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Abstract

This paper extends the state of art by bringing the historical
medical conditions into the vaccine adverse reaction discov-
ery process. The goal is to identify evidences which suggest
that given adverse reaction is likely to be developed for indi-
viduals with certain medical conditions when they are vac-
cinated with certain vaccines. We propose a novel measure
called dual-lift for this task. It is shown that the dual-lift
measure can not only identify medical conditions associated
with known vaccine adverse reactions, but also have the po-
tential of detecting new adverse reactions that are otherwise
hidden. We formulate this problem in the framework of
constraint pattern mining. Three constraints are developed.
The first is based on the dual-lift measure which aims to
discover meaningful patterns, the second is used to remove
redundancy, and the third is used to ensure prevalence of
generated patterns. We present a pattern mining algorithm
DLiftMiner which utilizes a novel approach to upper bound
the dual-lift measure for reducing the search space. Ex-
perimental results show that our pruning methods lead to
dramatic performance improvement. It is also shown that
DLiftMiner scales linearly with the size of input database.
Some interesting vaccine adverse reactions discovered from
VAERS database are presented.

1. INTRODUCTION
Detecting adverse reactions of marketed vaccines is a well
known important but challenging task. Due to statistical
and clinical limitations, preapproval trials may fail to iden-
tify vaccine adverse reactions. This is where the postmar-
keting surveillance of spontaneous reporting system takes
on special importance. The Vaccine Adverse Event Report-
ing System (VAERS) is such a system co-managed by the
Food and Drug Administration (FDA) and the Centers for
Disease Control and Prevention (CDC) [1]. It collects infor-
mation about adverse reactions (possible side effects) that
occur after the administration of vaccines licensed for use in

the United States.

Existing approaches for adverse reaction detection ([2], [3],
[4], [5], [6]) focus on vaccine-adverse reaction pairs that are
statistically overrepresented and deserve further investiga-
tions. Potentially rich background information associated
with the reports are ignored. In fact, in VAERS, each report
contains historical medical conditions under which the vac-
cine adverse reactions are developed, such as, medications
the vaccine recipient was taking, pre-existing physician di-
agnosed allergies and birth defects, and any illness at the
time of vaccination. This information may potentially be
very informative, as it will allow us to identify sub-groups of
individuals (with specific medical conditions) that are more
susceptible to given vaccine adverse reactions.

The focus of this paper is to develop efficient methods to
identify patterns of the form 〈medical conditions, vaccines,
adverse reactions〉, which suggests that the adverse reactions
are likely to be developed for individuals with medical con-
ditions when they are vaccinated with vaccines. It makes
three key contributions. The first contribution is that it
introduces a novel measure called dual-lift to capture cor-
relations between vaccines, adverse reactions and medical
conditions. The second contribution is that it formulates
the problem of discovering vaccine adverse reactions with
historical medical conditions as a constraint pattern mining
problem. Three constraints are developed. The first is based
on the dual-lift measure which aims to discover meaning-
ful patterns, the second is used to remove redundancy, and
the third is used to ensure prevalence of generated patterns.
The third contribution is that it develops a computation-
ally efficient algorithm called DLiftMiner (which stands for
Dual-Lift Miner) for mining constraint patterns in VAERS
database, that utilizes a novel approach to upper bound the
dual-lift measure for reducing the search space.

The DLiftMiner algorithm is evaluated on a series of syn-
thetically generated datasets. It is shown that the perfor-
mance is improved dramatically due to the effective pruning
of the search space. It is also shown that DLiftMiner scales
linearly with the size of input database. Furthermore we
evaluate the ability of the dual-lift measure and the DLift-
Miner algorithm to find interesting vaccine adverse reactions
on VAERS database. It is shown that the dual-lift measure
can not only find medical conditions associated with known
vaccine adverse reaction pairs, but also have the potential of
detecting new adverse reactions that are otherwise hidden.



The remaining of this paper is organized as follows. Section
2 presents related works to constraint pattern mining and
adverse reaction detection. Section 3 introduces notations
and definitions that are used through out the rest of the
paper. Section 4, presents the dual-lift measure. Section
5 formulates the constraint pattern mining problem. The
DLiftMiner algorithm is explained in Section 6. Experi-
mental results with both synthetic and real world datasets
are included in Section 7. Finally Section 8 provides some
concluding remarks.

2. RELATED WORK
Among the vast amount of work related to the problem of
pattern mining, the research that is directly relevant to this
work are the approaches that have been developed for deal-
ing with tough constraints [7]. A constraint is tough if it
is neither anti-monotone nor monotone, and cannot be con-
verted to either anti-monotone or monotone constraint [7].
Implementing effective pruning strategies is crucial for push-
ing tough constraints into pattern mining process. For ex-
ample, a new class of tough constraint called Loose Anti-
Monotone constraint is introduced in [8]. And the pruning
strategy in [8] is based on the fact that a transaction can be
deleted if it is not superset of at least one frequent k-itemset
satisfying the constraint at any iteration k ≥ 2. Another ex-
ample is that LPMiner [9] utilizes smallest valid extension
(SVE) property for pruning when dealing with the length
decreasing support constraint.

The approach we take in this work is based on the idea
of boundable constraint [10]. There are a few other works
which explore this same idea. For instance, in [11], an upper
bound of chi-square is derived based on convexity of chi-
square function. And in [12], the upper bound of Pearson’s
correlation is shown to have conditional monotone property.
In [13], the pruning strategy is to upper bound the support,
confidence and a new measure called improvement.

