
Interleaving of Gate Sizing and Constructive
Placement for Predictable Performance

Sungjae Kim1, Eugene Shragowitz1, George Karypis1, and Rung-Bin Lin2

1Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
2Department of Computer Engineering and Science, Yuan-Ze University, Chung-Li, Taiwan

Email: {sukim, shragowi, karypis}@cs.umn.edu, csrlin@cs.yzu.edu.tw

Abstract— This paper presents a fast fixed-die standard cell
placement algorithm. Placement is achieved by a combination
of top-down partitioning with the incremental row-by-row con-
struction. This paper concentrates on the construction part of this
process. Gate sizing is interleaved with the placement construc-
tion process. Before placement, every gate is given its minimal
size. During the placement, gates are resized to satisfy the timing
constraints. Behavior of the placement is adapted based on
dynamically recomputed net delay bounds. Experimental results
show significant improvement in timing, predictability of results,
and run time with respect to a commercial placement tool.

I. INTRODUCTION

Circuit speed and power consumption always were and
continue to be central to the switching circuit design. Now,
as before, achieving projected timing closure and/or satisfying
limits on power consumption is a major design goal. One of
the major problem of contemporary design is a gap between
requirements and outcomes of design steps. For example, it
is common to see that after synthesis, placement, and routing
by the most advanced commercial tools, the resulted delay
on the longest path is 20-30% above the required value. The
major cause of it is a physical design. Huge dimensions and
NP-hard nature of the placement problem and difficulties in
embedding timing and power constraints in physical design
algorithms lead to poor timing performance of placed circuits.

Large number of timing-driven placement algorithms can
be classified into two categories [1]: path-based and net-based
approaches. Path-based approaches suffer from excessive com-
puting time because of the exponential number of path to
be optimized. With the increase of circuit sizes, net-based
approaches become more attractive. In net-based approaches,
requirements are converted into wire length constraints for
individual nets [2], [3], [4]. One of the problems is how to
overcome problems with physical placement feasibility. This
issue is a main subject of this paper.

The rest of the paper is organized as follows: In section II,
the modified data flow of CP (Constructive Placer) with a new
gate sizing algorithm is provided. The gate sizing algorithm
is presented in section III. Experimental results are given in
section IV, followed by conclusion in section V.

II. CONSTRUCTIVE PLACEMENT

Fig. 1 illustrates data flow of CP with a new gate sizing
algorithm.

This algorithm starts from giving every cell its minimal
size before placement. Delay bounds and net criticalities,
which guide the placement construction process, are computed
for initial gate sizing. With respect to the computed net
criticalities, a circuit is partitioned and mapped to physical
bins. Unlike partition-based placers, CP produces coarse par-
titions for faster run time and flexibility in the construction
process. hMetis [9], a cutting-edge hypergraph partitioner,
is integrated in CP. After that, the gate sizing algorithm is
applied based on the initial delay bounds and net criticalities.
Placement is constructed row-by-row and new delay bounds
and criticalities are recomputed based on information from
the partial placement. The new data are used for selection of
new gate sizes. The whole process is repeated until all gates
are placed. After finishing placement, orientations of cells are
determined and locations of I/Os are assigned.

A. Delay Bounds and Net Criticality Computation

Net delay bounds play an important role in CP. CP employs
a modified IMP algorithm to compute net delay bounds. The
early version of IMP algorithm was proposed in [5]. The
algorithm has unique properties not demonstrated by other
zero slack algorithms [7], [8]. IMP algorithm computes bounds
on the nets, based on the full topology of the circuit and uses
the net physical characteristics (pin number, driver size, or
others) as weights.

If Sp is the slack at the primary output for the path p, it
is distributed between the nets on this path according to the
weight of nets w(e). Thus, based exclusively on single path p
the delay bound could be computed as

Boundp(e) = Sp × w(e)
∑

e′∈p w(e′)
(1)

However, the net e is traversed by multiple paths. Therefore,
a bound should be selected as a minimum of all maximal
bounds on delay of the net e computed for all individual paths
traversing this net.

Bound(e) = min{maxp∈ΠeBoundp(e)} (2)

where, Πe is a set of paths, that traverses net e. The prob-
lem (2) is NP-hard. Basic idea of IMP algorithm is very
simple. Rewriting formula (1) gives Bound(e) = w(e) ×

Sp∑
e′∈p

w(e′)
,where w(e) is a constant and minimum of a

Minimize

every

gate size

Delay bound &

net criticality

computation

Circuit

partitioning

Gate

resizing

Constructive

placement
Placement

Done?

