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Abstract

Fast and high-quality document clustering algorithms play an important role in providing intuitive navigation and

browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters. In

particular, clustering algorithms that build meaningful hierarchies out of large document collections are ideal tools

for their interactive visualization and exploration as they provide data-views that are consistent, predictable, and at

different levels of granularity. This paper focuses on document clustering algorithms that build such hierarchical so-

lutions and (i) presents a comprehensive study of partitional and agglomerative algorithms that use different criterion

functions and merging schemes, and (ii) presents a new class of clustering algorithms called constrained agglomer-

ative algorithms, which combine features from both partitional and agglomerative approaches that allows them to

reduce the early-stage errors made by agglomerative methods and hence improve the quality of clustering solutions.

The experimental evaluation shows that, contrary to the common belief, partitional algorithms always lead to better

solutions than agglomerative algorithms; making them ideal for clustering large document collections due to not only

their relatively low computational requirements, but also higher clustering quality. Furthermore, the constrained ag-

glomerative methods consistently lead to better solutions than agglomerative methods alone and for many cases they

outperform partitional methods, as well.

1 Introduction

Hierarchical clustering solutions, which are in the form of trees called dendrograms, are of great interest for a number

of application domains. Hierarchical trees provide a view of the data at different levels of abstraction. The consistency

of clustering solutions at different levels of granularity allows flat partitions of different granularity to be extracted

during data analysis, making them ideal for interactive exploration and visualization. In addition, there are many

times when clusters have subclusters, and the hierarchical structure is indeed a natural constrain on the underlying

application domain (e.g., biological taxonomies, phylogenetic trees, etc) [14].

Hierarchical clustering solutions have been primarily obtained using agglomerative algorithms [35, 23, 15, 16, 21],

in which objects are initially assigned to their own cluster and then pairs of clusters are repeatedly merged until the

whole tree is formed. However, partitional algorithms [27, 20, 29, 6, 42, 19, 37, 5, 13] can also be used to obtain

hierarchical clustering solutions via a sequence of repeated bisections. In recent years, various researchers have
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recognized that partitional clustering algorithms are well-suited for clustering large document datasets due to their

relatively low computational requirements [8, 24, 1, 36]. Nevertheless, there is the common belief that in terms of

clustering quality, partitional algorithms are actually inferior and less effective than their agglomerative counterparts.

This belief is based both on experiments with low dimensional datasets as well as a limited number of studies in which

agglomerative approaches in general outperformed partitional K -means based approaches [24, 31]. For this reason,

existing reviews of hierarchical document clustering methods focused mainly on agglomerative methods and entirely

ignored partitional methods [40, 25]. In addition, most the previous studies evaluated various clustering methods by

how well the resulting clustering solutions can improve retrieval [40, 25, 31]. The comparisons in terms of how well

the resulting hierarchical trees are consistent with the existing class information are limited and only based on very

few datasets [24].

This paper focuses on hierarchical document clustering algorithms and makes two key contributions. First, mo-

tivated by recent advances in partitional clustering [8, 24, 12, 5, 13], we revisited the question of whether or not

agglomerative approaches generate superior hierarchical trees than partitional approaches and performed a compre-

hensive experimental evaluation of six partitional and nine agglomerative methods using twelve datasets derived from

various sources. Specifically, for partitional clustering, we compare six recently studied criterion functions [45] that

have been shown to produce high-quality solutions, whereas for agglomerative clustering, we studied three traditional

merging criteria (i.e., single-link, complete-link, and group average (UPGMA)) and a new set of merging criteria (in-

troduced in this paper) that were derived from the six partitional criterion functions. Our experiments show that most

of the partitional methods generate hierarchical clustering solutions that are consistently and substantially better than

those produced by the various agglomerative algorithms. These result suggest that partitional clustering algorithms are

ideal for obtaining hierarchical solutions of large document datasets due to not only their relatively low computational

requirements, but also better performance in terms of cluster quality.

Second, we present a new class of agglomerative algorithms in which we introduce intermediate clusters obtained

by partitional clustering algorithms to constrain the space over which agglomeration decisions are made. We referred

to them as constrained agglomerative algorithms. These algorithms generate the clustering solution by using an

agglomerative algorithm to build a hierarchical subtree for each partitional cluster and then agglomerate these clusters

to build the final hierarchical tree. Our experimental evaluation shows that these methods consistently lead to better

solutions than agglomerative methods alone and for many cases they outperform partitional methods, as well. To

understand these improvements, we studied the impact that constraining has on the quality of the neighborhood of

each document and found that constraining leads to purer neighborhoods as it can identify the right subspaces for the

various classes.

The rest of this paper is organized as follows. Section 2 provides some information on how documents are rep-

resented and how the similarity or distance between documents is computed. Section 3 describes different criterion

functions as well as criterion function optimization of hierarchical partitional algorithms. Section 4 describes the var-

ious agglomerative algorithms and their merging criteria, whereas Section 5 describes the constrained agglomerative

algorithm. Section 6 provides the detailed experimental evaluation of the various hierarchical clustering methods as

well as the experimental results of the constrained agglomerative algorithms. Section 7 analyzes the impact of con-

strained agglomerative algorithms on the quality of the neighborhoods and provides a theoretical explanation for the

performance difference of some agglomerative methods. Finally, Section 8 provides some concluding remarks. A

shorter version of this paper has previously appeared in [44].

2



2 Preliminaries

Through-out this paper we will use the symbols n, m, and k to denote the number of documents, the number of terms,

and the number of clusters, respectively. We will use the symbol S to denote the set of n documents that we want to

cluster, S1, S2, . . . , Sk to denote each one of the k clusters, and n1, n2, . . . , nk to denote the sizes of the corresponding

clusters.

The various clustering algorithms that are described in this paper use the vector-space model [33] to represent each

document. In this model, each document d is considered to be a vector in the term-space. In particular, we employed

the tf-idf term weighting model, in which each document can be represented as

(tf1 log(n/df1), tf2 log(n/df2), . . . , tfm log(n/dfm)).

where tfi is the frequency of the i th term in the document and dfi is the number of documents that contain the i th term.

To account for documents of different lengths, the length of each document vector is normalized so that it is of unit

length (‖dtfidf‖ = 1), that is each document is a vector in the unit hypersphere. In the rest of the paper, we will assume

that the vector representation for each document has been weighted using tf-idf and it has been normalized so that it

is of unit length. Given a set A of documents and their corresponding vector representations, we define the composite

vector DA to be DA = ∑
d∈A d, and the centroid vector C A to be CA = DA|A| .

In the vector-space model, the cosine similarity is the most commonly used method to compute the similarity

between two documents di and d j , which is defined to be cos(di , d j ) = di
t d j

‖di‖‖d j‖ . The cosine formula can be

simplified to cos(di , d j ) = di
t d j , when the document vectors are of unit length. This measure becomes one if the

documents are identical, and zero if there is nothing in common between them (i.e., the vectors are orthogonal to each

other).