Another category of related works has to do with adverse re-
action discovery. Different measures were proposed for this
task, such as, the proportional reporting ratio (PRR) [2],
the empirical Bayes geometric mean (EBGM) [3], and the
reporting odds ratio (ROR) [4]-[5]. Bate et al [6] uses in-
formation component (IC) as the measure of associations,
which is most close to our work since the information com-
ponent is defined as the logarithm of lift. However, to the
best of our knowledge, no prior work has taken into account
historical medical conditions explicitly into the adverse re-
action discovery problem. And our measure dual-lift is pro-
posed specifically for this task.

3. DEFINITIONS AND NOTATION
A vaccine-adverse reaction database DB is a set of records
of the form 〈tid ,M, V,R〉, where tid is a unique record id.
Each record can be interpreted as that an individual with
historical medical conditions M developed adverse reactions
R after the vaccination of V . We will refer to the sets of
items in M , V , and R as the m-items, v-items and r-items,
respectively.

A record 〈tid ,M, V,R〉 is said to contain itemset I if I ⊆
M∪V ∪R. The support of I in DB , denoted by supp(I|DB),
is the total number of records in DB that contain I. The

transaction count of I in DB , denoted by tcnt(I|DB), is the
number of records for which I = M ∪V ∪R. An association
rule is of the form I → r, where I is the prefix itemset and
r is the suffix itemset. The confidence of I → r is defined as

conf (I → r|DB) =
supp(I ∪ r|DB)

supp(I|DB)
. (1)

The lift of I → r is defined as

lift(I → r|DB) =
conf (I → r|DB)

conf (∅ → r|DB)
, (2)

where ∅ is the null set.

A conditional database DB |A is a set of records from DB
which contain itemset A. A projected database DBB is
formed by projecting all records from DB onto itemset B,
that is, removing all items which are not in B from each
record in DB . A projected conditional database DBB|A is
defined as projected database from DB |A on itemset B. Let

set DB (d) contain all itemsets whose transaction counts in
DB are non-zero, and similarly DB

(d)
B (DB

(d)

B|A) contain all

itemsets whose transaction counts in DBB (DBB|A) are non-
zero.

4. DUAL-LIFT MEASURE
Our objective is to identify all patterns of the form 〈M,V,R〉
such that there are evidences to suggest adverse reactions
R are likely to be developed if individuals with historical
medical conditions M are vaccinated with V . The key step
towards this goal is to develop a measure to capture corre-
lations among M , V , and R.

One may consider to use lift(M ∪ V → R|DB) as the mea-
sure. However, this measure has the weakness that M and
V are not distinguished from each other, so that the corre-
lation may be introduced by one of them, say V , but not
the other one, say M . Another possibility is

L =
P (M ∪ V ∪R|DB)

P (M |DB)P (V |DB)P (R|DB)
, (3)

where P (I|DB) (I is M , V , R or M ∪ V ∪ R) is the prob-
ability of I estimated in DB (for example, P (I|DB) can
be estimated by conf (∅ → I|DB)). The problem with
this measure is that L can be high if any two of the three
sets are highly correlated. In fact, it is easy to see that
L = lift(M ∪ V → R|DB)lift(M → V |DB). So L can be
high if only M and V are highly correlated.

Instead, we propose to use the following measure:

Definition 4.1 (dual-lift). The dual-lift of a pattern
〈M,V,R〉, denoted by dual lift(〈M,V,R〉|DB), is defined as:

min(lift(V → R|DB |M ), lift(M → R|DB |V )). (4)

The dual-lift measure combines two quantities. The first,
lift(V → R|DB|M ), is designed to detects vaccine adverse
reaction pairs 〈V,R〉 in a subset of records containing medi-
cal conditions M . This is because if individuals with medical
conditions M are susceptible to 〈V,R〉, we should be able to
detect 〈V,R〉 in DB|M . Another advantage of this lift mea-
sure is that we can uncover potentially important vaccine



adverse reaction pairs 〈V,R〉 (lift(V → R|DB|M ) is high),
which are difficult to detect by looking at the whole database
(lift(V → R|DB) is low). The second, lift(M → R|DB|V ),
is designed to identify individuals with medical conditionsM
which have higher chance of developing adverse reactions R
when vaccinated with V . This is because lift(M → R|DB|V )
is high implies that conf (M ∪ V → R|DB) is larger than
conf (V → R|DB). However, there is a limitation when
these two quantities are used alone, that is, a high value of
lift(V → R|DB|M ) does not imply that M is correlated with
〈V,R〉, and similarly a high value of lift(M → R|DB|V ) does
not imply that V is correlated with 〈M,R〉. The dual-lift
measure is designed to overcome this limitation by combin-
ing them together.

5. PROBLEM FORMULATION
In this section, we formulate the problem of detecting vac-
cine adverse reactions with historical medical conditions in
the framework of constraint pattern mining. In our formula-
tion, there are three components that define the interesting
patterns: (i) minimum dual-lift constraint, which utilizes the
dual-lift measure developed in Section 4, (ii) minimum im-
provement constraint, which aims to remove redundant pat-
terns, and (iii) minimum support constraint, which defines
the set of frequent patterns. The formal definitions of these
components are as follows:

Definition 5.1 (Minimum dual-lift Constraint). The
pattern 〈M,V,R〉 satisfies the minimum dual-lift constraint
of l0 > 0 in database DB if

dual lift(〈M,V,R〉|DB) ≥ l0. (5)

Definition 5.2 (Minimum improvement constraint).
The pattern 〈M,V,R〉 satisfies the minimum improvement
constraint of m0 ≥ 0 if

dual lift(〈M,V,R〉|DB)− dual lift(〈M ′, V ′, R′〉|DB) ≥ m0,
(6)

for any of its proper sub-pattern 〈M ′, V ′, R′〉 (that is, M ′ ⊆
M ∧ V ′ ⊆ V ∧ R′ ⊆ R and M ′ ∪ V ′ ∪ R′ 6= M ∪ V ∪ R),
satisfying the minimum dual-lift constraint of l0. A pattern
which does not satisfy minimum improvement constraint is
said to be redundant.

