations required for the greedy
refinement algorithm is small (less than 20), and are to a large ex-
tend independent on the number of documents. Now if we assume
that during each bisection step, the resulting clusters are reasonably
balanced (i.e., each cluster contains a fraction of the original doc-
uments), then the overall amount of time required to compute all
n − 1 bisections is O(n log n).

4. HIERARCHICAL AGGLOMERATIVE CLUS-
TERING ALGORITHM

Unlike the partitional algorithms that build the hierarchical solu-
tion for top to bottom, agglomerative algorithms build the solution
by initially assigning each document to its own cluster and then re-
peatedly selecting and merging pairs of clusters, to obtain a single
all-inclusive cluster. Thus, agglomerative algorithms build the tree
from bottom (i.e., its leaves) toward the top (i.e., root).

4.1 Cluster Selection Schemes
The key parameter in agglomerative algorithms is the method

used to determine the pairs of clusters to be merged at each step. In
most agglomerative algorithms, this is accomplished by selecting
the most similar pair of clusters, and numerous approaches have
been developed for computing the similarity between two clus-
ters[25, 17, 14, 10, 11, 16]. In our study we used the single-link,
complete-link, and UPGMA schemes, as well as, the various parti-
tional criterion functions described in Section 3.1.

The single-link [25] scheme measures the similarity of two clus-
ters by the maximum similarity between the documents from each
cluster. That is, the similarity between two clusters Si and Sj is
given by

simsingle-link(Si , Sj ) = max
di ∈Si , dj ∈Sj

{cos(di , dj )}. (8)

In contrast, the complete-link scheme [17] uses the minimum sim-
ilarity between a pair of documents to measure the same similarity.
That is,

simcomplete-link(Si , Sj ) = min
di ∈Si , dj ∈Sj

{cos(di , dj )}. (9)

In general, both the single- and the complete-link approaches do
not work very well because they either base their decisions on lim-
ited amount of information (single-link), or they assume that all the
documents in the cluster are very similar to each other (complete-
link approach). The UPGMA scheme [14] (also known as group
average) overcomes these problems by measuring the similarity of
two clusters as the average of the pairwise similarity of the docu-
ments from each cluster. That is,

simUPGMA(Si , Sj ) = 1

ni n j

∑

di ∈Si , dj ∈Sj

cos(di , dj ) = Di
t D j

ni n j
.

(10)

The partitional criterion functions, described in Section 3.1, can
be converted into cluster selection schemes for agglomerative clus-
tering using the general framework of stepwise optimization [9], as
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follows. Consider an n-document dataset and the clustering solu-
tion that has been computed after performing l merging steps. This
solution will contain exactly n − l clusters, as each merging step
reduces the number of clusters by one. Now, given this (n− l )-way
clustering solution, the pair of clusters that is selected to be merged
next, is the one that leads to an (n − l − 1)-way solution that op-
timizes the particular criterion function. That is, each one of the
(n − l ) × (n − l − 1)/2 pairs of possible merges is evaluated, and
the one that leads to a clustering solution that has the maximum
(or minimum) value of the particular criterion function is selected.
Thus, the criterion function is locally optimized within the partic-
ular stage of the agglomerative algorithm. This process continues
until the entire agglomerative tree has been obtained.

4.2 Computational Complexity
There are two main computationally expensive steps in agglom-

erative clustering. The first step is the computation of the pairwise
similarity between all the documents in the data set. The complex-
ity of this step is, in general, O(n2) because the average number of
terms in each document is small and independent of n.

The second step is the repeated selection of the pair of most sim-
ilar clusters or the pair of clusters that best optimizes the criterion
function. A naive way of performing that is to recompute the gains
achieved by merging each pair of clusters after each level of the
agglomeration, and select the most promising pair. During the l th
agglomeration step, this will require O((n − l )2) time, leading to
an overall complexity of O(n3). Fortunately, the complexity of
this step can be reduced for single-link, complete-link, UPGMA,
�1, �2, �1, and �1. This is because the pair-wise similarities or
the improvements in the value of the criterion function achieved
by merging a pair of clusters i and j does not change during the
different agglomerative steps, as long as i or j is not selected to
be merged. Consequently, the different similarities or gains in the
value of the criterion function can be computed once for each pair
of clusters and inserted into a priority queue. As a pair of clusters
i and j is selected to be merged to form cluster p, then the priority
queue is updated so that any gains corresponding to cluster pairs
involving either i or j are removed, and the gains of merging the
rest of the clusters with the newly formed cluster p are inserted.
During the l th agglomeration step, that involves O(n − l ) priority
queue delete and insert operations. If the priority queue is imple-
mented using a binary heap, the total complexity of these opera-
tions is O((n − l ) log(n − l )), and the overall complexity over the
n − 1 agglomeration steps is O(n2 log n).