Cell orientation &

I/O assignment

Delay bound &

net criticality

recomputation

N

Y

Fig. 1. Dataflow of the proposed algorithm.

ratio Sp/
∑

e′∈p w(e′) is defined on the path p. The lower
bound on this ratio could be obtained if S min

p ≤ Sp and
defined as Smin

p = minp∈ΠeSp i.e. as a path with the minimal
slack at the output among all the paths traversing net e, and
W (e)max ≥ max

∑
e′∈p(w(e′)), i.e. as a weight of the path

with the maximal weight among those traversing net e.
We modified IMP algorithm based on the fact that a node

slack is equal to the path slack of the longest path traversing
the node. In our work, Smin

p is replaced by a node slack
improving the run time of IMP algorithm.

Net criticalities are computed based on net delay bounds
and characteristics of nets. In CP, the net criticality is defined
as in [6]:

Net Criticality =
Fanout of Net

Net Delay Bound
(3)

B. Constructive Placement

Fig. 2. Constructive placement process. Dark region is a partial placement.
Partitions are represented by thick solid lines.

Fig. 2 illustrates the constructive placement procedure. The
placer produces the legal placement incrementally row-by-
row. Inside a row, construction is performed for each partition
separately. Non-placed cells from a partition are considered
as candidates for placement. Candidate cells are selected
based on the cell criticality which is defined as the sum of
net criticality × connectivity to the partial placement of all
incident nets to the candidate. The candidate cells are sorted
in decreasing order of cell criticality and according to that
order, cells are placed in their feasible regions. The feasible
region for a candidate is the region in a row where the sum
of the horizontal components of connections to already placed
incident cells is minimal. If the feasible region for a candidate
is already occupied by the other candidate cells with the higher
cell criticality values, then the placement of the candidate is
deferred to the next row. However, if the vertical connection
increment due to deferring the candidate to the next row is
greater than the horizontal connection length increment, then
the candidate is still selected for placement in the row and
its feasible region is extended. The optimal location with
the minimal length of interconnections for each candidate is

identified by the exhaustive search of possible locations in the
feasible region.

Because of the differences between projected and realized
delay on placed nets, the net delay bounds are recomputed
after placement of the set of rows. Actual HPWL (Half
Perimeter Wire Length) of the nets can be computed for
a constructed part. Resistance and capacitance of the nets
are estimated from the wire load table of the standard cell
library based on the HPWL. The estimated resistance and
capacitance are used to compute the delay of the net using
a RC delay model. The new delay bounds for non-placed nets
are computed by the same delay bound computation algorithm.

III. GATE SIZING ALGORITHM

It is clear that timing can be improved by using larger
drivers on timing-critical nets. There are two questions to
be answered for solving this problem: How to identify the
minimal number of cells for up-sizing to achieve desirable
timing and how to select cell sizes without violation of the
space requirements? In CP algorithm, cells are resized in
time of a slice construction. Net criticalities derived from
recomputated delay bounds are used for ranking nets’ drivers
in descending order of their criticalities. In our experiments,
this approach turned out to be more effective than on described
in [10].

The new gate sizing algorithm is presented in Algorithm 1.
Non-placed cells are sorted in decreasing order of criti-

calities of their output nets. For each non-placed cell, the
remaining space of the partition, to which the cell belongs,
is computed. To maximize potential delay reduction of non-
placed cells, functionally equivalent cells are considered in the
decreasing order of their sizes. Starting from the largest equiv-
alent cell, available space in the partition is compared with the
size of the equivalent cell. If there is enough space, then it is
selected for placement. After resizing, delay information and
available space of the partition is updated. And a new row
utilization factors are generated based on the size increment
of the cell and remaining space of partitions.

IV. EXPERIMENTAL RESULTS

CP was implemented in C language. All experiments
were performed on Sun UltraSPARC machines with 1.5GHz
CPU and 1GB memory. The benchmark suite consists of 16
large circuits from the ITC’99 [11] benchmark set. Netlists
were converted into the Verilog format using the Synopsis
edif2verilog converter. Each circuit was optimized by the
Cadence BuildGate synthesis tool for values of provided

Algorithm 1 Gate sizing algorithm.
1: · EQSETC : set of functionally equivalent cells for cell C.

EQSETC is pre-sorted according to decreasing order of cell
sizes;

2: · NPC : set of non-placed cells;
3: l = number of cells in NPC;
4: Minimize the sizes of cells in NPC;
5: Sort NPC according to the output net criticalities;
6: for (i = 0; i ≤ l; i++) do
7: C = NPC[i];
8: P = the partition for C;
9: CAP = the remaining space in P ;

10: k = number of cells in EQSETC ;
11: for (j = 0; j ≤ k; j++) do
12: E = EQSETC [j];
13: if width of E ≤ CAP then
14: C = E; /*replace C by E */;
15: goto line 18;
16: end if
17: end for
18: if C is replaced then
19: Update delay information;
20: Update CAP ;
21: Compute new utilization factor for P ;
22: end if
23: end for

timing constraints. The 0.18µm, 5-metal layer standard cell
library from Virtual-Silicon Technology Inc. [12] was used in
the experiments. For interconnect parameters and switching
delays of cells, we used ITRS [13] data for year 2005.