Definition 5.3 (Minimum support Constraint). The
pattern 〈M,V,R〉 satisfies minimum support constraint of
s0 > 0 if

supp(M ∪ V ∪R|DB) ≥ s0. (7)

A pattern satisfying minimum support constraint is called a
frequent pattern.

The idea of introducing the minimum improvement con-
straint is borrowed from [13]. The goal is to select a sub-
set of good patterns which can be presented to domain ex-
perts. Intuitively, Definition 5.2 says that a pattern should
be considered redundant if it does not achieve sufficient im-
provement over its proper sub-patterns satisfying minimum
dual-lift constraint. This is because the correlation observed

Algorithm 1 DLiftMiner

Input: An input vaccine adverse reaction database DB0

1: read records in DB0; count frequencies of m-items and
v-items.

2: read records again and construct database DB as a FP-
Tree, where m-items and v-items are internal nodes and
r-items are leaves. m-items and v-items are sorted based
on their frequencies from large to small along the tree
from top to bottom.

3: remove infrequent items in database DB .
4: Let M1, V1, R1 be sets of m-items, v-items, r-items in

DB .
5: DBm ← DBM1∪R1 ; DBv ← DBV1∪R1

6: for r in R1 do
7: l[r]← l0
8: end for
9: M0 ← ∅; V0 ← ∅

10: branch and bound(DB , DBm, DBv, l, M0, V0)

in this pattern may have been captured in its sub-patterns
already.

In this paper, we only consider the case when R contains
a single reaction. With the aid of above definitions, our
problem can be stated as:

Problem 5.4. Given database DB and user specified pa-
rameters l0, m0 and s0, identify all possible patterns 〈M,V, r〉
satisfying minimum dual-lift constraint of l0, minimum im-
provement constraint of m0 (non-redundant) and minimum
support constraint of s0 (frequent), where M is a set of m-
items, V is a set of v-items, and r is a set containing a
single r-item.

6. DLIFTMINER ALGORITHM
The DLiftMiner (see Algorithm 1) algorithm follows the
depth-first approach for pattern mining and grows the pat-
terns by adding one item at a time [14]. It reduces the size
of the dataset successively by constructing the conditional
database which is the subset of transactions that contain the
current pattern that is being grown. The database is stored
using the FP-tree [15] data structure.

The core of the DLiftMiner algorithm is the branch and bound
algorithm that is sketched in Algorithm 2. The branch and bound
algorithm starts with calculating for each r-item r of DB
the dual-lift for the pattern 〈M0, V0, r〉 (lines 2-6). If the
calculated dual-lift is larger or equal to its threshold for the
corresponding r-item, l[r] is updated (line 9). Then it deter-
mines whether the next item i should be conditional on by
finding the set R which contains frequent r-items in DB ′ (or
DB |i) whose dual-lift upper bound is larger than or equal to
current threshold. The dual-lift upper bounds are calculated
in lines 24-25 as dual-lift-bndr, where bndm

r (bndv
r) is the up-

per bound of lift(V ′0 ∪ V → r|DB0
|M′

0∪M ) (lift(M ′0 ∪M →
r|DB0

|V ′
0∪V )) for any frequent patterns 〈M,V, r〉 in DB ′. If

R is not empty, new databases DB ′, DB ′m, DB ′v are con-
structed with necessary items removed (lines 30-36), and
branch and bound is called with updated parameters (line
35). Note that there is no need to actually construct DB ′,



Algorithm 2 branch and bound(DB , DBm, DBv, l, M0,
V0)

Input: l contains the current dual-lift threshold for each r-
item. M0 and V0 are the sets of m-items and v-items
that have been searched. DB is DB0

|M0∪V0
with items

in M0 ∪ V0 and other (for example, infrequent) items
removed. DBm is the projected database from DB0

|M0
onto m-items and r-items of DB . DBv is the projected
database from DB0

|V0
onto v-items and r-items of DB .

1: for r in all r-items of DB do
2: Sr ← supp(r|DB)/|DB |
3: Sm

r ← supp(r|DBm)/|DBm |
4: Sv

r ← supp(r|DBv )/|DBv |
5: Lm

r ← Sr/S
m
r , Lv

r ← Sr/S
v
r

6: dual-liftr = min(Lm
r , L

v
r)

7: if dual-liftr ≥ l[r] then
8: print 〈M0, V0, r〉.
9: l[r]← dual-liftr +m0.

10: end if
11: end for
12: while DB has more m-items or v-items do
13: i← next m-item or v-item of DB
14: DB ′ ← DB |i
15: if i is m-item then
16: M ′0 ←M0 ∪ i, V ′0 ← V0

17: DB ′
m ← DBm

|i , DB ′
v ← DBv

18: else
19: V ′0 ← V0 ∪ i, M ′0 ←M0

20: DB ′
m ← DBm, DB ′

v ← DBv
|i

21: end if
22: let R be the set of frequent r-items in DB ′

23: for r in R do
24: bndm

r ← bur|DB′/blr|DB′m , bndv
r ← bur|DB′/blr|DB′v

25: dual-lift-bndr = min(bndm
r , bndv

r)
26: if dual-lift-bndr < l[r] then
27: remove r from R
28: end if
29: end for
30: if |R| > 0 then
31: construct DB′; i and r-items not in R are not

copied
32: remove infrequent items in DB′

33: construct DB′m; remove items that are not in DB′

34: construct DB′v; remove items that are not in DB′

35: branch and bound(DB ′, DB ′
m

, DB ′
v
, l, M ′0, V ′0 )

36: end if
37: remove i from DB
38: if i is m-item then
39: remove i from DBm

40: else
41: remove i from DBv

42: end if
43: end while

DB ′
m

and DB ′
v

in lines 14-20; we can operate on the orig-
inal databases DB , DBm and DBv for evaluating lift upper
bounds in line 24. Finally, item i is removed (lines 38-42)
and the next item is considered (line 13).