Unfortunately, the original complexity of O(n3) of the naive ap-
proach cannot be reduced for the �1 and �2 criterion functions,
because the improvement in the overall value of the criterion func-
tion when a pair of clusters i and j is merged tends to be changed
for all pairs of clusters. As a result, they cannot be pre-computed
and inserted into a priority queue.

4.3 Constrained Agglomerative Clustering
One of the advantages of partitional clustering algorithms is that

they use information about the entire collection of documents when
they partition the dataset into a certain number of clusters. On the
other hand, the clustering decisions made by agglomerative algo-
rithms are local in nature. This has both its advantages as well
as its disadvantages. The advantage is that it is easy for them to
group together documents that form small and reasonably cohesive
clusters, a task in which partitional algorithms may fail as they may
split such documents across cluster boundaries early during the par-
titional clustering process (especially when clustering large collec-
tions). However, their disadvantage is that if the documents are not

part of particularly cohesive groups, then the initial merging deci-
sions may contain some errors, which will tend to be multiplied as
the agglomeration progresses. This is especially true for the cases
in which there are a large number of equally good merging alterna-
tives for each cluster.

One way of improving agglomerative clustering algorithms by
eliminating this type of errors, is to use a partitional clustering al-
gorithm to constrain the space over which agglomeration decisions
are made, so that each document is only allowed to merge with
other documents that are part of the same partitionally discovered
cluster. In this approach, a partitional clustering algorithm is used
to compute a k-way clustering solution. Then, each of these clus-
ters is treated as a separate collection and an agglomerative algo-
rithm is used to build a tree for each one of them. Finally, the k
different trees are combined into a single tree by merging them us-
ing an agglomerative algorithm that treats the documents of each
subtree as a cluster that has already been formed during agglom-
eration. The advantage of this approach is that it is able to benefit
from the global viewof the collection used by partitional algorithms
and the local viewused by agglomerative algorithms. An additional
advantage is that the computational complexity of constrained clus-
tering is O(k(( n

k )2 log( n
k )) + k2 log k), where k is the number of

intermediate partitional clusters. If k is reasonably large, e.g., k
equals

√
n, the original complexity of O(n2 log n) for agglomera-

tive algorithms is reduced to O(n2/3 log n).

5. EXPERIMENTAL RESULTS
We experimentally evaluated the performance of the various clus-

tering methods to obtain hierarchical solutions using a number of
different datasets. In the rest of this section we first describe the
various datasets and our experimental methodology, followed by a
description of the experimental results. The datasets as well as the
various algorithms are available in the CLUTO clustering toolkit,
which can be downloaded from http://www.cs.umn.edu/˜karypis/cluto.

5.1 Document Collections
In our experiments, we used a total of twelve different datasets,

whose general characteristics are summarized in Table 1. The small-
est of these datasets contained 878 documents and the largest con-
tained 4,069 documents. To ensure diversity in the datasets, we
obtained them from different sources. For all datasets, we used a
stop-list to remove common words, and the words were stemmed
using Porter’s suffix-stripping algorithm [23]. Moreover, any term
that occurs in fewer than two documents was eliminated.

Table 1: Summary of data sets used to evaluate the various
clustering criterion functions.

Data Source # of Docs. # of terms # of classes
fbis FBIS (TREC) 2463 12674 17
hitech San Jose Mercury (TREC) 2301 13170 6
reviews San Jose Mercury (TREC) 4069 23220 5
la1 LA Times (TREC) 3204 21604 6
la2 LA Times (TREC) 3075 21604 6
tr31 TREC 927 10128 7
tr41 TREC 878 7454 10
re0 Reuters-21578 1504 2886 13
re1 Reuters-21578 1657 3758 25
k1a WebACE 2340 13879 20
k1b WebACE 2340 13879 6
wap WebACE 1560 8460 20