3 Hierarchical Partitional Clustering Algorithm

Partitional clustering algorithms can be used to compute a hierarchical clustering solution using a repeated cluster

bisectioning approach [36, 45]. In this approach, all the documents are initially partitioned into two clusters. Then,

one of these clusters containing more than one document is selected and is further bisected. This process continues

n − 1 times, leading to n leaf clusters, each containing a single document. It is easy to see that this approach builds

the hierarchical agglomerative tree from top (i.e., single all-inclusive cluster) to bottom (each document is in its own

cluster).

3.1 Clustering Criterion Functions

A key characteristic of most partitional clustering algorithms is that they use a global criterion function whose opti-

mization drives the entire clustering process. For those partitional clustering algorithms, the clustering problem can

be stated as computing a clustering solution such that the value of a particular criterion function is optimized. In this

paper we use six different clustering criterion functions that are defined in Table 1 and were recently compared and

analyzed in a study presented in [45]. These functions optimize various aspects of intra-cluster similarity, inter-cluster

dissimilarity, and their combinations, and represent some of the most widely-used criterion functions for document

clustering.

The �1 criterion function (Equation 1) maximizes the sum of the average pairwise similarities (as measured by the
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Table 1: Clustering Criterion Functions.

�1 maximize
k∑

r=1

nr


 1

n2
r

∑
di ,d j ∈Sr

cos(di , d j )


 =

k∑
r=1

‖Dr ‖2

nr
(1)

�2 maximize
k∑

r=1

∑
di ∈Sr

cos(di , Cr ) =
k∑

r=1

‖Dr ‖ (2)

�1 minimize
k∑

r=1

nr cos(Cr , C) =
k∑

r=1

nr
Dr

t D

‖Dr ‖ (3)

�1 maximize
�1

�1
=

∑k
r=1 ‖Dr ‖2/nr∑k

r=1 nr Dr
t D/‖Dr ‖ (4)

�2 maximize
�2

�1
=

∑k
r=1 ‖Dr ‖

∑k
r=1 nr Dr

t D/‖Dr ‖ (5)

�1 minimize
k∑

r=1

cut(Sr , S − Sr )∑
di ,d j ∈Sr

cos(di , d j )
=

k∑
r=1

Dr
t (D − Dr )

‖Dr ‖2
(6)

cosine function) between the documents assigned to each cluster weighted according to the size of each cluster and

has been used successfully for clustering document datasets [32]. The �2 criterion function (Equation 2) is used by the

popular vector-space variant of the K -means algorithm [8, 24, 11, 36]. In this algorithm each cluster is represented by

its centroid vector and the goal is to find the solution that maximizes the similarity between each document and the

centroid of the cluster that is assigned to. Comparing �1 and �2 we see that the essential difference between them is

that �2 scales the within-cluster similarity by the ‖Dr‖ term as opposed to the nr term used by �1. ‖Dr‖ is the square-

root of the pairwise similarity between all the document in Sr and will tend to emphasize clusters whose documents

have smaller pairwise similarities compared to clusters with higher pairwise similarities.

The �1 criterion function (Equation 3) computes the clustering by finding a solution that separates the documents

of each cluster from the entire collection. Specifically, it tries to minimize the cosine between the centroid vector of

each cluster and the centroid vector of the entire collection. The contribution of each cluster is weighted proportionally

to its size so that larger clusters will weight higher in the overall clustering solution. �1 was motivated by multiple

discriminant analysis and is similar to minimizing the trace of the between-cluster scatter matrix [14].

The criterion functions that we described so far, view each document as a multidimensional vector. An alternate

way of modeling the relations between documents is to use graphs. The document-to-document similarity graph Gs

[2]is obtained by treating the pairwise similarity matrix of the dataset as the adjacency matrix of Gs . Viewing the

documents in this fashion, a number of edge-cut-based criterion functions can be used to cluster document datasets

[7, 17, 34, 13, 43, 10]. The �1 (Equations 6) function [13] views the clustering process as that of partitioning the

documents into groups that minimize the edge-cut of each partition. However, because this edge-cut-based criterion

function may have trivial solutions the edge-cut of each cluster is scaled by the sum of the cluster’s internal edges [13].

Note that cut(Sr , S − Sr ) in Equation 6 is the edge-cut between the vertices in Sr and the rest of the vertices S − Sr ,

and can be re-written as Dr
t (D − Dr ) since the similarity between documents is measured using the cosine function.

3.2 Criterion Function Optimization

Our partitional algorithm uses an approach inspired by the K -means algorithm to optimize each one of the above

criterion functions, and is similar to that used in [36, 45]. Initially, a random pair of documents is selected from the
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collection to act as the seeds of the two clusters. Then, for each document, its similarity to these two seeds is computed

and it is assigned to the cluster corresponding to its most similar seed. This forms the initial two-way clustering. This

clustering is then repeatedly refined so that it optimizes the desired clustering criterion function.

The refinement strategy that we used consists of a number of iterations. During each iteration, the documents

are visited in a random order. For each document, di , we compute the change in the value of the criterion function

obtained by moving di to the other cluster. If there exist some moves that lead to an improvement in the overall value

of the criterion function, then di is moved to the cluster that leads to the highest improvement. If no such move exists,

di remains in the cluster that it already belongs to. The refinement phase ends as soon as we perform an iteration

in which no documents are moved between clusters. Note that unlike the traditional refinement approach used by

K -means type of algorithms, the above algorithm moves a document as soon as it is determined that it will lead to an

improvement in the value of the criterion function. This type of refinement algorithms are often called incremental

[14]. Since each move directly optimizes the particular criterion function, this refinement strategy always converges to

a local minimum. Furthermore, because the various criterion functions that use this refinement strategy are defined in

terms of cluster composite and centroid vectors, the change in the value of the criterion functions as a result of single

document moves can be computed efficiently.

The greedy nature of the refinement algorithm does not guarantee that it will converge to a global minimum, and

the local minimum solution it obtains depends on the particular set of seed documents that were selected during the

initial clustering. To eliminate some of this sensitivity, the overall process is repeated a number of times. That is,

we compute N different clustering solutions (i.e., initial clustering followed by cluster refinement), and the one that

achieves the best value for the particular criterion function is kept. In all of our experiments, we used N = 10. For

the rest of this discussion when we refer to the clustering solution we will mean the solution that was obtained by

selecting the best out of these N potentially different solutions.

3.3 Cluster Selection

A key step in the repeated cluster bisectioning approach is the method used to select which cluster to be bisected next.

In our study, we experimented with two different cluster selection methods. The first method uses the simple strategy of

bisecting the largest cluster available at that point of the clustering solution. Our earlier experience with this approach

showed that it leads to reasonably good and balanced clustering solutions [36, 45]. However, its limitation is that it

cannot gracefully operate in datasets in which the natural clusters are of different sizes, as it will tend to partition those

larger clusters first. To overcome this problem and obtain more natural hierarchical solutions we developed a method

that among the current k clusters, selects the cluster which leads to the k + 1 clustering solution that optimizes the

value of the particular criterion function (among the different k choices). Our experiments showed that this approach

performs somewhat better than the previous scheme, and is the method that we used in the experiments presented in

Section 6.