Lines 2-6 calculate the dual-lift of the current pattern 〈M0, V0, r〉.
Lm

r (Lv
r) is the quantity lift(V0 → |DB0

|M0
) (lift(M0 →

|DB0
|V0

)). To see why these calculations are correct, con-
sider:

lift(V0 → r|DB0
|M0)

=
conf (V0 → r|DB0

|M0
)

conf (∅ → r|DB0
|M0

)

=
conf (∅ → r|DB0

|M0∪V0
)

conf (∅ → r|DB0
|M0

)

=
conf (∅ → r|DB)

conf (∅ → r|DBm)

=
supp(r|DB)/|DB |

supp(r|DBm)/|DBm| , (8)

and similarly,

lift(M0 → r|DB0
|V0) =

supp(r|DB)/|DB |
supp(r|DBv)/|DBv| . (9)

6.1 Pruning Strategies
During pattern growth, DLiftMiner utilizes various approaches
to prune the search space. The support based pruning is
used to remove infrequent items. Improvement based prun-
ing is used to set the dual-lift thresholds higher and higher.
Finally the dual-lift based pruning finds the upper bound of
the dual-lift measure. And if the upper bound is less than
current dual-lift threshold, the rest of search space is pruned
away. Additional details of these pruning methods are pro-
vided in the rest of this section.

6.1.1 Support Based Pruning
Support based pruning can be derived from the minimum
support constraint in Definition 5.3. The idea is to remove
items that are considered infrequent. Any r-item is infre-
quent if its support is less than s0. In our formulation, ev-
ery interesting pattern is associated with an r-item. For
any m-item or v-item i we define its maximum support per
class as maxr supp(i ∪ r|DB). Any m-item or v-item whose
maximum support per class is less than s0 is considered in-
frequent and thus removed. Our algorithm applies support
based pruning in line 3 of DLiftMiner and lines 32-34 of
branch and bound, where infrequent items are removed, and
line 22 of branch and bound, where only frequent r-items are
considered.

6.1.2 Improvement Based Pruning
For any r-item r, patterns to be explored by the branch and
bound algorithm are super-patterns of 〈M0, V0, r〉. From the
definition of minimum improvement constraint, the dual-
lift thresholds for patterns to be explored should be no less
than m0 plus the maximum dual-lift values for any proper
sub-patterns of 〈M0, V0, r〉 that branch and bound has dis-
covered. These dual-lift thresholds are saved in l (line 9).
When a new pattern is discovered, its dual-lift has to be no
less than current dual-lift threshold. That means, this new



pattern must have largest dual-lift value among its discov-
ered sub-patterns (due to m0 is non-negative). So updating
corresponding dual-lift threshold is straightforward: simply
add m0 to dual-lift value of the new pattern (line 9).

However, it should be noted that the current implementation
of our algorithm does not take into account all the redun-
dancy that can be exploited by Definition 5.2 due to the
nature of depth first search. This is because that not all
sub-patterns of 〈M0, V0, r〉 were processed before the pat-
tern 〈M0, V0, r〉. For example, assume M0 = {m1,m2} and
V0 = {v1} and assume these three items were added to
M0 ∪ V0 in the order of m1, v1, m2, then sub-patterns pro-
cessed before 〈{m1,m2}, v1, r〉 are 〈∅, ∅, r〉, 〈m1, ∅, r〉, and
〈m1, v1, r〉. Other sub-patterns (for example, 〈m2, v1, r〉) are
processed after 〈{m1,m2}, v1, r〉. Extending our current al-
gorithm to properly handle such cases is something that we
are currently working on.

6.1.3 Lift Based Pruning
From line 24 in the branch and bound algorithm, we need to
find upper bounds for the quantities lift(V ′0∪V → r|DB0

|M′
0∪M )

and lift(M ′0 ∪M → r|DB0
|V ′

0∪V ) for any frequent patterns

〈M,V, r〉 in DB ′.

This problem can be tackled by observing that lift is the
ratio of two confidences. In fact,

lift(V ′0 ∪ V → r|DB0
|M′

0∪M )

=
conf (V ′0 ∪ V → r|DB0

|M′
0∪M )

conf (∅ → r|DB0
|M′

0∪M )

=
conf (M ∪ V → r|DB0

|M′
0∪V ′

0
)

conf (M → r|DB0
|M′

0
)

, (10)

and similarly,

lift(M ′0∪M → r|DB0
|V ′

0∪V ) =
conf (M ∪ V → r|DB0

|M′
0∪V ′

0
)

conf (V → r|DB0
|V ′

0
)

.

(11)
Because DB ′ is DB0

|M′
0∪V ′

0
with some items removed, DB ′m

(DB ′v) is DB0
|M′

0
(DB0

|V ′
0
) with some items removed, and

〈M,V, r〉 is frequent patterns from DB ′, it is not hard to
see that DB0

|M′
0∪V ′

0
, DB0

|M′
0
, and DB0

|V ′
0

can be replaced by

DB ′, DB ′m and DB ′v in equations 10 and 11. So we have

lift(V ′0∪V → r|DB0
|M′

0∪M ) =
conf (M ∪ V → r|DB ′)

conf (M → r|DB ′m)
, (12)

and

lift(M ′0 ∪M → r|DB0
|V ′

0∪V ) =
conf (M ∪ V → r|DB ′)

conf (V → r|DB ′v)
.