The fbis dataset is from the Foreign Broadcast Information Ser-
vice data of TREC-5 [29], and the classes correspond to the cate-
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gorization used in that collection. The hitechand reviewsdatasets
were derived from the San Jose Mercury newspaper articles that
are distributed as part of the TREC collection (TIPSTER Vol. 3).
Each one of these datasets was constructed by selecting documents
that are part of certain topics in which the various articles were cat-
egorized (based on the DESCRIPTtag). The hitechdataset con-
tained documents about computers, electronics, health, medical,
research, and technology; and the reviewsdataset contained doc-
uments about food, movies, music, radio, and restaurants. In se-
lecting these documents we ensured that no two documents share
the same DESCRIPTtag (which can contain multiple categories).
The la1 and la2 datasets were obtained from articles of the Los
Angeles Times that was used in TREC-5 [29]. The categories cor-
respond to the deskof the paper that each article appeared and in-
clude documents from the entertainment, financial, foreign, metro,
national, and sports desks. Datasets tr31 and tr41 are derived from
TREC-5 [29], TREC-6 [29], and TREC-7 [29] collections. The
classes of these datasets correspond to the documents that were
judged relevant to particular queries. The datasets re0 and re1
are from Reuters-21578 text categorization test collection Distri-
bution 1.0 [19]. We divided the labels into two sets and constructed
datasets accordingly. For each dataset, we selected documents that
have a single label. Finally, the datasets k1a, k1b, and wapare from
the WebACE project [21, 12, 3, 4]. Each document corresponds to
a web page listed in the subject hierarchy of Yahoo! [30]. The
datasets k1a and k1b contain exactly the same set of documents
but they differ in how the documents were assigned to different
classes. In particular, k1acontains a finer-grain categorization than
that contained in k1b.

5.2 Experimental Methodology and Metrics
For each one of the different datasets we obtained hierarchical

clustering solutions using the various partitional and agglomera-
tive clustering algorithms described in Sections 3 and 4. The qual-
ity of a clustering solution was determined by analyzing the entire
hierarchical tree that is produced by a particular clustering algo-
rithm. This is often done by using a measure that takes into ac-
count the overall set of clusters that are represented in the hierar-
chical tree. One such measure is the FScore measure, introduced
by [18]. Given a particular class Lr of size nr and a particular clus-
ter Si of size ni , suppose nri documents in the cluster Si belong to
Lr , then the FScore of this class and cluster is defined to be

F(Lr , Si ) = 2 ∗ R(Lr , Si ) ∗ P(Lr , Si )

R(Lr , Si ) + P(Lr , Si )
,

where R(Lr , Si ) is the recall value defined as nri /nr , and P(Lr , Si )

is the precision value defined as nri /ni for the class Lr and the
cluster Si . The FScore of the class Lr , is the maximum FScore
value attained at any node in the hierarchical clustering tree T . That
is,

F(Lr ) = max
Si ∈T

F(Lr , Si ).

The FScore of the entire clustering solution is then defined to be
the sum of the individual class FScore weighted according to the
class size.

FScore=
c∑

r =1

nr

n
F(Lr ),

where c is the total number of classes. A perfect clustering solution
will be the one in which every class has a corresponding cluster
containing the exactly same documents in the resulting hierarchical

tree, in which case the FScore will be one. In general, the higher
the FScore values, the better the clustering solution is.

5.3 Comparison of Partitional and Agglom-
erative Trees

Our first set of experiments was focused on evaluating the qual-
ity of the hierarchical clustering solutions produced by various ag-
glomerative algorithms and partitional algorithms. For agglomera-
tive algorithms, nine selection schemes or criterion functions have
been tested including the six criterion functions discussed in Sec-
tion 3.1, and the three traditional selection schemes (i.e., single-
link, complete-link and UPGMA). We named this set of agglom-
erative methods directly with the name of the criterion function or
selection scheme, e.g., “�1 ” means the agglomerative clustering
method with �1 as the criterion function and “UPGMA” means
the agglomerative clustering method with UPGMA as the selec-
tion scheme. We also evaluated various repeated bisection algo-
rithms using the six criterion functions discussed in Section 3.1.
We named this set of partitional methods by adding a letter “p” in
front of the name of the criterion function, e.g., “p�1 ” means the
repeated bisection clustering method with �1 as the criterion func-
tion. Overall, we evaluated 15 hierarchical clustering methods.

The FScore results for the hierarchical trees for the various datasets
and methods are shown in Table 2, where each row corresponds to
one method and each column corresponds to one dataset. The re-
sults in this table are provided primarily for completeness and in or-
der to evaluate the various methods we actually summarized these
results in two ways, one is by looking at the average performance
of each method over the entire set of datasets, and the other is by
comparing each pair of methods to see which method outperforms
the other for most of the datasets.