Optimization

(Cadence BuildGate)

Floor Planning

(Cadence SOC Encounter)

Placement

(Cadence

Timing-driven Amoeba)

ICP

Routing

(Cadence WRoute)

RC Extraction

(Cadence SOC Encounter)

Timing & Power Analysis

(Cadence SOC Encounter)

Fig. 3. Flow of experiments.

Organization of experiments is given in Fig. 3. Each circuit
in the set was optimized for 4 different clock frequencies (in-
creased by 10% per step). The optimization step provided the
netlists with the sized gates. The floorplanning tool generated
the area estimation and definitions of rows with utilization
factor 0.85 for the all optimized netlists. These floorplans
were provided to CP and AMOEBA placer with the optimized
netlists. The placement solutions were routed by WRoute
router. Routed solutions were sent for RC extraction for timing
and power analysis to the Cadence SOC Encounter.

Because of the space limitations, we presented experimental

results for all circuits in the list for one timing constraint (20%
increase in clock frequency w/r to the initial frequency) in
Table I. Columns 1-4 give circuits’ names and basic statistics.
The timing constraints used in optimization by the Candence
BuildGate synthesis tool are shown in column 5. Columns 6
and 7 present delays reported by AMOEBA (AM) and CP,
and column 8 gives the ratios. The average delay reduction
is 21%. Columns 9, 10, and 11 report routed wire length and
ratios. On the average, the solutions by CP for wire length are
marginally better (by 1%), i.e. CP provides the better timing
solutions without an increase in the wire length. Run times
of both placers are given in columns 12-14. CP is 2.66 times
faster than Amoeba.

Table II shows the requested and achieved delay of the
solutions from CP and AMOEBA for the circuit b22 with
4 different timing constraints.

-20.0

0.0

20.0

40.0

60.0

4.0 3.6 3.2 2.8

Required delay (ns)

CP

Amoeba

Delay below

requirements

in % (positive slack)

Delay above

requirements
in % (negative slack)

Fig. 4. Deviation of achieved delay from required for b22 by two placers.

Fig. 4 presents deviation of the actual delay from the
requirements for b22 in Table II. The deviation is calculated as
100×(actual delay - required delay)/required delay. A negative
deviation indicates that the requirement is satisfied and a
positive deviation means that the design solution has negative
slack. It is easy to see that the 3 delay constraints out of 4 were
satisfied by CP solutions while AMOEBA solutions violated
requirements in all 4 cases. The average deviation of the actual
delay above the required delay is 0.05% (0.2/4) for CP, and
for AMOEBA, deviation is 29.9% ((7.7+29.0+37.9+44.9)/4).

Fig. 5 illustrates the generalization of Fig. 4 for all of
the designs and all frequencies. The average deviation of
delay above requirements is 2.2% from CP. For the AMOEBA
placer, deviation is 17.9%.

TABLE III

DELAY RATIOS AND % OF SATISFIED TIMING REQUIREMENT.

Required delay reduction ratio 1.0 0.9 0.8 0.7 Avg.
Average delay ratio (CP

AM
) 0.81 0.82 0.79 0.80 0.81

% of satisfied CP 79 64 75 36 63
timing requirement AM 57 29 19 0 26

Table III summarizes delay ratios between solutions of two
placers and the % of satisfied timing requirement for all timing
constraints. On the average CP produces solutions with 19%

TABLE I

EXPERIMENTAL RESULTS ON DELAY, WIRE LENGTH, AND RUN TIME FOR ONE SET OF TIMING CONSTRAINT (20% REDUCTION IN REQUIRED DELAY).

Ckts #Cells #Nets #Rows Required Delay (ns) Wire length (µm) Run Time (sec)
Delay AM CP CP

AM
AM CP CP

AM
AM CP Speed Up

b14 1 5027 5061 50 2.4 2.966 2.001 0.67 159651 141928 0.89 17 7 2.43
b15 8328 8366 65 1.6 3.623 2.842 0.78 316074 320266 1.01 43 17 2.53
b14 5771 5805 53 2.7 3.144 2.186 0.70 175543 182471 1.04 14 12 1.17

b15 1 8261 8299 65 1.6 3.120 2.420 0.78 291558 297305 1.02 38 14 2.71
b20 1 11182 11216 73 2.7 3.411 2.333 0.68 340831 309009 0.91 58 23 2.52
b21 1 10837 10871 73 3.2 3.891 2.796 0.72 328013 316038 0.96 50 23 2.17
b20 12063 12097 76 3.2 4.110 2.856 0.69 383922 367134 0.96 53 25 2.12
b21 12491 12525 77 3.2 3.728 2.776 0.74 388501 419290 1.08 54 17 3.18