(13)

Equations 12 and 13 suggest that, to find the upper bound
of lift, we can find the upper bound of numerator and the
lower bound of denominator. So, line 24 is correct if we
introduce

◦ bndu
r|DB′ be upper bound of conf (M ∪V → r|DB ′) for

any frequent patterns 〈M,V, r〉 in DB ′,

x

y

O

A B C D

P

Figure 1: Bound the Confidence

◦ bnd l
r|DB′m be lower bound of conf (M → r|DB ′m) for

any frequent patterns 〈M, ∅, r〉 in DB ′m,
◦ bnd l

r|DB′v be lower bound of conf (V → r|DB ′v) for

any frequent patterns 〈∅, V, r〉 in DB ′v.

6.1.4 Bound the Confidence
The above analysis translates the problem of bounding the
lift into the problem of bounding the confidence, which can
be defined as:

Problem 6.1 (Bounding the Confidence). For the
database DB, itemsets I0, and r, the problem of bounding the
confidence is to find upper and lower bound for the quantity
conf (I → r|DB) for any I ⊆ I0 such that supp(I ∪ r|DB) ≥
s0.

Note that, I0’s for bndu
r|DB′ , bnd l

r|DB′m , and bnd l
r|DB′v dis-

cussed above are implicitly defined as all non-r-items of cor-
responding databases.

There is a simple solution to this problem. The upper bound
of conf (I → r|DB) can be chosen as 1. The lower bound
can be derived as

conf (I → r|DB) =
supp(I ∪ r|DB)

supp(I|DB)
≥ s0/|DB |. (14)

However, our goal is to come up with an approach which
works significant better than this naive solution.

We introduce the following two lemmas without proof due
to limited space 1:

Lemma 6.2. Given database DB, itemsets I0, and r, for
any I ⊆ I0, define vector VI whose x-component VI,x is
supp(I|DBI0) and y-component VI,y is supp(I|DBI0|r). We
have conf (I → r|DB) is equal to slope of VI and supp(I ∪
r|DB) is equal to y-component of VI .

Lemma 6.3. Following the settings in lemma 6.2, for any
itemset A, we define vector vA whose x-component vA,x is
tcnt(A|DBI0) and y-component vA,y is tcnt(A|DBI0|r). Let

1Proofs of lemmas 6.2, 6.3 and theorem 6.4 are included in
[16]



Table 1: Parameters for synthetic dataset.
parameter description value
ntrans number of transactions 10k
nitems number of items 500
npats number of maximal potentially large itemsets 100
patlen average size of the maximal potentially large itemsets 30
tlen average size of transactions 30

Table 2: Different versions of DLiftMiner algo-
rithms.

algorithm description

DLiftMiner
applies theorem 6.4 for both
upper and lower bounds of confidences

DLiftMiner-U
identical to DLiftMiner
except confidence upper bound is replaced by 1

DLiftMiner-N
identical to DLiftMiner except confidence
lower bound is replaced by the naive approach
that is, blr|DB = s0/|DB|

DLiftMiner-UN
identical to DLiftMiner except confidence
upper bound is replaced by 1, and confidence
lower bound is replaced by the naive approach

DLiftMiner-L
identical to DLiftMiner except confidence
lower bound is replaced by zero
that is, no lift pruning is applied

set AI = {A|A ∈ DB
(d)
I0
∧ I ⊆ A}, then

VI =
X

A∈AI

vA. (15)

Based on lemmas 6.2 and 6.3, Figure 1 illustrates how we can
find an efficient solution to problem 6.1. Let us define F be

the set of vectors vA for all A in DB
(d)
I0

. Sorting vectors in F
by slope from large to small and connecting them head to tail
gives piece-wise linear curve OBP . Similarly, sorting vectors
in set F by slope from small to large and connecting them
head to tail gives piece-wise linear curve OCP . If we define
another set P which contains sum of all possible subsets of
vectors in F , it can be proved that any vectors in set P are
inside the region enclosed by OBP and OCP . Lemma 6.3
suggests that VI is also equal to sum of a subset of vectors
from F . So we should have VI ∈ P and VI is inside region
OBPCO. Line y = s0 cuts this region into two parts (we
assume that the y-coordinate of point P is larger or equal to
s0). All vectors in P whose y-component are larger or equal
to s0 are inside the top region BCPB. From lemma 6.2,
any association rule I → r (I ⊆ I0) whose supp(I ∪ r|DB)
is larger or equal to s0 is associated with a vector VI in the
region BCPB whose slope is conf (I → r|DB). And it can
be easily seen that slopes of all vectors inside region BCPB
are upper bounded by the slope of OB and lower bounded by
the slope of OC. This leads to the conclusion that slopes of
OB and OC are upper and lower bounds of conf (I → r|DB)
(Note that slopes of OA and OD are upper and lower bounds
provided by naive approach discussed before).