The first way of summarizing the results is to average the FScore
for each method over the twelve different datasets. However, since
the hierarchical tree quality for different datasets is quite different,
we felt that such simple averaging may distort the overall results.
For this reason, we used averages of relative FScores as follows.
For each dataset, we divided the FScore obtained by a particular
method by the largest FScore obtained for that particular dataset
over the 15 methods. These ratios represent the degree to which a
particular method performed worse than the best method for that
particular series of experiments. Note that for different datasets,
the method that achieved the best hierarchical tree as measured by
FScore may be different. These ratios are less sensitive to the ac-
tual FScore values. We will refer to these ratios as relative FScores.
Since, higher FScore values are better, all these relative FScore val-
ues are less than one. Now, for each method we averaged these
relative FScores over the various datasets. A method that has an
average relative FScore close to 1.0 will indicate that this method
did the best for most of the datasets. On the other hand, if the aver-
age relative FScore is low, then this method performed poorly.

The results of the relative FScores for various hierarchical clus-
tering methods are shown in Table 3. Again, each row of the ta-
ble corresponds to one method, and each column of the table cor-
responds to one dataset. The average relative FScore values are
shown in the last column labeled “Average”. The entries that are
boldfaced correspond to the methods that performed the best, and
the entries that are underlined correspond to the methods that per-
formed the best among agglomerative methods or partitional meth-
ods.

A number of observations can be made by analyzing the results
in Table 3. First, the repeated bisection method with the �2 crite-
rion function (i.e., “p�2 ”) leads to the best solutions for most of the
datasets. Over the entire set of experiments, this method is either
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Table 2: The FScores for the different datasets for the hierarchical clustering solutions obtained via various hierarchical clustering
methods.

fbis hitech k1a k1b la1 la2 re0 re1 reviews tr31 tr41 wap
�1 0.643 0.485 0.544 0.816 0.634 0.633 0.590 0.655 0.724 0.795 0.772 0.577
�1 0.624 0.471 0.603 0.844 0.612 0.644 0.581 0.617 0.654 0.796 0.754 0.618
�1 0.629 0.491 0.597 0.872 0.642 0.613 0.603 0.662 0.651 0.818 0.728 0.629
�2 0.637 0.468 0.579 0.858 0.620 0.697 0.585 0.660 0.727 0.789 0.729 0.580
�1 0.592 0.480 0.583 0.836 0.580 0.610 0.561 0.607 0.642 0.756 0.694 0.588
�2 0.639 0.480 0.605 0.896 0.648 0.681 0.587 0.684 0.689 0.844 0.779 0.618
UPGMA 0.673 0.499 0.646 0.892 0.654 0.709 0.584 0.695 0.750 0.816 0.826 0.640
slink 0.481 0.393 0.375 0.655 0.369 0.365 0.465 0.445 0.452 0.532 0.674 0.435
clink 0.609 0.382 0.552 0.764 0.364 0.449 0.495 0.508 0.513 0.804 0.758 0.569
p�1 0.623 0.577 0.670 0.891 0.721 0.787 0.618 0.758 0.870 0.858 0.743 0.694
p�1 0.668 0.512 0.697 0.872 0.758 0.725 0.639 0.721 0.818 0.892 0.783 0.687
p�1 0.686 0.545 0.691 0.889 0.761 0.742 0.628 0.699 0.746 0.877 0.811 0.672
p�2 0.641 0.581 0.693 0.902 0.749 0.739 0.632 0.723 0.859 0.873 0.800 0.690
p�1 0.702 0.481 0.666 0.876 0.646 0.634 0.626 0.675 0.762 0.769 0.753 0.679
p�2 0.681 0.575 0.682 0.882 0.801 0.766 0.633 0.712 0.821 0.893 0.833 0.714

Table 3: The relative FScores averaged over the different datasets for the hierarchical clustering solutions obtained via various
hierarchical clustering methods.

