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Abstract

In recent years, we have witnessed a tremendous growth in the volume of text documents available on the Internet,
digital libraries, news sources, and company-wide intranets. This has led to an increased interest in developing
methods that can help users to effectively navigate, summarize, and organize this information with the ultimate
goal of helping them to find what they are looking for. Fast and high-quality document clustering algorithms play an
important role towards this goal as they have been shown to provide both an intuitive navigation/browsing mechanism
by organizing large amounts of information into a small number of meaningful clusters as well as to greatly improve
the retrieval performance either via cluster-driven dimensionality reduction, term-weighting, or query expansion. This
ever-increasing importance of document clustering and the expanded range of its applications led to the development
of a number of new and novel algorithms with different complexity-quality trade-offs. Among them, a class of
clustering algorithms that have relatively low computational requirements are those that treat the clustering problem
as an optimization process which seeks to maximize or minimize a particular clustering criterion function defined
over the entire clustering solution.

The focus of this paper is to evaluate the performance of different criterion functions for the problem of clustering
documents. Our study involves a total of seven different criterion functions, three of which are introduced in this
paper and four that have been proposed in the past. Our evaluation consists of both a comprehensive experimental
evaluation involving fifteen different datasets, as well as an analysis of the characteristics of the various criterion
functions and their effect on the clusters they produce. Our experimental results show that there are a set of criterion
functions that consistently outperform the rest, and that some of the newly proposed criterion functions lead to the
best overall results. Our theoretical analysis of the criterion function shows that their relative performance depends
on (i) the degree to which they can correctly operate when the clusters are of different tightness, and (ii) the degree to
which they can lead to reasonably balanced clusters.

1 Introduction

The topic of clustering has been extensively studied in many scientific disciplines and over the years a variety of
different algorithms have been developed [31, 22, 6, 27, 20, 35, 2, 48, 13, 43, 14, 15, 24]. Two recent surveys on
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the topics [21, 18] offer a comprehensive summary of the different applications and algorithms. These algorithms
can be categorized along different dimensions based either on the underlying methodology of the algorithm, leading
to agglomerative or partitional approaches, or on the structure of the final solution, leading to hierarchical or non-
hierarchical solutions.

Agglomerative algorithms find the clusters by initially assigning each object to its own cluster and then repeatedly
merging pairs of clusters until a certain stopping criterion is met. A number of different methods have been proposed
for determining the next pair of clusters to be merged, such as group average (UPGMA) [22], single-link [38], complete
link [28], CURE [14], ROCK [15], and CHAMELEON [24]. Hierarchical algorithms produce a clustering that forms
a dendrogram, with a single all inclusive cluster at the top and single-point clusters at the leaves. On the other hand,
partitional algorithms, such as K -means [33, 22], K -medoids [22, 27, 35], Autoclass [8, 6], graph-partitioning-based
[45, 22, 17, 40], or spectral-partitioning-based [5, 11], find the clusters by partitioning the entire dataset into either
a predetermined or an automatically derived number of clusters. Depending on the particular algorithm, a k-way
clustering solution can be obtained either directly, or via a sequence of repeated bisections. In the former case, there
is in general no relation between the clustering solutions produced at different levels of granularity, whereas the later
case gives rise to hierarchical solutions.

In recent years, various researchers have recognized that partitional clustering algorithms are well-suited for cluster-
ing large document datasets due to their relatively low computational requirements [7, 30, 1, 39]. A key characteristic
of many partitional clustering algorithms is that they use a global criterion function whose optimization drives the
entire clustering process1. For some of these algorithms the criterion function is implicit (e.g., PDDP), whereas for
other algorithms (e.g, K -means and Autoclass) the criterion function is explicit and can be easily stated. This later
class of algorithms can be thought of as consisting of two key components. First is the criterion function that needs to
be optimized by the clustering solution, and second is the actual algorithm that achieves this optimization. These two
components are largely independent of each other.

The focus of this paper is to study the suitability of different criterion functions to the problem of clustering docu-
ment datasets. In particular, we evaluate a total of seven different criterion functions that measure various aspects of
intra-cluster similarity, inter-cluster dissimilarity, and their combinations 2. These criterion functions utilize different
views of the underlying collection, by either modeling the documents as vectors in a high dimensional space, or by
modeling the collection as a graph. We experimentally evaluated the performance of these criterion functions using 15
different data sets obtained from various sources. Our experiments showed that different criterion functions do lead to
substantially different results, and that there are a set of criterion functions that produce the best clustering solutions.