This result is summarized into the following theorem:

Theorem 6.4. Following the settings in lemma 6.3, de-

fine F = {vA|A ∈ DB(d)
I0
} and sort vectors in F based on

their slopes from small to large, and label them as f1, f2, . . . , fn,
where n is the total number of vectors. Define,
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Figure 2: Pruning effects on synthetic dataset

◦ blI0→r|DB as slope of the following vector

bl = f1 + f2 + · · ·+ fil−1 + α ∗ fil , (16)

where 0 < α ≤ 1, 1 ≤ il ≤ n are chosen such that
y-component of bl is equal to s0.
◦ buI0→r|DB as slope of the following vector

bu = fn + fn−1 + · · ·+ fiu+1 + β ∗ fiu , (17)

where 0 < β ≤ 1, 1 ≤ iu ≤ n are chosen such that
y-component of bu is equal to s0.

Then we have, blI0→r|DB ≤ conf (I → r|DB) ≤ buI0→r|DB , for
any I ⊆ I0 such that supp(I ∪ r|DB) ≥ s0.

Our implementation of DLiftMiner algorithm utilizes a slightly
modified FPTree data structure. And the bounding ap-
proach proposed in theorem 6.4 can be easily applied. This

is mainly because each itemset A in DB
(d)
I0

is mapped to a
path along the tree excluding leaf nodes. However, due to
limited space, we omit the details but include them into [16].

7. EXPERIMENTAL RESULTS
7.1 Synthetic Datasets

DataSets. To evaluate the performance of our algorithm,
we use the IBM Quest market-basket synthetic data genera-
tor [17] to generate a series of datasets. The generator takes
the parameters described in Table 1. We split the generated
items into m-items, v-items and r-items from small id ’s to
large id ’s so that m-items cover 57%, v-items cover 33%
and r-items cover the rest 10%. We keep only the transac-
tions containing all three types of items in the dataset. The
parameters for the first synthetic dataset are shown in the



Table 3: Running times for the first synthetic dataset.

XXXXXXXXXl0

algorithm
DLiftMiner-L DLiftMiner-UN DLiftMiner-N DLiftMiner-U DLiftMiner

2 87.50 30.93 31.28 2.67 2.63
3 87.50 18.22 18.08 1.15 1.10
4 87.50 9.97 10.10 0.88 0.83
5 87.50 8.73 8.50 0.63 0.63

a All times are in minutes
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Figure 3: scalability of DLiftMiner

Table 4: Number of patterns generated by DLift-
Miner.

PPPPPPPl0

m0 NONE 0 0.5 1.0

2 79355 40517 20558 19171
3 6772 4329 3271 3049

third column of Table 1 and the actual size of the dataset is
7401 records.

In addition, for scalability analysis, we generated another
five datasets by setting ntrans to be 20k, 40k, 60k, 80k and
100k (the other parameters are the same as in Table 1).
Due to the fact that only transactions with all three types
of items are kept, the actual sizes of these datasets are 14824,
29536, 44301, 59036 and 73729.

Experimental Setup. The performance of our algorithm
was compared against four successively simpler versions of
DLiftMiner that incorporate fewer pruning optimizations.
These versions are described in Table 2. In our experiment,
we set s0 = 100, m0 = 0 and let l0 take the values 2, 3, 4
and 5. And we limited the maximum length of the patterns
discovered to 8 (the length is defined to be the sum of sizes
of current sets of m-items and v-items).

Table 5: Fields Extracted from VAERS dataset
VAERS field description item type

OTHER MEDS
narrative about prescription or

m-item

non-prescription drugs the vaccine recipient
was taking at the time of vaccination.

CUR ILL
narrative about any illness
at the time of vaccination.

HISTORY

narrative about any pre-existing
physician-diagnosed allergies, birth defects,
medical conditions that existed
at the time of vaccination.

PRIOR VAX prior vaccination event information.
VAX TYPE the set of coded vaccines v-item

SYMPTOM
the set of MedDRA (Medical Dictionary

r-item

for Regulatory Activities) coded symptoms
DIED died or not
DISABLE disability
ER VISIT had ER visit or not
HOSPITAL hospitalized or not
L THREAT life threatening or not
RECOVD recovered or not
X STAY prolonged hospitalization or not

Performance of Pruning Methods. The experimental re-
sults are summarized in Table 3 and Figure 2. From Ta-
ble 3, one can see that the pruning methods incorporated
into DLiftMiner lead to dramatic improvements. Our best
algorithm DLiftMiner takes only 3.0%, 1.3%, 0.99%, and
0.72% of the running time compared to the baseline ap-
proach DLiftMiner-L when l0 takes values 2, 3, 4 and 5,
respectively. Even compared with DLiftMiner-UN, where
only naive pruning is applied, DLiftMiner takes only about
7% of its running time.

Table 3 also shows how the different pruning methods im-
pact the performance of DLiftMiner. It can be seen that
there are dramatic performance improvements when the con-
fidence lower bound is improved (see DLiftMiner-L versus
DLiftMiner-UN and DLiftMiner-N versus DLiftMiner-U ).
However the upper bound of confidence does not seem to
play much role in reducing the running time, so that DLift-
Miner and DLiftMiner-U (DLiftMiner-N and DLiftMiner-
UN ) have almost the same results.

Figure 2 plots the number of patterns processed (npattern)
versus different pattern length for different versions of the
algorithms. The vertical axis has been scaled to log scale
(log2 (npattern + 1)). It can be seen that including confi-
dence upper bound does not help much in pruning additional
patterns.

Scalability Study. Figure 3 illustrates how the DLiftMiner
algorithm scales with respect to the size of input databases
for four different l0 values. We set the corresponding mini-



Table 6: Subset of vaccine-symptom associations with medical conditions in S3.