fbis hitech k1a k1b la1 la2 re0 re1 reviews tr31 tr41 wap Average
�1 0.916 0.835 0.780 0.905 0.791 0.804 0.923 0.864 0.832 0.890 0.927 0.808 0.856
�1 0.889 0.811 0.865 0.936 0.764 0.818 0.909 0.814 0.752 0.891 0.905 0.866 0.852
�1 0.896 0.845 0.857 0.967 0.801 0.779 0.944 0.873 0.748 0.916 0.874 0.881 0.865
�2 0.907 0.805 0.831 0.951 0.774 0.886 0.915 0.871 0.836 0.883 0.875 0.812 0.862
�1 0.843 0.826 0.836 0.927 0.724 0.775 0.878 0.801 0.738 0.847 0.833 0.824 0.821
�2 0.910 0.826 0.868 0.993 0.809 0.865 0.919 0.902 0.792 0.945 0.935 0.866 0.886
UPGMA 0.959 0.859 0.927 0.989 0.817 0.901 0.914 0.917 0.862 0.914 0.992 0.896 0.912
slink 0.685 0.676 0.538 0.726 0.461 0.464 0.728 0.587 0.519 0.596 0.809 0.609 0.617
clink 0.868 0.657 0.792 0.847 0.454 0.571 0.775 0.670 0.590 0.900 0.910 0.797 0.736
p�1 0.887 0.993 0.961 0.988 0.900 1.000 0.967 1.000 1.000 0.961 0.892 0.972 0.960
p�1 0.952 0.881 1.000 0.967 0.946 0.921 1.000 0.951 0.940 0.999 0.940 0.962 0.955
p�1 0.977 0.938 0.991 0.986 0.950 0.943 0.983 0.922 0.858 0.982 0.974 0.941 0.954
p�2 0.913 1.000 0.994 1.000 0.935 0.939 0.989 0.954 0.987 0.978 0.960 0.966 0.968
p�1 1.000 0.828 0.956 0.971 0.806 0.806 0.980 0.890 0.876 0.861 0.904 0.951 0.902
p�2 0.970 0.990 0.979 0.978 1.000 0.973 0.991 0.939 0.944 1.000 1.000 1.000 0.980

the best or always within 6% of the best solution. On the average,
the p�2 method outperforms the other partitional methods and ag-
glomerative methods by 2%–8% and 7%–37%, respectively. Sec-
ond, the UPGMA method performs the best among agglomerative
methods followed by the �2 method. The two methods together
achieved the best hierarchical clustering solutions among agglom-
erative methods for all the datasets except re0. On the average,
the UPGMA and �2 methods outperform the other agglomerative
methods by 5%–30% and 2%–27%, respectively. Third, partitional
methods outperform agglomerative methods. Except for the p�1
method, each one of the remaining five partitional methods on the
average performs better than all the nine agglomerative methods
by at least 5%. The p�1 method performs a little bit worse than
the UPGMA method and better than the rest of the agglomera-
tive methods. Fourth, single-link, complete-link and �1 performed
poorly among agglomerative methods and p�1 performed the worst
among partitional methods. Finally, on the average, �1 and�2 are
the agglomerative methods that lead to the second best hierarchical
clustering solutions among agglomerative methods. Whereas, p�2
and p�1 are the partitional methods that lead to the second best
hierarchical clustering solutions among partitional methods.

When the relative performance of different methods is close, the
average relative FScores will be quite similar. Hence, to make the
comparisons of these methods easier, our second way of summa-
rizing the results is to create a dominance matrix for the various
methods. As shown in Table 4, the dominance matrix is a 15 by
15 matrix, where each row or column corresponds to one method
and the value in each entry is the number of datasets for which

the method corresponding to the row outperforms the method cor-
responding to the column. For example, the value in the entry of
the row �2 and the column �1 is eight, which means for eight out
of the twelve datasets, the �2 method outperforms the �1 method.
The values that are close to twelve indicate that the row method
outperforms the column method.

Similar observations can be made by analyzing the results in Ta-
ble 4. First, partitional methods outperform agglomerative meth-
ods. By looking at the left bottom part of the dominance matrix,
we can see that all the entries are close to twelve except two entries
in the row of p�1, which means each partitional method performs
better than agglomerative methods for all or most of the datasets.
Second, by looking at the submatrix of the comparisons within ag-
glomerative methods (i.e., the left top part of the dominance ma-
trix), we can see that the UPGMA method performs the best fol-
lowed by �2 and �1, and slink, clink and �1 are the worst set of
agglomerative methods. Third, from the submatrix of the compar-
isons within partitional methods (i.e., the right bottom part of the
dominance matrix), we can see that p�2 leads to better solutions
than the other partitional methods for most of the datasets followed
by p�2, and p�1 performed worse than the other partitional meth-
ods for most of the datasets.