Our analysis of the different criterion functions shows that their overall performance depends on the degree to
which they can correctly operate when the dataset contains clusters of different densities (i.e., they contain documents
whose pairwise similarities are different) and the degree to which they can produce balanced clusters. Moreover, our
analysis also shows that the sensitivity to the difference in the cluster density can also explain an outcome of our study
(that was also observed in earlier results reported in [39]), that for some clustering algorithms the solution obtained
by performing a sequence of repeated bisections is better (and for some criterion functions by a considerable amount)
than the solution obtained by computing the clustering directly. When the solution is computed via repeated bisections,
the difference in density between the two clusters that are discovered is in general smaller than the density differences
between all the clusters. As a result, clustering algorithms that cannot handle well the variation in cluster density tend
to perform substantially better when used to compute the clustering via repeated bisections.

The rest this paper is organized as follows. Section 2 provides some information on how documents are represented
and how the similarity or distance between documents is computed. Section 3 describes the different criterion functions
as well as the algorithms used to optimize them. Section 4 provides the detailed experimental evaluation of the
various criterion functions. Section 5 analyzes the different criterion functions and explains their performance. Finally,
Section 6 provides some concluding remarks and directions of future research.

1Global clustering criterion functions are not an inherent feature of partitional clustering algorithms but they can also be used in the context of
agglomerative algorithms.

2The various clustering algorithms and criterion functions described in this paper are available in the CLUTO clustering toolkit that is available
online at http://www.cs.umn.edu/˜karypis/cluto.
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2 Preliminaries

Document Representation The various clustering algorithms that are described in this paper use the vector-
space model [37] to represent each document. In this model, each document d is considered to be a vector in the
term-space. In its simplest form, each document is represented by the term-frequency (TF) vector

dtf = (tf1, tf2, . . . , tfm),

where tfi is the frequency of the i th term in the document. A widely used refinement to this model is to weight each
term based on its inverse document frequency (IDF) in the document collection. The motivation behind this weighting
is that terms appearing frequently in many documents have limited discrimination power, and for this reason they need
to be de-emphasized. This is commonly done [37] by multiplying the frequency of each term i by log(N/df i ), where
N is the total number of documents in the collection, and df i is the number of documents that contain the i th term (i.e.,
document frequency). This leads to the tf-idf representation of the document, i.e.,

dtfidf = (tf1 log(N/df1), tf2 log(N/df2), . . . , tfm log(N/dfm)).

To account for documents of different lengths, the length of each document vector is normalized so that it is of unit
length (‖dtfidf‖ = 1), that is each document is a vector in the unit hypersphere. In the rest of the paper, we will assume
that the vector representation for each document has been weighted using tf-idf and it has been normalized so that it is
of unit length.

Similarity Measures Over the years, two prominent ways have been proposed to compute the similarity between
two documents di and d j . The first method is based on the commonly used cosine function [37] given by

cos(di , d j ) = di
td j

‖di‖‖d j‖ , (1)

and since the document vectors are of unit length, the above formula simplifies to cos(d i , d j ) = di
td j . This measure

becomes one if the documents are identical, and zero if there is nothing in common between them (i.e., the vectors are
orthogonal to each other). The second method computes the similarity between the documents using the Euclidean
distance, give by

dis(di , d j ) =
√

(di − d j )
t (di − d j ) = ‖di − d j‖. (2)

If the distance is zero, then the documents are identical, and if there is nothing in common between their distance is√
2. Note that besides the fact that one measures similarity and the other measures distance, these measures are quite

similar to each other because the document vectors are of unit length.

Definitions Through-out this paper we will use the symbols n, m, and k to denote the number of documents, the
number of terms, and the number of clusters, respectively. We will use the symbol S to denote the set of n documents
that we want to cluster, S1, S2, . . . , Sk to denote each one of the k clusters, and n 1, n2, . . . , nk to denote the sizes of
the corresponding clusters.