3.4 Computational Complexity

One of the advantages of our partitional algorithm and that of other similar partitional algorithms, is that it has relatively

low computational requirements. A two-way clustering of a set of documents can be computed in time linear on the

number of documents, as in most cases the number of iterations required by the greedy refinement algorithm is small

(less than 20), and is to a large extent independent on the number of documents. Now if we assume that during

each bisection step, the resulting clusters are reasonably balanced (i.e., each cluster contains a fraction of the original
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documents), then the overall amount of time required to compute all n − 1 bisections is O(n log n).

4 Hierarchical Agglomerative Clustering Algorithm

Unlike the partitional algorithms that build the hierarchical solution for top to bottom, agglomerative algorithms build

the solution by initially assigning each document to its own cluster and then repeatedly selecting and merging pairs

of clusters, to obtain a single all-inclusive cluster. Thus, agglomerative algorithms build the tree from bottom (i.e., its

leaves) toward the top (i.e., root).

4.1 Cluster Selection Schemes

The key parameter in agglomerative algorithms is the method used to determine the pair of clusters to be merged at

each step. In most agglomerative algorithms, this is accomplished by selecting the most similar pair of clusters, and

numerous approaches have been developed for computing the similarity between two clusters[35, 23, 20, 15, 16, 21].

In our study we used the single-link, complete-link, and UPGMA schemes as well as the various partitional criterion

functions described in Section 3.1.

The single-link [35] scheme measures the similarity of two clusters by the maximum similarity between the docu-

ments from each cluster. That is, the similarity between two clusters Si and S j is given by

simsingle-link(Si , S j ) = max
di ∈Si , d j ∈S j

{cos(di , d j )}. (7)

In contrast, the complete-link scheme [23] uses the minimum similarity between a pair of documents to measure the

same similarity. That is,

simcomplete-link(Si , S j ) = min
di ∈Si , d j ∈S j

{cos(di , d j )}. (8)

In general, both the single- and the complete-link approaches do not work very well because they either base their

decisions on limited amount of information (single-link) or they assume that all the documents in the cluster are very

similar to each other (complete-link approach). The UPGMA scheme [20] (also known as group average) overcomes

these problems by measuring the similarity of two clusters as the average of the pairwise similarity of the documents

from each cluster. That is,

simUPGMA(Si , S j ) = 1

ni n j

∑
di ∈Si , d j ∈S j

cos(di , d j ) = Di
t D j

ni n j
. (9)

The partitional criterion functions, described in Section 3.1, can be converted into cluster selection schemes for ag-

glomerative clustering using the general framework of stepwise optimization [14] as follows. Consider an n-document

dataset and the clustering solution that has been computed after performing l merging steps. This solution will contain

exactly n − l clusters, as each merging step reduces the number of clusters by one. Now, given this (n − l)-way

clustering solution, the pair of clusters that is selected to be merged next, is the one that leads to an (n − l − 1)-way

solution that optimizes the particular criterion function. That is, each one of the (n− l)×(n− l −1)/2 pairs of possible

merges is evaluated, and the one that leads to a clustering solution that has the maximum (or minimum) value of the

particular criterion function is selected. Thus, the criterion function is locally optimized within this particular stage of

the agglomerative algorithm. This process continues until the entire agglomerative tree has been obtained.
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4.2 Computational Complexity

There are two main computationally expensive steps in agglomerative clustering. The first step is the computation of

the pairwise similarity between all the documents in the data set. The complexity of this step is, in general, O(n2)

because the average number of terms in each document is small and independent of n.

The second step is the repeated selection of the pair of most similar clusters or the pair of clusters that best optimizes

the criterion function. A naive way of performing this step is to recompute the gains achieved by merging each pair of

clusters after each level of the agglomeration, and select the most promising pair. During the lth agglomeration step,

this will require O((n − l)2) time, leading to an overall complexity of O(n3). Fortunately, the complexity of this step

can be reduced for single-link, complete-link, UPGMA, �1, �2, �1, and �1. This is because the pair-wise similarities or

the improvements in the value of the criterion function achieved by merging a pair of clusters i and j does not change

during the different agglomerative steps, as long as i or j is not selected to be merged. Consequently, the different

similarities or gains in the value of the criterion function can be computed once for each pair of clusters and inserted

into a priority queue. As a pair of clusters i and j is selected to be merged to form cluster p, then the priority queue is

updated so that any gains corresponding to cluster pairs involving either i or j are removed, and the gains of merging

the rest of the clusters with the newly formed cluster p are inserted. During the lth agglomeration step, that involves

O(n − l) priority queue delete and insert operations. If the priority queue is implemented using a binary heap, the total

complexity of these operations is O((n − l) log(n − l)), and the overall complexity over the n − 1 agglomeration steps

is O(n2 log n).

Unfortunately, the original complexity of O(n3) of the naive approach cannot be reduced for the �1 and �2

criterion functions, because the improvement in the overall value of the criterion function when a pair of clusters i and

j is merged might change for all pairs of clusters. As a result, they cannot be pre-computed and inserted into a priority

queue.

5 Constrained Agglomerative Clustering

One of the advantages of partitional clustering algorithms is that they use information about the entire collection

of documents when they partition the dataset into a certain number of clusters. On the other hand, the clustering

decisions made by agglomerative algorithms are local in nature. This local nature has both its advantages as well as its

disadvantages. The advantage is that it is easy for them to group together documents that form small and reasonably

cohesive clusters, a task in which partitional algorithms may fail as they may split such documents across cluster

boundaries early during the partitional clustering process (especially when clustering large collections). However, its

disadvantage is that if the documents are not part of particularly cohesive groups, then the initial merging decisions

may contain some errors, which will tend to be multiplied as the agglomeration progresses. This is especially true for

the cases in which there are a large number of equally good merging alternatives for each cluster.

One potential way of eliminating this type of errors is to use a partitional clustering algorithm to constrain the space

over which agglomeration decisions are made by only allowing each document to merge with other documents that are

part of the same partitionally discovered cluster. In this approach, a partitional clustering algorithm is used to compute

a k-way clustering solution in the same way as computing a two-way clustering described in Section 3. Then, each

of these clusters, referred as constraint clusters, is treated as a separate collection and an agglomerative algorithm is

used to build a tree for each one of them. Finally, the k different trees are combined into a single tree by merging them

using an agglomerative algorithm that treats the documents of each subtree as a cluster that has already been formed

during agglomeration. The advantage of this approach is that it is able to benefit from the global view of the collection
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used by partitional algorithms and the local view used by agglomerative algorithms. An additional advantage is that

the computational complexity of constrained clustering is O(k((n/k)2 log(n/k))+ k2 log k), where k is the number of

constraint clusters. If k is reasonably large, e.g., k equals
√

n, the original complexity of O(n2 log n) for agglomerative

algorithms is reduced to O(n2/3 log n).