Symptom vaccine code(s) medical condition(s)a dual-lift
Autism MMR HISTORY-“fever” 4.7
C-reactive protein increased PNC HISTORY-“Pregnancy” 9.3
Drug toxicity HEP HISTORY-“Pregnancy” 7.8
Febrile convulsion DTPHIB HISTORY-“seizure” 3.3
Influenza like illness LYME HISTORY-“Anxiety” 3.4
Injected limb mobility decreased PPV CUR ILL-“allergy” 3.6
Irritability HIBV OTHER MEDS-“prevacid” 5.2

Otitis media

(MMR,OPV)

CUR ILL-“Ear infection”

3.0
(DTP,MMR) 3.4
(HIBV,MMR,OPV) 3.5
(DTP,HIBV,MMR) 3.6
(DTP,MMR,OPV) 3.9

Rash vesicular VARZOS CUR ILL-“Hypothyroidism” 3.3
Swelling (IPV,MMR) PRIOR SYM-“Swelling” b 3.8
Throat tightness FLU (HISTORY-“Asthma”,HISTORY-“allergy”) 3.7
Urine human chorionic gonadotropin positive HPV4 HISTORY-“Pregnancy” 8.8
Varicella VARCEL CUR ILL-“Asthma” 4.2
a Medical conditions are expressed in the form of FIELD NAME-“term”, where FIELD NAME is from Table 5
b PRIOR SYM is symptoms developed from prior vaccination, extracted from PRIOR VAX field.

mum support s0 to be 1% of the ntrans parameter used for
generating the dataset. It can be seen that the DLiftMiner
algorithm scales linearly with the size of input dataset.

Effect of the Minimum Improvement Threshold. To eval-
uate how different values of m0 impact the DLiftMiner al-
gorithm, we calculated the numbers of patterns generated
by DLiftMiner for different choices of improvements when
l0 takes values 2 and 3. These results are summarized in Ta-
ble 4, in which, NONE means no redundancy is taken into
account. One can see that a large fraction of redundant pat-
terns are removed during the mining process when m0 = 0,
but setting m0 higher does not reduce as many patterns.
However, we are not able to observe significant additional
pruning by incorporating the improvement constraint. This
may partially due to the fact that our DLiftMiner algorithm
does not take into account all redundancy defined in Defini-
tion 5.2.

7.2 VAERS Dataset
To evaluate the ability of the dual-lift measure to identify in-
teresting patterns, we applied the DLiftMiner algorithm to
the VAERS [1] dataset. At the point of this paper, VAERS
contains 21 years (from 1990 to 2010) of vaccination reports
plus an additional non-domestic dataset. We downloaded all
of them. Fields listed in Table 5 were extracted and trans-
formed to the 〈M,V,R〉 representation. For example, fields
OTHER MEDS, CUR ILL, HISTORY, and PRIOR VAX
were converted into a set of historical medical conditions
(m-items) for each record. The v-items and r-items were
constructed similarly.

One challenge we faced was that the fields we used to extract
historical medical conditions or m-items were free text and
thus not coded. To address this issue, we followed the follow-
ing process to get a clean set of m-items. First, we split the

free text into a bag of words (unigrams). Second, in order
to capture some important terms beyond unigrams, we split
the text by different delimiters: space, comma, semicolon,
period and combinations of them. Third, among the set of
all terms generated in the above two steps, we kept only
those with frequency greater than or equal to 100. Next,
we removed those terms that are obviously non-medical re-
lated. Finally, when we observed several terms having the
same meanings, we mapped them to a normalized term. For
example, “allergy codeine”, “allergy to codeine” and “allergic
to codeine” were mapped to “codeine allergy”. After clean-
ing up, the total number of terms we got was 1187. For each
record and field, the identified terms that were contained in
the textual description were included as m-items. For the
r-items, we removed those symptoms which do not appear
very informative, for example, “Unevaluable event”, “Acci-
dental overdose”, “Computerised tomogram normal”, “Drug
exposure during pregnancy” and so on. Also we removed all
“injection site” symptoms and all symptoms containing the
word “negative”.

For our experiment, we set s0 = 15, l0 = 3 and m0 = 0. And
we used the DLiftMiner algorithm to generate the following
sets of patterns:

◦ S1 contains all non-redundant frequent patterns 〈V, r〉
such that lift(V → r|DB) ≥ l0

2. S1 is the solution
to the traditional adverse reaction detection problem,
where historical medical conditions are not taken into
account. We found 3617 patterns in S1.

◦ S2 contains all non-redundant frequent patterns 〈M,V, r〉
satisfying minimum dual-lift constraint. S2 is the so-
lution to Problem 5.4. Experiments show that our
idea of combining two lift measures with redundancy

2Since only one lift measure is involved, the concept of re-
dundancy here should be re-defined accordingly.



Table 7: Subset of vaccine-symptom associations with medical conditions in S4.

Symptom vaccine code(s) medical condition(s)a dual-lift

HOSPITAL-“Y”
b HPV4 OTHER MEDS-“estradiol” 3.6

PNC HISTORY-“diabetes” 3.2
Drug ineffective RAB OTHER MEDS-“Hepatitis” 7.5
Erythema VARCEL (CUR ILL-“allergy”,HISTORY-“allergy”) 3.6
Herpes zoster (MMR,VARCEL) HISTORY-“Otitis media” 4.6
Hypotension TD OTHER MEDS-“purified protein derivative” 3.3
Joint range of motion decreased FLU HISTORY-“deficit” 3.8
Lymphadenopathy MMR OTHER MEDS-“premarin” 5.5
Nervous system disorder HEP HISTORY-“Pregnancy” 6.3
Otitis media (DTP,HIBV,OPV) PRIOR SYM-“fever”c 3.2
Rash (HIBV,OPV) HISTORY-“penicillin” 3.2

Swelling
IPV

PRIOR SYM-“Swelling”c
3.6

(DTAP,MMR) 3.2
Urticaria (DTAP,IPV,MMR) HISTORY-“premature” 3.4

Vasodilatation
DTP (HISTORY-“Asthma”,HISTORY-“allergy”) 4.5
OPV (HISTORY-“allergy”,HISTORY-“ceclor”) 4.2

Wheezing DTAP (HISTORY-“allergy”,OTHER MEDS-“albuterol”) 3.0
White blood cell count increased PPV HISTORY-“Anxiety” 3.8
a Medical conditions are expressed in the form of FIELD NAME-“term”, where FIELD NAME is from Table 5
b HOSPITAL-“Y” is extracted from HOSPITAL field, meaning the patient is hospitalized.
c PRIOR SYM is symptoms developed from prior vaccination, extracted from PRIOR VAX field.