5.4 Constrained Agglomerative Trees
Our second set of experiments was focused on evaluating the

constrained agglomerative clustering methods. These results were
obtained by using the different criterion functions to find intermedi-
ate partitional clusters, and then using UPGMA as the agglomera-
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Table 4: Dominance matrix for various hierarchical clustering methods.
�1 �1 �1 �2 �1 �2 UPGMA slink clink p�1 p�1 p�1 p�2 p�1 p�2

�1 0 7 4 6 9 4 1 12 10 2 0 0 1 3 0
�1 5 0 4 5 11 0 0 12 10 2 0 0 0 3 0
�1 8 8 0 8 12 3 2 12 11 1 0 0 0 2 0
�2 6 7 4 0 9 2 1 12 10 1 0 0 0 2 0
�1 3 1 0 3 0 0 0 12 9 0 0 0 0 0 0
�2 8 11 9 10 11 0 3 12 12 3 1 1 0 6 1
UPGMA 11 12 10 11 12 9 0 12 12 3 3 3 2 7 1
slink 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
clink 2 2 1 2 3 0 0 10 0 1 0 0 0 2 0
p�1 10 10 11 11 12 9 9 12 11 0 6 6 4 9 5
p�1 12 12 11 12 12 11 9 12 12 6 0 6 5 10 3
p�1 12 12 12 12 12 11 9 12 12 6 6 0 5 9 3
p�2 11 12 12 12 12 12 10 12 12 8 7 7 0 11 5
p�1 9 9 10 10 12 6 5 12 10 3 2 3 1 0 1
p�2 12 12 12 12 12 11 11 12 12 7 9 9 7 11 0

tive scheme to construct the final hierarchical solutions as described
in Section 4.3. UPGMA was selected because it performed the best
among the various agglomerative schemes.

The results of the constrained agglomerative clustering methods
are shown in Table 5. Each dataset is shown in a different sub-
table. There are six experiments performed for each dataset and
each of them corresponds to a row. The row labeled “UPGMA”
contains the FScores for the hierarchical clustering solutions gen-
erated by the UPGMA method with one intermediate cluster, which
are the same for all the criterion functions. The rows labeled “10”,
“20”, “n/40” and “n/20” contain the FScores obtained by the con-
strained agglomerative methods using 10, 20, n/40 and n/20 par-
titional clusters to constrain the solution, where n is the total num-
ber of documents in each dataset. The row labeled “rb” contains
the FScores for the hierarchical clustering solutions obtained by re-
peated bisection algorithms with various criterion functions. The
entries that are boldfaced correspond to the method that performed
the best for a particular criterion function, whereas the entries that
are underlined correspond to the best hierarchical clustering solu-
tion obtained for each dataset.

A number of observations can be made by analyzing the results
in Table 5. First, for all the datasets except tr41, the constrained ag-
glomerative methods improved the hierarchical solutions obtained
by agglomerative methods alone, no matter what partitional clus-
tering algorithm is used to obtain intermediate clusters. The im-
provement can be achieved even with small number of intermedi-
ate clusters. Second, for many cases, the constrained agglomerative
methods performed even better than the corresponding partitional
methods. Finally, the partitional clustering methods that improved
the agglomerative hierarchical results the most are the same parti-
tional clustering methods that performed the best in terms of gen-
erating the whole hierarchical trees.

6. DISCUSSION
The most important observation from the experimental results is

that partitional methods performed better than agglomerative meth-
ods. As discussed in Section 4.3, one of the limitations of agglom-
erative methods is that errors may be introduced during the initial
merging decisions, especially for the cases in which there are a
large number of equally good merging alternatives for each clus-
ter. Without a high-level view of the overall clustering solution,
it is hard for agglomerative methods to make the right decision in
such cases. Since the errors will be carried through and may be
multiplied as the agglomeration progresses, the resulting hierarchi-
cal trees suffer from those early stage errors. This observation is
also supported from the experimental results with the constrained

agglomerative algorithms. We can see in this case that once we
constrain the space over which agglomeration decisions are made,
even with small number of intermediate clusters, some early stage
errors can be eliminated. As a result, the constrained agglomera-
tive algorithms improved the hierarchical solutions obtained by ag-
glomerative methods alone. Since agglomerative methods can do a
better job of grouping together documents that form small and rea-
sonably cohesive clusters than partitional methods, the resulting hi-
erarchical solutions by the constrained agglomerative methods are
also better than partitional methods alone for many cases.

Another surprising observation from the experimental results is
that �1 and UPGMA behave very differently. Recall from Sec-
tion 4.1 that the UPGMA method selects to merge the pair of clus-
ters with the highest average pairwise similarity. Hence, to some
extent, via the agglomeration process, it tries to maximize the av-
erage pairwise similarity between the documents of the discovered
clusters. On the other hand, the �1 method tries to find a clustering
solution that maximizes the sum of the average pairwise similarity
of the documents in each cluster, weighted by the size of the differ-
ent clusters. Thus, �1 can be considered as the criterion function
that UPGMA tries to optimize. However, our experimental results
showed that �1 performed significantly worse than UPGMA.