b22 1 16323 16357 89 3.2 4.155 3.480 0.84 513596 531373 1.03 102 35 2.91
b22 18264 18298 93 3.2 4.412 3.091 0.70 583867 582463 1.00 107 36 2.97
b17 26069 26108 116 3.2 4.382 3.702 0.84 1026510 1040100 1.01 132 57 2.32

b17 1 24973 25012 114 2.4 2.911 2.296 0.79 943508 969119 1.03 128 61 2.10
b18 1 79131 79171 197 4.0 3.824 3.728 0.97 2664992 2615974 0.98 998 220 4.54
b18 80668 80706 198 4.0 3.906 3.689 0.94 2699992 2648570 0.98 1078 234 4.61

b19 1 143579 143631 266 4.0 4.332 3.832 0.88 4924101 4974201 1.01 1482 692 2.14
b19 146347 146399 268 4.0 3.877 3.429 0.88 4999159 4977246 1.00 1497 721 2.08
Avg. 0.79 0.99 2.66

TABLE II

REQUESTED AND ACHIEVED DELAY FOR B22.

Req. Delay(ns) 4.0 3.6 3.2 2.8 Avg.
b22 Achieved AM CP CP

AM
AM CP CP

AM
AM CP CP

AM
AM CP CP

AM
Delay(ns) 4.306 3.897 0.91 4.643 3.104 0.67 4.412 3.091 0.70 4.056 2.806 0.69 0.74

-40

-20

0

20

40

60

1.0 0.9 0.8 0.7

Required delay

reduction ratio

CP

Amoeba

Delay below

requirements

in % (positive slack)

Delay above
requirements

in % (negative slack)

Fig. 5. Average deviation of achieved delay from required for all test cases
and all frequencies.

better timing. The % of satisfied timing requirement was
calculated by (#of circuits which satisfy timing constraint /
total number of circuits in the experiments). CP satisfies timing
constraints in 63% of cases on the average, while AMOEBA
satisfies the constraints in 26% of cases.

V. CONCLUSION

Interleaving of constructive placement and gate sizing is
demonstrated to be an effective approach in reducing delay
(19% on the average) and increasing predictability of outcomes
in the design process by more than 2 times. The success of
this approach depends on dynamic gate resizing accompanied
by recomputation of delay bounds by the modified IMP
algorithm in conjunction with a design partitioning procedure

and constructive placement. The placer is 2.66 times faster
than AMOEBA.

REFERENCES

[1] J. Cong, T. Kong, J. R. Shinnerl, M. Xie, and X. Yuan, ”Large-Scale
Circuit Placement: Gap and Promise,” Proc. of ICCAD , page 883-
890, 2003.

[2] J. Y. Sayah et. al., ”Design planning for high-performance ASICs,”
in IBM Journal of Research and Development, Vol. 40, No. 4, pp.
431-452, 1996

[3] X. Yang, B. Choi, and M. Sarrafzadeh, ”Timing-Driven Placement
using Design Hierarchy Guided Constraint Generation,” Proc. of
ICCAD, pp. 177-180, 2002

[4] S. Kim and E. Shragowitz, “Iterative-Constructive Standard Cell
Placer for High Speed and Low Power,” Proc. of ICCD, pp. 350-
355, 2006.

[5] H. Youssef, R-B Lin, and E. Shragowitz, “Bounds on Net Delays for
VLSI Circuits,” IEEE Transactions on Circuits and Systems, Vol. 39,
No. 11, pp. 815-824, 1992.

[6] H. Chang, E. Shragowitz, J. Liu, H. Youssef, B. Lu, and S. Sutan-
thavibul, “Net Criticality Revisited: An Effective Method to Improve
Timing in Physical Design,” Proc. of ISPD, pp. 155-160, 2002.

[7] R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa, ”Generation of
Performance Constraints for Layout,” In IEEE Transactions on CAD,
Vol. 8, No. 8, pages 860-874, 1989.

[8] C. Chen, X. Yang, and M. Sarrafzadeh, “Potential Slack: An Effective
Metric of Combinational Circuit Performance,” Proc. of ICCAD, pp.
198-201, 2000.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, ”Multilevel
Hypergraph Partitioning: Application in VLSI Design,” Proc. of DAC,
pages 526-529, 1997.

[10] J. P. Fishburn and A. E. Dunlop, ”TILOS: A Posynomial Programming
Approach to Transistor Sizing,” Proc. of ICCAD, page 326-328, 1985.

[11] ITC99 Benchmarks,
http://www.cerc.utexas.edu/itc99-benchmarks/bench.html.

[12] Virtual-Silicon Technology Inc.,
http://www.virtual-silicon.com.

[13] International Technology Roadmap for Semiconductors,
http://www.itrs.net.