6 Experimental Results

We experimentally evaluated the performance of the various clustering methods to obtain hierarchical solutions using

a number of different datasets. In the rest of this section we first describe the various datasets and our experimental

methodology followed by a description of the experimental results. The datasets as well as the various algorithms are

available in the CLUTO clustering toolkit [22], which can be downloaded from http://www.cs.umn.edu/˜cluto.

6.1 Document Collections

We used a total of eleven different datasets, whose general characteristics are summarized in Table 2. The smallest of

these datasets contains 878 documents and the largest contains 4,069 documents. To ensure diversity in the datasets,

we obtained them from different sources. For all datasets we used a stop-list to remove common words and the

words were stemmed using Porter’s suffix-stripping algorithm [30]. Moreover, any term that occurs in fewer than two

documents was eliminated.

Table 2: Summary of data sets used to evaluate the various clustering criterion functions.
Data Source # of documents # of terms # of classes
fbis FBIS (TREC) 2463 12674 17
hitech San Jose Mercury (TREC) 2301 13170 6
reviews San Jose Mercury (TREC) 4069 23220 5
la1 LA Times (TREC) 3204 21604 6
tr31 TREC 927 10128 7
tr41 TREC 878 7454 10
re0 Reuters-21578 1504 2886 13
re1 Reuters-21578 1657 3758 25
k1a WebACE 2340 13879 20
k1b WebACE 2340 13879 6
wap WebACE 1560 8460 20

The fbis dataset is from the Foreign Broadcast Information Service data of TREC-5 [38], and the classes correspond

to the categorization used in that collection. The hitech and reviews datasets were derived from the San Jose Mercury

newspaper articles that are distributed as part of the TREC collection (TIPSTER Vol. 3). Each one of these datasets was

constructed by selecting documents that are part of certain topics in which the various articles were categorized (based

on the DESCRIPT tag). The hitech dataset contains documents about computers, electronics, health, medical, research,

and technology; and the reviews dataset contained documents about food, movies, music, radio, and restaurants. In

selecting these documents we ensured that no two documents share the same DESCRIPT tag (which can contain

multiple categories). The la1 dataset was obtained from the articles of the Los Angeles Times that was used in TREC-

5 [38]. The categories correspond to the desk of the paper that each article appeared and include documents from the

entertainment, financial, foreign, metro, national, and sports desks. Datasets tr31 and tr41 were derived from TREC-

5 [38], TREC-6 [38], and TREC-7 [38] collections. The classes of these datasets correspond to the documents that

were judged relevant to particular queries. The datasets re0 and re1 are from Reuters-21578 text categorization test

collection Distribution 1.0 [26]. We divided the labels into two sets and constructed datasets accordingly. For each

dataset, we selected documents that have a single label. Finally, the datasets k1a, k1b, and wap are from the WebACE
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project [28, 18, 3, 4]. Each document corresponds to a web page listed in the subject hierarchy of Yahoo! [41]. The

datasets k1a and k1b contain exactly the same set of documents but they differ in how the documents were assigned to

different classes. In particular, k1a contains a finer-grain categorization than that contained in k1b.

6.2 Experimental Methodology and Metrics

The quality of a clustering solution was determined by analyzing how the documents of the different classes are

distributed in the nodes of the hierarchical trees produced by the various algorithms and was measured using two

different metrics.

The first is the FScore measure [24] that identifies for each class of documents the node in the hierarchical tree that

best represents it and then measures the overall quality of the tree by evaluating this subset of clusters. In determining

how well a cluster represents a particular class, the FScore measure treats each cluster as if it was the result of a query

for which all the documents of the class were the desired set of relevant documents. Given such a view, then the

suitability of the cluster to the class is measured using the F value [39] that combines the standard precision and recall

functions used in information retrieval [39]. Specifically, given a particular class Lr of size nr and a particular cluster

Si of size ni , suppose nri documents in the cluster Si belong to Lr , then the F value of this class and cluster is defined

to be

F(Lr , Si ) = 2 ∗ R(Lr , Si ) ∗ P(Lr , Si )

R(Lr , Si ) + P(Lr , Si )
,

where R(Lr , Si ) = nri/nr is the recall value and P(Lr , Si ) = nri/ni is the precision value defined for the class Lr

and the cluster Si . The FScore of class Lr is the maximum F value attained at any node in the hierarchical tree T .

That is,

FScore(Lr ) = max
Si ∈T

F(Lr , Si ).

The FScore of the entire hierarchical tree is defined to be the sum of the individual class specific FScores weighted

according to the class size. That is,

FScore =
c∑

r=1

nr

n
FScore(Lr ),

where c is the total number of classes. A perfect clustering solution will be the one in which every class has a

corresponding cluster containing the same set of documents in the resulting hierarchical tree, in which case the FScore

will be one. In general, the higher the FScore values, the better the clustering solution is.

The second is the entropy measure that unlike FScore, which evaluates the overall quality of a hierarchical tree

using only a small subset of its nodes, it takes into account the distribution of the documents in all the nodes of the

tree. Given a particular node Sr of size nr , the entropy of this node is defined to be

E(Sr ) = − 1

log q

q∑
i=1

ni
r

nr
log

ni
r

nr
,

where q is the number of classes in the dataset and ni
r is the number of documents of the i th class that were assigned

to the r th node. Then, the entropy of the entire tree is defined to be

E(T ) =
t∑

r=1

1

t
E(Sr ),

where t is the number of nodes of the hierarchical tree T . In general, the lower the entropy values the better the

clustering solution is. Note that unlike the FScore measure and the previous uses of the entropy measure to evaluate

k-way clustering solutions in [36, 45], the above definition of the entropy measure is an unweighted average over all
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the nodes of the tree. This was motivated by the fact that due to the nature of the problem, the clusters corresponding

to the top levels of the tree will be both large and in general have poor entropy values. Consequently, if the entropies

are averaged in a cluster-size weighted fashion, these top-level nodes will be dominating, potentially obscuring any

differences that may exist at the lower-level tree nodes.

When comparing different hierarchical algorithms for one dataset it is hard to determine which one is better based

only on the results of one run. In order to statistically compare the performance of two algorithms on one dataset, we

sampled each dataset ten times and all comparisons and conclusions are based on the results of the sampled datasets.

Specifically, for each one of the eleven datasets we created ten sampled subsets by randomly selecting 70% of the

documents from the original dataset. For each one of the subsets, we obtained clustering solutions using the various

hierarchical algorithms described in Sections 3–5. In addition, for most of our comparisons we used t-test based

statistical tests to determine the significance of the results.