Table 8: Vaccine-Symptom associations from vaccine
injury table.

Symptom Reported vaccine code(s)

Anaphylactic reaction
DT,DTAP,DTAPH,DTP
HEP,IPV,MMR,TD

Encephalopathy
DTAP,DTAPH
DTP,MMR

Intussusception RV
Thrombocytopenic purpura Ma ,MMa ,MMR,MRa

a Vaccines excluded from analysis due to low or zero
frequencies

is quite selective. We found 169 patterns in S2.
◦ S3 contains the set of patterns in S2 whose vaccine

reaction pairs 〈V, r〉 also appear in S1. S3 contains
the identified medical conditions under which adverse
reactions are more likely to be developed for a subset
of patterns in S1. We found 91 patterns S3.

◦ S4 contains the rest of patterns in S2. S4 is the set of
new vaccine adverse reactions that cannot be discov-
ered without incorporation of historical medical con-
ditions. We found 78 patterns in S4.

Due to limited space, we include only some of the patterns
and the associated dual-lift values from S3 and S4 into Ta-
bles 6 and 7 (see the online supplement 3 for more complete
sets of patterns). For each vaccine set V , we present the
pattern with the highest dual-lift. Note that in Tables 6,
7 (and Tables 9, 10) parenthesis implies vaccine or medi-

3www.cs.umn.edu/~zjiang

Table 9: Vaccine-Symptom associations from Vac-
cine Injury Table found in S1.

Symptom Vaccine code(s) lift

Encephalopathy
(DTAP, HIBV) 3.2
(HIBV, MMR) 3.1

Intussusception

RV 85.2
(IPV, RV) 95.5
(HIBV, RV) 86.4
(DTAP, RV) 88.2
(HIBV, IPV, RV) 105.0
(DTAP, IPV, RV) 101.8
(DTAP, HIBV, RV) 95.5
(DTAP, HIBV, IPV, RV) 110.1

Thrombocytopenic purpura (HIBV , MMR) 4.5

Table 10: Vaccine-Symptom associations from Vac-
cine Injury Table found in S2 and S4

Symptom Vaccine code(s) Medical Condition(s) dual-lift

Anaphylactic reaction
MMR cur ill-“allergy” 3.9
(MMR, VARCEL) history-“allergy” 3.0

cal condition interaction. Patterns listed in these two ta-
bles can be easily interpreted. For example, the pattern
〈OTHER MEDS -“estradiol”, HPV4, HOSPITAL-“Y”〉 can be
interpreted as that individuals taking the medication estra-
diol are more likely to be hospitalized when vaccinated with
HPV4. However, the actual medical significance of these
patterns has to be determined by domain experts.

To evaluate the generated patterns of our approach, we need
a list of vaccine adverse reactions (ideally with associated
medical conditions) that have been determined significant
by domain experts. The Vaccine Injury Table is the only
source of this kind that we are aware of [18]-[19] (see Table
8). The Vaccine Injury Table we are using is from [19] with



coding system for symptoms changing from Coding Symbols
for a Thesaurus of Adverse Reaction Terms (COSTART) to
MedDRA. Only four of eight symptoms are listed in Table 8
because no patterns were detected for another four (Arthri-
tis, Encephalitis, Brachial plexopathy and Poliomyelitis).

Next, we present the set of patterns in the Vaccine Injury
Table that can be discovered by our method. However, be
noted that this evaluation is limited due the small number
of cases available. Table 9 contains patterns in set S1 whose
symptoms are in Table 8 and vaccine sets have at least one
of the reported vaccines for the corresponding symptoms.
Our results in Table 9 suggests that vaccine-vaccine interac-
tions play important role when developing these symptoms.
Rotavirus vaccine (RV) was licensed on August 31 1998 for
routine use in infants in a three-dose series given at two,
four and six months of age. In mid-May 1999, nine reports
were submitted. On October 14 1999, the vaccine manu-
facturer voluntarily withdrew its product from the market
[20]. Our result in Table 9 shows RV-intussusception can
be detected, and it also shows RV can interact with other
vaccines and develop intussusception together. Table 10 con-
tains patterns in set S2 whose symptoms and at least one
of the vaccines appear in the Vaccine Injury Table. Only
two patterns are detected, both of which also appear in set
S4. This suggests that by incorporating historical medical
conditions, we are likely to identify new patterns other than
existing well known ones.

8. CONCLUSIONS
In this paper, we formulate the problem of detecting vaccine
adverse reactions by incorporating historical medical condi-
tions as a constraint pattern mining problem. We propose
to use a novel measure called dual-lift to evaluate the sig-
nificance of patterns. Our pattern mining algorithm DLift-
Miner utilizes a novel bounding approach for the dual-lift
measure. Experimental results show that the pruning meth-
ods are effective. We also present some interesting vaccine
adverse reactions discovered from VAERS database.
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