Given a set A of documents and their corresponding vector representations, we define the composite vector D A to
be

DA =
∑
d∈A

d, (3)

and the centroid vector C A to be

CA = DA

|A| . (4)

The composite vector D A is nothing more than the sum of all documents vectors in A, and the centroid C A is nothing
more than the vector obtained by averaging the weights of the various terms present in the documents of A. Note that
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even though the document vectors are of length one, the centroid vectors will not necessarily be of unit length.

Vector Properties By using the cosine function as the measure of similarity between documents we can take
advantage of a number of properties involving the composite and centroid vectors of a set of documents. In particular,
if Si and S j are two sets of unit-length documents containing n i and n j documents respectively, and Di , D j and Ci ,
C j are their corresponding composite and centroid vectors then the following is true:

1. The sum of the pair-wise similarities between the documents in Si and the document in S j is equal to Di
t D j .

That is, ∑
dq∈Di ,dr∈D j

cos(dq, dr ) =
∑

dq∈Di ,dr∈D j

dq
tdr = Di

t D j . (5)

2. The sum of the pair-wise similarities between the documents in Si is equal to ‖Di‖2. That is,∑
dq ,dr∈Di

cos(dq, dr ) =
∑

dq ,dr∈Di

dq
tdr = Di

t Di = ‖Di‖2. (6)

Note that this equation includes the pairwise similarities involving the same pairs of vectors.

3 Document Clustering

At a high-level the problem of of clustering is defined as follows. Given a set S of n documents, we would like to
partition them into a pre-determined number of k subsets S1, S2, . . . , Sk , such that the documents assigned to each
subset are more similar to each other than the documents assigned to different subsets.

As discussed in the introduction, our focus in this paper is to study the suitability of various clustering criterion
functions in the context of partitional document clustering algorithms. Consequently, the clustering problem becomes
that of given a particular clustering criterion function �, compute a k-way clustering solution such that the value of �
is optimized. In the rest of this section we first present a number of different criterion functions that can be used to
both evaluate and drive the clustering process, followed by a description of our optimization algorithms.

3.1 Clustering Criterion Functions

3.1.1 Internal Criterion Functions

This class of clustering criterion functions focuses on producing a clustering solution that optimizes a particular cri-
terion function that is defined over the documents that are part of each cluster and does not take into account the
documents assigned to different clusters. Due to this intra-cluster view of the clustering process we will refer to these
criterion functions as internal.

The first internal criterion function that we will study maximizes the sum of the average pairwise similarities
between the documents assigned to each cluster, weighted according to the size of each cluster. Specifically, if we use
the cosine function to measure the similarity between documents, then we want the clustering solution to optimize the
following criterion function:

maximize �1 =
k∑

r=1

nr


 1

n2
r

∑
di ,d j ∈Sr

cos(di , d j )


 . (7)

By using Equation 6, the above formula can be re-written as:

�1 =
k∑

r=1

‖Dr‖2

nr
.

Note that our definition of �1 includes the self-similarities between the documents of each cluster. The � 1 criterion
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function is similar to that used in the context of hierarchical agglomerative clustering that uses the group-average
heuristic to determine which pair of clusters to merge next.

The second criterion function that we will study is used by the popular vector-space variant of the K -means algo-
rithm [7, 30, 10, 39, 23]. In this algorithm each cluster is represented by its centroid vector and the goal is to find
the clustering solution that maximizes the similarity between each document and the centroid of the cluster that is
assigned to. Specifically, if we use the cosine function to measure the similarity between a document and a centroid,
then the criterion function becomes the following:

maximize �2 =
k∑

r=1

∑
di∈Sr

cos(di , Cr ). (8)

This formula can be re-written as follows:

�2 =
k∑

r=1

∑
di∈Sr

di
tCr

‖Cr‖ =
k∑

r=1

Dr
tCr

‖Cr‖ =
k∑

r=1

Dr
t Dr

‖Dr‖ =
k∑

r=1

‖Dr ‖.

Comparing the �2 criterion function with �1 we can see that the essential difference between these criterion functions
is that �2 scales the within-cluster similarity by the ‖Dr‖ term as opposed to nr term used by �1. The term ‖Dr‖ is
nothing more than the square-root of the pairwise similarity between all the document in S r , and will tend to emphasize
the importance of clusters (beyond the ‖Dr‖2 term) whose documents have smaller pairwise similarities compared to
clusters with higher pair-wise similarities. Also note that if the similarity between a document and the centroid vector
of its cluster is defined as just the dot-product of these vectors, then we will get back the � 1 criterion function.