6.3 Comparison of Partitional and Agglomerative Trees

Our first set of experiments was focused on evaluating the quality of the hierarchical clustering solutions produced

by various agglomerative and partitional algorithms. For agglomerative algorithms, nine cluster selection schemes or

criterion functions were tested including the six criterion functions discussed in Section 3.1, and the three traditional

cluster selection schemes (i.e., single-link, complete-link and UPGMA). We named this set of agglomerative methods

directly with the name of the criterion function or selection scheme, e.g., “�1” means the agglomerative clustering

method with �1 as the criterion function and “UPGMA” means the agglomerative clustering method with UPGMA

as the selection scheme. We also evaluated various repeated bisectioning algorithms using the six criterion functions

discussed in Section 3.1. We named this set of partitional methods by adding a letter “p” in front of the name of the

criterion function, e.g., “p�1” means the repeated bisection clustering method with �1 as the criterion function.

For each dataset and hierarchical clustering method, we first calculated the average of the FScore/entropy values of

the clustering solutions obtained for the ten sampled subsets of that dataset, which is referred as the FScore/entropy

value for the dataset. Then, we summarized these FScore/entropy values in two ways, one is by comparing each pair of

methods to see which method outperforms the other for most of the datasets and the other is by looking at the average

performance of each method over the entire set of datasets.

Dominance Matrix Our first way of summarizing the results is to create a 15×15 dominance matrix that is shown

in Table 3. The rows and columns of this matrix correspond to the various methods whereas its values correspond to

the number of datasets for which the method of the row outperforms the method of the column. For example, the value

in the entry of the row �2 and the column �1 is eight, which means for eight out of the eleven datasets, the �2 method

outperforms the �1 method. We also tested the significance of the comparisons between various methods using the

paired t-test [9] based on the FScore values for the eleven datasets. These results are shown in the second subtable of

Table 3. A similar comparison based on the entropy measure is presented in Table 4.

A number of observations can be made by analyzing the results in Table 3. First, partitional methods outperform

agglomerative methods. By looking at the left bottom part of the dominance matrix, we can see that all the entries are

close to eleven (except for some entries in the row of p�1), indicating that each partitional method performs better than

agglomerative methods for all or most of the datasets. Second, by looking at the submatrix of the comparisons within

agglomerative methods (i.e., the left top part of the dominance matrix), we can see that the UPGMA method performs

the best followed by �2, �1 and �2, whereas slink, clink and �1 perform the worst. Note that �1 and UPGMA are
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Table 3: Dominance and statistical significance matrix for various hierarchical clustering methods evaluated by FScore. Note that
“�” (“�") indicates that schemes of the row perform significantly better (worse) than the schemes of the column, and < (>)
indicates the relationship is not significant. For all statistical significance tests, p-value=0.05.

Dominance Matrix

�1 �1 �1 �2 �1 �2 UPGMA slink clink p�1 p�1 p�1 p�2 p�1 p�2
�1 0 7 1 2 6 1 0 11 11 0 0 0 0 0 0
�1 4 0 2 4 8 1 0 11 9 0 0 0 0 0 0
�1 10 9 0 8 11 6 1 11 11 0 0 0 1 1 0
�2 9 7 3 0 10 3 0 11 11 0 0 0 0 1 0
�1 4 3 0 1 0 0 0 11 10 0 0 0 0 0 0
�2 10 10 5 7 11 0 0 11 11 0 1 1 1 3 1
UPGMA 11 11 10 11 11 11 0 11 11 3 1 1 2 5 1
slink 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
clink 0 2 0 0 1 0 0 10 0 0 0 0 0 0 0
p�1 11 11 11 11 11 10 8 11 11 0 3 3 2 8 2
p�1 11 11 11 11 11 10 10 11 11 8 0 5 5 8 1
p�1 11 11 11 11 11 10 10 11 11 8 6 0 4 9 2
p�2 11 11 10 10 11 10 9 11 11 9 5 5 0 9 4
p�1 11 11 9 10 11 8 6 11 11 3 3 2 2 0 3
p�2 11 11 11 11 11 10 10 11 11 9 10 8 7 8 0

Statistical Significance Matrix

�1 �1 �1 �2 �1 �2 UPGMA slink clink p�1 p�1 p�1 p�2 p�1 p�2
�1 - > � � > � � � � � � � � � �
�1 < - � � � � � � � � � � � � �
�1 � � - > � < � � � � � � � � �
�2 � � < - � < � � � � � � � � �
�1 < � � � - � � � � � � � � � �
�2 � � > > � - � � � � � � � � �
UPGMA � � � � � � - � � � � � � < �
slink � � � � � � � - � � � � � � �
clink � � � � � � � � - � � � � � �
p�1 � � � � � � � � � - < < � � <

p�1 � � � � � � � � � > - > < � �
p�1 � � � � � � � � � > < - < � �
p�2 � � � � � � � � � � > > - � <

p�1 � � � � � � > � � � � � � - �
p�2 � � � � � � � � � > � � > � -

motivated similarly, but perform very differently. We will discuss this trend in detail later in Section 7. Third, from

the submatrix of the comparisons within partitional methods (i.e., the right bottom part of the dominance matrix), we

can see that p�2 leads to better solutions than the other partitional methods for most of the datasets followed by p�2,

whereas p�1 perform worse than the other partitional methods for most of the datasets. Also, as the paired t-test results

show, the relative advantage of the partitional methods over the agglomerative methods and UPGMA over the rest of

the agglomerative methods is statistically significant.

Relative FScores/Entropy To quantitatively compare the relative performance of the various methods we also

summarized the results by averaging the relative FScores for each method over the eleven different datasets. For

each dataset, we divided the FScore obtained by a particular method by the largest FScore (i.e., corresponding to the

best performing scheme) obtained for that particular dataset over the 15 methods. These ratios, referred to as relative

FScores, are less sensitive than the actual FScore values, and were averaged over the various datasets. Since higher

FScore values are better, all these relative FScore values are less than one. A method having an average relative

FScore close to 1.0 indicates that this method performs the best for most of the datasets. On the other hand, if the

average relative FScore is low, then this method performs poorly. The results of the average relative FScores for

various hierarchical clustering methods are shown in Table 5(a). The entries that are bold-faced correspond to the

methods that perform the best and the entries that are underlined correspond to the methods that perform the best

among agglomerative methods or partitional methods alone. A similar comparison based on the entropy measure is
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Table 4: Dominance and statistical significance matrix for various hierarchical clustering methods evaluated by entropy. Note that
“�” (“�") indicates that schemes of the row perform significantly better (worse) than the schemes of the column, and < (>)
indicates the relationship is not significant. For all statistical significance tests, p-value=0.05.