By looking at the FScore values for each individual class, we
found that for most of the classes �1 can produce clusters with
similar quality as UPGMA. However, �1 performed poorly for
a few large classes. For those classes, �1 prefers to first merge
in a loose subcluster of a different class, before it merges a tight
subcluster of the same class. This happens even if the subcluster of
the same class has higher cross similarity than the subcluster of the
different class. This observation can be explained by the fact that
�1 tends to merge loose clusters first, which is shown in the rest of
this section.

From their definitions, the difference between �1 and UPGMA
is that �1 takes into account the cross similarities as well as in-
ternal similarities of the clusters to be merged together. Let Si
and Sj be two of the candidate clusters of size ni and n j , respec-
tively, also let µi and µ j be the average pairwise similarity between
the documents in Si and Sj , respectively (i.e., µi = Ci

tCi and
µ j = Cj

tC j ), and let ξi j be the average cross similarity between

the documents in Si and the documents in Sj (i.e., ξi j = Di
t D j

ni n j
).

UPGMA’s merging decisions are based only on ξi j . On the other
hand, �1 will merge the pair of clusters that optimizes the overall
objective functions. The change of the overall objective function
after merging two clusters Si and Sj to obtain cluster Sr is given
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Table 5: Comparison of UPGMA, constrained agglomerative methods with 10, 20, n/40 and n/20 intermediate partitional clusters,
and repeated bisection methods with various criterion functions.

fbis hitech
Method �1 �1 �1 �2 �1 �2 Method �1 �1 �1 �2 �1 �2
UPGMA 0.673 0.673 0.673 0.673 0.673 0.673 UPGMA 0.499 0.499 0.499 0.499 0.499 0.499
10 0.656 0.659 0.692 0.628 0.709 0.669 10 0.595 0.535 0.568 0.587 0.490 0.583
20 0.658 0.681 0.707 0.681 0.718 0.687 20 0.590 0.556 0.573 0.609 0.517 0.583
n/40 0.683 0.685 0.693 0.691 0.720 0.704 n/40 0.554 0.536 0.563 0.578 0.539 0.564
n/20 0.686 0.699 0.703 0.708 0.721 0.691 n/20 0.545 0.535 0.543 0.562 0.529 0.561
rb 0.623 0.668 0.686 0.641 0.702 0.681 rb 0.577 0.512 0.545 0.581 0.481 0.575

k1a k1b
Method �1 �1 �1 �2 �1 �2 Method �1 �1 �1 �2 �1 �2
UPGMA 0.646 0.646 0.646 0.646 0.646 0.646 UPGMA 0.892 0.892 0.892 0.892 0.892 0.892
10 0.680 0.661 0.653 0.691 0.618 0.677 10 0.911 0.898 0.910 0.926 0.904 0.908
20 0.696 0.673 0.688 0.708 0.633 0.699 20 0.908 0.891 0.908 0.925 0.907 0.903
n/40 0.694 0.680 0.721 0.724 0.649 0.700 n/40 0.918 0.896 0.915 0.936 0.893 0.903
n/20 0.692 0.683 0.710 0.714 0.669 0.722 n/20 0.897 0.896 0.907 0.928 0.876 0.899
rb 0.670 0.697 0.691 0.693 0.666 0.682 rb 0.891 0.872 0.889 0.902 0.876 0.882

la1 la2
Method �1 �1 �1 �2 �1 �2 Method �1 �1 �1 �2 �1 �2
UPGMA 0.654 0.654 0.654 0.654 0.654 0.654 UPGMA 0.709 0.709 0.709 0.709 0.709 0.709
10 0.736 0.704 0.707 0.743 0.629 0.806 10 0.712 0.719 0.714 0.740 0.672 0.759
20 0.747 0.712 0.709 0.728 0.665 0.798 20 0.794 0.735 0.731 0.783 0.741 0.765
n/40 0.737 0.763 0.696 0.729 0.699 0.783 n/40 0.792 0.772 0.725 0.789 0.738 0.787
n/20 0.722 0.730 0.678 0.737 0.695 0.768 n/20 0.763 0.737 0.738 0.792 0.764 0.794
rb 0.721 0.758 0.761 0.749 0.646 0.801 rb 0.787 0.725 0.742 0.739 0.634 0.766