Finally, the last internal criterion function that we will study is that used by the traditional K -means algorithm.
This criterion function uses the Euclidean distance to determine which documents should be clustered together, and
determines the overall quality of the clustering solution by using the sum-of-squared-errors function. In particular,
this criterion is defined as follows:

minimize �3 =
k∑

r=1

∑
di∈Sr

‖di − Cr‖2. (9)

By some simple algebraic manipulations [12], the above equation can be rewritten as:

�3 =
k∑

r=1

1

nr

∑
di ,d j∈Sr

‖di − d j‖2, (10)

which shows that the �3 criterion function is similar in nature to �1 but instead of using similarities it is expressed in
terms of squared distances. Now, from basic trigonometric properties we have that

‖di − d j‖2 = sin2(di , d j ) + (1 − cos(di , d j ))
2 = 2(1 − cos(di , d j )),

and using this relation, Equation 10 can be re-written as:

�3 =
k∑

r=1

1

nr

∑
di ,d j∈Sr

2(1 − cos(di , d j )) = 2


 k∑

r=1

nr −
k∑

r=1

1

nr

∑
di ,d j∈Sr

cos(di , d j )


 = 2(n − �1).

Thus, minimizing �3 is the same as maximizing �1. For this reason, we will not discuss �3 any further.

3.1.2 External Criterion Functions

Unlike internal criterion functions, external criterion functions derive the clustering solution by focusing on optimizing
a function that is based on how the various clusters are different from each other. Due to this inter-cluster view of the
clustering process we will refer to these criterion functions as external.
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It is quite hard to define external criterion functions that lead to meaningful clustering solutions. For example, it
may appear that an intuitive external function may be derived by requiring that the centroid vectors of the different
clusters are as mutually orthogonal as possible, i.e., they contain documents that share very few terms across the
different clusters. However, for many problems this criterion function has trivial solutions that can be achieved by
assigning to the first k − 1 clusters a single document that shares very few terms with the rest, and then assigning the
rest of the documents to the kth cluster.

For this reason, the external function that we will study tries to separate the documents of each cluster from the
entire collection, as opposed trying to separate the documents among the different clusters. In particular, our external
criterion function is defined as

minimize
k∑

r=1

nr cos(Cr , C), (11)

where C is the centroid vector of the entire collection. From this equation we can see that we try to minimize the
cosine between the centroid vector of each cluster to the centroid vector of the entire collection. By minimizing the
cosine we essentially try to increase the angle between them as much as possible. Also note that the contribution of
each cluster is weighted based on the cluster size, so that larger clusters will weight heavier in the overall clustering
solution. This external criterion function was motivated by multiple discriminant analysis and is similar to minimizing
the trace of the between-cluster scatter matrix [12, 41]. Equation 11 can be re-written as

k∑
r=1

nr cos(Cr , C) =
k∑

r=1

nr
Cr

t C

‖Cr ‖‖C‖ =
k∑

r=1

nr
Dr

t D

‖Dr ‖‖D‖ = 1

‖D‖

(
k∑

r=1

nr
Dr

t D

‖Dr ‖

)
,

where D is the composite vector of the entire document collection. Note that since 1/‖D‖ is constant irrespective of
the clustering solution the criterion function can be re-stated as:

minimize �1 =
k∑

r=1

nr
Dr

t D

‖Dr ‖ . (12)

As we can see from Equation 12, even-though our initial motivation was to define an external criterion function,
because we used the cosine function to measure the separation between the cluster and the entire collection, the
criterion function does take into account the within-cluster similarity of the documents (due to the ‖D r‖ term). Thus,
�1 is actually a hybrid criterion function that combines both external as well as internal characteristics of the clusters.

Another external criterion function can be defined with respect to the Euclidean distance function and the squared-
errors of the centroid vectors as follows:

maximize �2 =
k∑

r=1

nr‖Cr − C‖2. (13)

However, it can be shown that maximizing �2 is identical to minimizing �3 [12], and we will not consider it any
further.