Dominance Matrix

�1 �1 �1 �2 �1 �2 UPGMA slink clink p�1 p�1 p�1 p�2 p�1 p�2
�1 0 9 7 2 9 6 3 11 4 0 0 0 0 1 0
�1 1 0 0 1 3 0 0 11 0 0 0 0 0 0 0
�1 2 11 0 1 9 0 1 11 2 0 0 0 0 0 0
�2 3 10 8 0 9 7 3 11 4 0 0 0 0 0 0
�1 1 7 1 1 0 0 0 11 1 0 0 0 0 0 0
�2 3 11 3 2 11 0 1 11 3 0 0 0 0 0 0
UPGMA 8 11 9 8 11 9 0 11 8 1 0 0 0 4 0
slink 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
clink 7 11 8 7 8 8 1 11 0 0 0 0 0 1 0
p�1 11 11 11 11 11 11 10 11 11 0 2 6 2 11 1
p�1 11 11 11 11 11 11 11 11 11 7 0 6 5 11 2
p�1 11 11 11 11 11 11 11 11 11 3 1 0 3 11 0
p�2 11 11 11 11 11 11 10 11 11 7 4 7 0 11 1
p�1 9 11 10 9 11 10 7 11 9 0 0 0 0 0 0
p�2 11 11 11 11 11 11 11 11 11 10 7 10 7 11 0

Statistical Significance Matrix

�1 �1 �1 �2 �1 �2 UPGMA slink clink p�1 p�1 p�1 p�2 p�1 p�2
�1 - � > > � > < � < � � � � � �
�1 � - � � � � � � � � � � � � �
�1 < � - � � < � � < � � � � � �
�2 < � � - � > � � < � � � � � �
�1 � � � � - � � � � � � � � � �
�2 < � > < � - � � < � � � � � �
UPGMA > � � � � � - � � � � � � � �
slink � � � � � � � - � � � � � � �
clink > � > > � > � � - � � � � � �
p�1 � � � � � � � � � - < > < � <

p�1 � � � � � � � � � > - � > � <

p�1 � � � � � � � � � < � - � � �
p�2 � � � � � � � � � > < � - � <

p�1 � � � � � � � � � � � � � - �
p�2 � � � � � � � � � > > � > � -

presented in Table 5(b).

Looking at the results in Table 5(a) we can see that in general they are in agreement with the results presented earlier

in Tables 3 and 4. First, the repeated bisection method with the �2 criterion function (i.e., “p�2”) leads to the best

solutions for most of the datasets. Over the entire set of experiments, this method is either the best or always within

6% of the best solution. On average, the p�2 method outperforms the other partitional methods and agglomerative

methods by 1%–5% and 6%–34%, respectively. Second, the UPGMA method performs the best among agglomerative

methods. On average, UPGMA outperform the other agglomerative methods by 4%–28%. Third, partitional methods

outperform agglomerative methods. Except for the p�1 method, each one of the remaining five partitional methods on

the average performs better than all the nine agglomerative methods by at least 5%. Fourth, single-link, complete-link

and �1 performed poorly among agglomerative methods and p�1 performs the worst among partitional methods. Fifth,

�2, �1 and �2 are the agglomerative methods that lead to the second best hierarchical clustering solutions among

agglomerative methods, whereas p�2 and p�1 are the partitional methods that lead to the second best hierarchical

clustering solutions among partitional methods.

Finally, comparing the relative performance of the various schemes using the two different quality measures, we

can see that in most cases they are in agreement with each other. The only exception is that the relative performance in

terms of entropy values achieved by clink, �1 and p�1 is somewhat higher. The reason for that is because these schemes

tend to lead to more balanced hierarchical trees [14, 45] and because of this structure they have better entropies. To

see this consider the example shown in Figure 1. Suppose A, B, C and D are documents of different classes clustered
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Table 5: The relative FScore/entropy values averaged over the different datasets for the hierarchical clustering solutions obtained
via various hierarchical clustering methods.

(a) FScore Measure

Agglomerative Methods Partitional Methods
�1 �1 �1 �2 �1 �2 UPGMA slink clink p�1 p�1 p�1 p�2 p�1 p�2

Average 0.855 0.855 0.889 0.879 0.836 0.890 0.929 0.649 0.760 0.968 0.971 0.972 0.978 0.932 0.987

(b) Entropy Measure

Agglomerative Methods Partitional Methods
�1 �1 �1 �2 �1 �2 UPGMA slink clink p�1 p�1 p�1 p�2 p�1 p�2

Average 1.381 1.469 1.381 1.370 1.434 1.369 1.277 3.589 1.340 1.046 1.035 1.072 1.039 1.186 1.027

using the two hierarchical trees shown in Figures 1(a) and 1(b), such that the tree in Figure 1(b) is more balanced.

Since only the intermediate nodes (gray nodes) are different between these two trees, and because the entropy of the

“A|B|C” node is higher than that of the “C|D” node, the more balanced tree of Figure 1(b) will have lower entropy.

(a)

A|B|C|D

D

C

A

A|B

B

A|B|C

(b)

A DCB

A|B|C|D

A|B C|D

Figure 1: An example of how more balanced trees tend to have better entropies.

6.4 Constrained Agglomerative Trees

Our second set of experiments was focused on evaluating the constrained agglomerative clustering methods. These

results were obtained by first using the various partitional methods to find the constraint cluster and then using UPGMA

as the agglomerative scheme to construct the final hierarchical solutions as described in Section 5. UPGMA was

selected because it performed the best among the various agglomerative schemes. For each dataset and criterion

function we performed four experiments on constrained agglomerative methods with 10, 20, n/40 and n/20 constraint

clusters, where n is the total number of documents in each dataset, and compared them against UPGMA and the

corresponding partitional scheme (i.e., using the same criterion function) using the FScore measure. The statistical

significance of the comparisons was tested using two samples mean test [9] based on the FScore values obtained by

the two clustering schemes for the ten sampled subsets of each dataset. The null hypothesis is that the two clustering

schemes have the same performance, and the alternative hypothesis is that a certain constrained agglomerative method

outperforms UPGMA or the corresponding partitional method.

The results of testing whether constrained agglomerative methods outperformed UPGMA and the corresponding

partitional methods are summarized in Table 6. The columns of this table correspond to the criterion function used

in constrained agglomerative methods and partitional methods. The first four rows correspond to the comparisons

between the constrained agglomerative methods with 10, 20, n/40 and n/20 constraint clusters and UPGMA, whereas

the last four rows correspond to the comparisons between the constrained agglomerative methods and the correspond-
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Table 6: Comparison of constrained agglomerative methods with 10, 20, n/40 and n/20 constraint clusters with UPGMA and
repeated bisection methods with various criterion functions.

Method �1 �2 �1 �2 �1 �1
10 vs. UPGMA 54.5% 100% 81.8% 81.8% 100% 81.8%
20 vs. UPGMA 45.5% 100% 81.8% 90.9% 100% 90.9%
n/40 vs. UPGMA 77.7% 100% 100% 88.9% 100% 100%
n/20 vs. UPGMA 72.7% 100% 90.9% 90.9% 100% 100%
10 vs. rb 45.5% 54.5% 81.8% 36.4% 36.4% 45.5%
20 vs. rb 63.6% 54.5% 90.9% 54.5% 36.4% 72.7%
n/40 vs. rb 66.6% 44.5% 77.7% 55.6% 66.6% 66.6%
n/20 vs. rb 90.9% 54.5% 81.8% 63.6% 63.6% 54.5%

ing partitional methods. The value shown in each entry is the proportion of the datasets, for which the constrained

agglomerative method significantly (i.e., p-value < 0.05) outperformed UPGMA or the corresponding partitional

method. For example, the value of the entry of the row “n/40 vs. UPGMA ” and the column �1 is 77.7%, which

means for 77.7% of the datasets the constrained agglomerative method with �1 as the partitional criterion and n/20

constraint clusters statistically significantly outperformed the UPGMA method.