re0 re1
Method �1 �1 �1 �2 �1 �2 Method �1 �1 �1 �2 �1 �2
UPGMA 0.584 0.584 0.584 0.584 0.584 0.584 UPGMA 0.695 0.695 0.695 0.695 0.695 0.695
10 0.622 0.632 0.624 0.650 0.611 0.629 10 0.713 0.741 0.730 0.723 0.714 0.731
20 0.631 0.639 0.616 0.646 0.614 0.632 20 0.719 0.735 0.728 0.728 0.708 0.724
n/40 0.639 0.641 0.626 0.657 0.586 0.635 n/40 0.713 0.723 0.753 0.715 0.714 0.719
n/20 0.633 0.642 0.626 0.645 0.634 0.645 n/20 0.735 0.714 0.754 0.708 0.702 0.739
rb 0.618 0.639 0.628 0.632 0.626 0.633 rb 0.758 0.721 0.699 0.723 0.675 0.712

tr31 tr41
Method �1 �1 �1 �2 �1 �2 Method �1 �1 �1 �2 �1 �2
UPGMA 0.816 0.816 0.816 0.816 0.816 0.816 UPGMA 0.826 0.826 0.826 0.826 0.826 0.826
10 0.862 0.893 0.897 0.878 0.828 0.897 10 0.770 0.797 0.809 0.789 0.863 0.807
20 0.882 0.894 0.895 0.866 0.839 0.896 20 0.821 0.811 0.799 0.815 0.858 0.848
n/40 0.896 0.894 0.891 0.881 0.847 0.853 n/40 0.805 0.824 0.813 0.821 0.842 0.849
n/20 0.839 0.894 0.894 0.843 0.874 0.853 n/20 0.818 0.782 0.793 0.802 0.802 0.839
rb 0.858 0.892 0.877 0.873 0.769 0.893 rb 0.743 0.783 0.811 0.800 0.753 0.833

reviews wap
Method �1 �1 �1 �2 �1 �2 Method �1 �1 �1 �2 �1 �2
UPGMA 0.750 0.750 0.750 0.750 0.750 0.750 UPGMA 0.640 0.640 0.640 0.640 0.640 0.640
10 0.870 0.854 0.844 0.866 0.817 0.851 10 0.696 0.685 0.684 0.679 0.639 0.658
20 0.871 0.847 0.846 0.867 0.815 0.850 20 0.677 0.705 0.694 0.672 0.640 0.672
n/40 0.873 0.855 0.847 0.859 0.824 0.852 n/40 0.693 0.700 0.700 0.686 0.656 0.696
n/20 0.862 0.852 0.849 0.858 0.828 0.852 n/20 0.708 0.703 0.689 0.709 0.672 0.700
rb 0.870 0.818 0.746 0.859 0.762 0.821 rb 0.694 0.687 0.672 0.690 0.679 0.714

by,

��1 = ‖Dr ‖2

nr
− ‖Di ‖2

ni
− ‖D j ‖2

n j

= nr µr − ni µi − n j µ j

= (ni + n j )
n2

i µi + n2
j µ j + 2ni n j ξi j

(ni + n j )
2

− ni µi − n j µ j

= ni n j

ni + n j
(2ξi j − µi − µ j ). (11)

From Equation 11, we can see that smaller µi and µ j values will
result in greater ��1 values, which makes looser clusters easier to
be merged first. For example, consider three clusters S1, S2 and S3.
S2 is tight (i.e., µ2 is high) and of the same class as S1, whereas S3
is loose (i.e., µ3 is low) and of a different class. Suppose S2 and S3
have similar size, which means the value of ��1 will be determined
mainly by (2ξi j −µi −µ j ), then it is possible that (2ξ13−µ1−µ3)

is greater than (2ξ12 −µ1 −µ2) because µ3 is less than µ2, even if
S2 is closer to S1 than S3 (i.e., ξ12 > ξ13). As a result, if two classes
are close and of different tightness, �1 may merge subclusters from
each class together at early stages and fail to form proper nodes in
the resulting hierarchical tree corresponding to those two classes.

7. CONCLUDING REMARKS
In the paper we experimentally evaluated nine agglomerative al-

gorithms and six partitional algorithms to obtain hierarchical clus-
tering solutions for document datasets. We also introduced a new
class of agglomerative algorithms by constraining the agglomera-
tion process using clusters obtained by partitional algorithms. Our
experimental results showed that partitional methods produced bet-
ter hierarchical solutions than agglomerative methods, and that the
constrained agglomerative methods improved the clustering solu-
tions obtained by agglomerative or partitional methods alone. These
results suggest that the poor performance of agglomerative meth-
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ods may be attributed to the merging errors they make during early
stages, which can be eliminated to some extent by introducing par-
titional constrains.
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