3.1.3 Hybrid Criterion Functions

The various criterion functions we described so far focused only on optimizing a single criterion function the was
either defined in terms on how documents assigned to each cluster are related together, or on how the documents
assigned to each cluster are related with the entire collection. In the first case, they tried to maximize various measures
of similarity over the documents in each cluster, and in the second case, they tried to minimize the similarity between
the cluster’s documents and the collection. However, the various clustering criterion function can be combined to
define a set of hybrid criterion functions that simultaneously optimize multiple individual criterion functions.

In our study, we will focus on two hybrid criterion function that are obtained by combining criterion � 1 with �1,
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and �2 with �1, respectively. Formally, the first criterion function is

maximize �1 = �1

�1
=

∑k
r=1 ‖Dr ‖2/nr∑k

r=1 nr Dr
t D/‖Dr ‖

, (14)

and the second is

maximize �2 = �2

�1
=

∑k
r=1 ‖Dr‖∑k

r=1 nr Dr
t D/‖Dr ‖

. (15)

Note that since �1 is minimized, both �1 and �2 need to be maximized as they are inversely related to �1.

3.1.4 Graph Based Criterion Functions

The various criterion functions that we described so far, view each document as a multidimensional vector. An alternate
way of viewing the relations between the documents is to use graphs. In particular, two types of graphs have been
proposed for modeling the document in the context of clustering. The first graph is nothing more than the graph
obtained by computing the pair-wise similarities between the documents, and the second graph is obtained by viewing
the documents and the terms as a bipartite graph.

Given a collection of n documents S, the similarity graph G s is obtained by modeling each document as a vertex,
and having an edge between each pair of vertices whose weight is equal to the similarity between the corresponding
documents. Viewing the documents in this fashion, a number of internal, external, or combined criterion functions
can be defined that measure the overall clustering quality. In our study we will investigate one such criterion function
called MinMaxCut, that was proposed recently [11]. MinMaxCut falls under the category of criterion functions that
combine both the internal and external views of the clustering process and is defined as [11]

minimize
k∑

r=1

cut(Sr , S − Sr )∑
di ,d j∈Sr

sim(di , d j )
,

where cut(Sr , S−Sr ) is the edge-cut between the vertices in Sr to the rest of the vertices in the graph S−Sr . The edge-
cut between two sets of vertices A and B is defined to be the sum of the edges connecting vertices in A to vertices in
B. The motivation behind this criterion function is that the clustering process can be viewed as that of partitioning the
documents into groups by minimizing the edge-cut of each partition. However, for reasons similar to those discussed
in Section 3.1.2, such an external criterion may have trivial solutions, and for this reason each edge-cut is scaled by
the sum of the internal edges. As shown in [11], this scaling leads to better balanced clustering solutions.

If we use the cosine function to measure the similarity between the documents, and Equations 5 and 6, then the
above criterion function can be re-written as

k∑
r=1

∑
di∈Sr ,d j∈S−Sr

cos(di , d j )∑
di ,d j∈Sr

cos(di , d j )
=

k∑
r=1

Dr
t (D − Dr )

‖Dr‖2 =
(

k∑
r=1

Dr
t D

‖Dr ‖2

)
− k,

and since k is constant, the criterion function can be simplified to

minimize �1 =
k∑

r=1

Dr
t D

‖Dr‖2 . (16)

An alternate graph model views the various documents and their terms as a bipartite graph G b = (V, E), where V
consists of two sets Vd and Vt . The vertex set Vd corresponds to the documents whereas the vertex set Vt corresponds
to the terms. In this model, if the i th document contains the j th term, there is an edge connecting the corresponding
i th vertex of Vd to the j th vertex of Vt . The weights of these edges are set using the tf-idf model discussed in Section 2.
Given such a bipartite graph, the problem of clustering can be viewed as that of computing a simultaneous partitioning
of the documents and the terms so that a criterion function defined on the edge-cut is optimized. In our study we
will focus on a particular edge-cut based criterion function called the normalized cut, which was recently used in the
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context of this bipartite graph model for document clustering [46, 9]. The normalized cut criterion function is defined
as

minimize �2 =
k∑

r=1

cut(Vr , V − Vr )

W (Vr )
, (17)

where Vr is the set of vertices assigned to the r th cluster, and W (Vr ) is the sum of the weights of the adjacency lists
of the vertices assigned to the r th cluster. Note that the r th cluster will contain vertices from both the V d and Vt , i.e.,
both documents as well as terms. The key motivation behind this representation and criterion function is to compute
a clustering that groups together documents as well as the terms associated with these documents. Also, note that the
various W (Vr ) quantities are used primarily as normalization factors, to ensure that the optimization of the criterion
function does not lead to trivial solutions. Its purpose is similar to the ‖Dr ‖2 factor used in �1 (Equation 16).