¿From the results in Table 6 we can see that various constrained agglomerative methods outperform the agglom-

erative method (UPGMA) for almost all the datasets. Moreover such improvements can be achieved even with small

number of constraint clusters. Also, for many cases the constrained agglomerative methods perform even better than

the corresponding partitional methods. Among the six criterion functions, �1 achieves the best improvement over the

corresponding partitional method, whereas �2 achieves the least improvement.

7 Discussion

The experiments presented in Section 6 showed three interesting trends. First, various partitional methods (except

for p�1) significantly outperform all agglomerative methods. Second, constraining the agglomeration space, even

with a small number of partitional clusters, improves the hierarchical solutions obtained by agglomerative methods

alone. Third, agglomeration methods with various objective functions described in Section 3.1 perform worse than

the UPGMA method. For instance, both �1 and UPGMA try to maximize the average pairwise similarity between

the documents of the discovered clusters. However, UPGMA tends to perform consistently better than �1. In the

remainder of this section we present an analysis that explains the cause of these trends.

7.1 Analysis of the constrained agglomerative method

In order to better understand how constrained agglomerative methods benefit from partitional constraints and poten-

tially why partitional methods perform better than agglomerative methods, we looked at the quality of the nearest

neighbors of each document and how well this quality relates to the quality of the resulting hierarchical trees. We

evaluated the quality of the nearest neighbors by the entropy measure defined in Section 6.2 based on the class label of

each neighbor. For this study we looked at the five nearest neighbors (5-nn) of each document and used ten constraint

clusters in various constrained agglomerative algorithms. However, these observations carry over to other number of

nearest neighbors as well.

Quality of constrained and unconstrained neighborhoods Our first analysis compares the quality of the

nearest neighbors of each document when the nearest neighbors are selected from the entire dataset (i.e., there is

no constraint cluster) and when the nearest neighbors are selected from the same constraint cluster as the document
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Figure 2: The distribution of the 5-nn entropy differences of each document without any constraint (EntrA) and with ten partitional
cluster constraints obtained by p�2 (EntrC) for (a)dataset Wap and (b) all datasets.

(i.e., constraints are enforced by constrained agglomerative methods). For each document we computed EntrA - EntrC,

where EntrA is the entropy value of the 5-nn obtained without any constraint and EntrC is the entropy value of the 5-nn

obtained after enforcing partitional constraints generated using the partitional method with �2. Figure 2(a) shows how

these differences (EntrA - EntrC) are distributed for the Wap dataset, whereas Figure 2(b) shows the same distribution

over all the datasets. The X -axis in Figure 2 represents the differences of the 5-nn entropy values (EntrA - EntrC),

whereas the Y -axis represents the percentage of the documents that have the corresponding 5-nn entropy difference

values. Note that since lower entropy values are better, differences that are positive (i.e., bars on the right of the origin)

correspond to the instances in which the constrained scheme resulted in purer 5-nn neighborhoods.

¿From these charts we can see that in about 80% of the cases the entropy values with partitional cluster constraints

are lower than those without any constraint, which means that the constraints improve the quality of each document’s

neighborhood. Note that the quality of the nearest neighbors directly affects the overall performance of agglomerative

methods, because their key operation is that of grouping together the most similar documents. As a result, a scheme

that starts from purer neighborhoods will benefit the overall algorithm and we believe that this is the reason as to why

the constraint agglomerative algorithms outperform the traditional agglomerative algorithms.

To verify how well these improvements in the 5-nn quality correlate with the clustering improvements achieved by

the constrained agglomerative algorithms (shown in Table 6), we computed the difference in the FScore values between

the UPGMA and the constrained agglomerative trees (FScoreA - FScoreC) and plotted them against the corresponding

average 5-nn entropy differences (EntrA - EntrC). These plots are shown in Figure 3. Each dataset is represented by

six different data points (one for each criterion function) and these points were fit with a linear least square error line.

In addition, for each dataset we computed the Pearson correlation coefficient between the differences and the absolute

values of these coefficients are shown in Figure 3 as well. From these results we can see that for most dataset there

is indeed a high correlation between the 5-nn quality improvements and the overall improvements in cluster quality.

In particular, with the exceptions of fbis and tr31, for the remaining datasets the correlation coefficients are very high

(greater than 0.85). The correlation between 5-nn improvements and the overall improvements in cluster quality is

somewhat weaker for fbis and tr31 as they have absolute correlation coefficients of 0.158 and 0.574, respectively.
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Figure 4: The distribution of the 5-nn average pairwise similarities with any constraint (AvgSimA) for (a)dataset Wap and (b) all
datasets.

Entropy differences vs. tightness To see why partitional constraints improve the quality of the neighborhood

we further investigated how these improvements relate to the tightness of the original neighborhood of each document

without any constraint. Specifically, for each document that has non-zero 5-nn entropy differences we calculated

the average pairwise similarity of the 5-nn without any constraint (AvgSimA) and plotted the distribution of these

similarities in Figure 4. The X -axis represents the unconstrained 5-nn average pairwise similarity (AvgSimA), whereas

the Y -axis represents the percentage of the documents that have the corresponding AvgSimA values. The information

for each bar is broken into two parts. The first (dark bars) shows the percentage of the documents with positive 5-

nn entropy difference values (i.e., whose neighborhoods were improved by enforcing partitional cluster constraints).

The second (light bars) shows the percentage of the documents with negative 5-nn entropy difference values (i.e.,

whose neighborhoods were not improved by enforcing partitional cluster constraints). The number above each bar

represents the ratio of the number of the documents with positive 5-nn entropy difference values over the number of

the documents with negative values.
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As shown in Figure 4, most of the improvements happen when the average similarity of the unconstrained neigh-

borhood is relatively low. Since the similarity between two documents is to a large extent a measure of the number of

dimensions they share, documents with a low similarity to each other will have few dimensions in common. Now if

we assume that each document class represents a set of documents that have a certain number of common dimensions

(i.e., subspace), then the fact that a document has 5-nn with low similarities suggests that either the dimensions that

define the document class are few or the document is peripheral to the class. In either case, since the number of di-

mensions that are used to determine the class membership of these documents is small, documents from other classes

can share the same number of dimensions just by random chance. Thus, besides the raw pairwise similarity between

two documents, additional information is required in order to identify the right set of dimensions that each document

should use when determining its neighborhood. The results shown in Figure 4 suggest that this information is provided

by the partitional constraints. By taking a more global view at the clustering process, partitional schemes can identify

the low dimensional subspaces that the various documents cluster in.
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Figure 5: The distribution of the 5-nn average pairwise similarity differences o/w constraints (AvgSimA - AvgSimC) for (a)dataset
Wap and (b) all datasets.

Entropy differences vs. tightness differences We also looked at how the entropy improvements of the

various neighborhoods relate to the tightness difference. For each document that has non-zero 5-nn entropy differences

we calculated AvgSimA - AvgSimC, where AvgSimA is the average pairwise similarity of the 5-nn without any

constraint and AvgSimC is the average pairwise similarity of the 5-nn with partitional constraints. Figure 5 shows the

distribution of these average similarity differences for Wap and over all the datasets. Note that as in Figure 4, the cases

that lead to 5-nn entropy improvements were separated from those that lead to degradations. The number above each

bar represents the ratio of the number of the documents with positive 5-nn entropy difference values over the number

of the documents with negative values. Note that after enforcing partitional cluster constraints the average pairwise

similarity always decreases or stays as the same, (i.e., AvgSimA - AvgSimC is always equal to or greater than zero).

The results of Figure 5 reveal two interesting trends. First, for the majority of the documents the differences in

the average 5-nn similarities between the constrained and the unconstrained neighborhoods is small (i.e., the bars

corresponding to low “AvgSimA-AvgSimC” entries account for a large fraction of the documents). This should not be
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Table 7: Max FScore values achieved for each class by �1 and UPGMA for datasets tr31 and reviews
tr31 reviews

Class Name Class Size Max FScore (�1) Max FScore (UPGMA) Class Name Class Size Max FScore (�1) Max FScore (UPGMA)
301 352 0.95 0.95 food 999 0.61 0.75
306 227 0.62 0.78 movie 1133 0.73 0.78
307 111 0.81 0.69 music 1388 0.60 0.77
304 151 0.46 0.67 radio 137 0.65 0.66
302 63 0.73 0.71 rest 412 0.61 0.65
305 21 0.86 0.92
310 2 0.67 0.67

surprising since it is a direct consequence of the fact that the constraining was obtained by clustering the documents in

the first place (i.e., grouping similar documents together). The second trend is that when the average 5-nn differences

are small the constraining scheme more often than not leads to 5-nn neighborhoods that have better entropy. This can

be easily observed by comparing the ratios shown at the top of each bar that are high for low differences and decrease as

the average similarity difference increases. These results verify our earlier observations that when the neighborhood

of each document contains equally similar documents that belong both to the same and different classes, then the

guidance provided by the constraint clusters helps the documents to select the right neighboring documents leading to

5-nn neighborhoods with better entropy and subsequently improves the overall clustering solution.

7.2 Analysis of �1 and UPGMA

One surprising observation from the experimental results presented in Section 6.3 is that �1 and UPGMA behave very

differently. Recall from Section 4.1 that the UPGMA method selects to merge the pair of clusters with the highest

average pairwise similarity. Hence, to some extent, via the agglomeration process it tries to maximize the average

pairwise similarity between the documents of the discovered clusters. On the other hand, the �1 method tries to find

a clustering solution that maximizes the sum of the average pairwise similarity of the documents in each cluster,

weighted by the size of the different clusters. Thus, �1 can be considered as the criterion function that UPGMA tries

to optimize. However, our experimental results showed that �1 performed significantly worse than UPGMA.

To better understand how �1 and UPGMA perform differently, we looked at the maximum FScore values achieved

for each individual class of each dataset. As an example Table 7 shows the maximum FScore values achieved for

each class for two datasets (reviews and tr31) using the �1 and UPGMA agglomerative schemes. The columns labeled

“Max FScore (�1)” and “Max FScore (UPGMA)” show the maximum FScore values achieved for each individual

class by �1 and UPGMA, respectively. From these results we can see that even though both �1 and UPGMA do a

comparable job in clustering most of the classes (i.e., similar FScore values), for some of the large classes �1 performs

worse than UPGMA (shown using a bold-faced font in Table 7). Note that these findings are not only true for these

two datasets but also true for the rest of the datasets as well.

When looking at the hierarchical trees carefully, we found that for the classes that �1 performed significantly worse

than UPGMA, �1 prefers to first merge in a loose subcluster of a different class, before it merges a tight subcluster of

the same class. This happens even if the subcluster of the same class has higher cross similarity than the subcluster of

the different class. This observation can be explained by the fact that �1 tends to merge loose clusters first, which is

shown in the rest of this section.

From their definitions, the difference between �1 and UPGMA is that �1 takes into account the cross similarities

as well as internal similarities of the clusters to be merged together. Let Si and S j be two of the candidate clusters of

size ni and n j , respectively, also let µi and µ j be the average pairwise similarity between the documents in Si and S j ,

respectively (i.e., µi = Ci
t Ci and µ j = C j

tC j ), and let ξi j be the average cross similarity between the documents in
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Si and the documents in S j (i.e., ξi j = Di
t D j

ni n j
). UPGMA’s merging decisions are based only on ξi j . On the other hand,

�1 will merge the pair of clusters that optimizes the overall objective functions. The change of the overall value of the

criterion function after merging two clusters Si and S j to obtain cluster Sr is given by,

��1 = ‖Dr‖2

nr
− ‖Di‖2

ni
− ‖D j‖2

n j
= nr µr − niµi − n jµ j

= (ni + n j )
n2

i µi + n2
jµ j + 2ni n jξi j

(ni + n j )2
− niµi − n jµ j = ni n j

ni + n j
(2ξi j − µi − µ j ). (10)

From Equation 10, we can see that smaller µi and µ j values will result in greater ��1 values, which makes looser

clusters easier to be merged first. For example, consider three clusters S1, S2 and S3. S2 is tight (i.e., µ2 is high) and of

the same class as S1, whereas S3 is loose (i.e., µ3 is low) and of a different class. Suppose S2 and S3 have similar size,

which means the value of ��1 will be determined mainly by (2ξi j −µi −µ j ), then it is possible that (2ξ13 −µ1 −µ3)

is greater than (2ξ12 − µ1 − µ2) because µ3 is less than µ2, even if S2 is closer to S1 than S3 (i.e., ξ12 > ξ13). As a

result, if two classes are close and of different tightness, �1 may merge subclusters from each class together at early

stages and fail to form proper nodes in the resulting hierarchical tree corresponding to those two classes.

8 Concluding Remarks

In this paper we experimentally evaluated nine agglomerative algorithms and six partitional algorithms to obtain hi-

erarchical clustering solutions for document datasets. We also introduced a new class of agglomerative algorithms

by constraining the agglomeration process using clusters obtained by partitional algorithms. Our experimental results

showed that partitional methods produce better hierarchical solutions than agglomerative methods and that the con-

strained agglomerative methods improve the clustering solutions obtained by agglomerative or partitional methods

alone. We analyzed that in most cases enforcing partitional cluster constraints improves the quality of the neighbor-

hood of each document, especially when the document has low similarities to others or has many documents with

similar similarities. These improvements of neighborhoods correlate well with the improvements of overall clustering

solutions, which suggests that constrained agglomerative schemes benefit from starting with purer neighborhoods and

hence lead to clustering solutions with better quality.
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