3.2 Criterion Function Optimization

There are many ways that the various criterion functions described in the previous section can be optimized. A
common way of performing this optimization is to use a greedy strategy. Such greedy approaches are commonly used
in the context of partitional clustering algorithms (e.g., K -means), and for many criterion functions it has been shown
that they converge to a local minima. An alternate way is to use more powerful optimizers such as those based on
the spectral properties of the document’s similarity matrix [47] or document-term matrix [46, 9], or various multilevel
optimization methods [26, 25]. However, such optimization methods have only been developed for a subset of the
various criterion functions that are used in our study. For this reason, in our study, the various criterion functions were
optimized using a greedy strategy. This was done primarily to ensure that the optimizer was equally powerful (or
weak), regardless of the particular criterion function.

Our greedy optimizer consists of two phases: (i) initial clustering, and (ii) cluster refinement. In the initial
clustering phase, a clustering solution is computed as follows. If k is the number of desired clusters, k documents are
randomly selected to form the seeds of these clusters. The similarity of each document to each of these k seeds is
computed, and each document is assigned to the cluster corresponding to its most similar seed. The similarity between
documents and seeds is determined using the cosine measure of the corresponding document vectors. This approach
leads to an initial clustering solution for all but the �2 criterion function. For �2 the above approach will only produce
an initial partitioning of Vd (i.e., the document vertices) and does not produce an initial partitioning of V t (i.e., the term
vertices). Our algorithm obtains an initial partitioning of Vt by inducing it from the partitioning of Vd . This is done
as follows. For each term-vertex v, we compute the edge-cut of v to each one of the k partitions of V d , and assign v

to the partition the corresponds to the highest cut. In other words, if we look at the column corresponding to v in the
document-term matrix, and sum-up the various weights of this column according to the partitioning of the rows, then
v is assigned to the partition that has the highest sum. Note that by assigning v to that partition, the total edge-cut due
to v is minimized.

The goal of the cluster refinement phase is to take the initial clustering solution and iteratively refine it. Since the
various criterion functions have different characteristics, depending on the particular criterion function we use two
different refinement strategies.

The refinement strategy that we used for �1, �2, �1, �1, �2, and �1 is the following. It consists of a number of
iterations. During each iteration, the documents are visited in a random order. For each document, d i , we compute
the change in the value of the criterion function obtained by moving d i to one of the other k − 1 clusters. If there
exist some moves that lead to an improvement in the overall value of the criterion function, then d i is moved to the
cluster that leads to the highest improvement. If no such cluster exists, d i remains in the cluster that it already belongs
to. The refinement phase ends, as soon as we perform an iteration in which no documents moved between clusters.
Note that unlike the traditional refinement approach used by K -means type of algorithms, the above algorithm moves
a document as soon as it is determined that it will lead to an improvement in the value of the criterion function. This
type of refinement algorithms are often called incremental [12]. Since each move directly optimizes the particular
criterion function, this refinement strategy always converges to a local minima. Furthermore, because the various
criterion functions that use this refinement strategy are defined in terms of cluster composite and centroid vectors, the
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change in the value of the criterion functions as a result of single document moves can be computed efficiently.
The refinement strategy that we used for the �2 criterion function is based on alternating the cluster refinement

between document-vertices and term-vertices, that was used in the past for partitioning bipartite graphs [29]. Similarly
to the other two refinement strategies, it consists of a number of iterations but each iteration consists of two steps. In
the first step, the documents are visited in a random order. For each document, d i , we compute the change in �2 that is
obtained by moving di to one of the other k − 1 clusters. If there exist some moves that decrease � 2, then di is moved
to the cluster that leads to the highest reduction. If no such cluster exists, d i remains in the cluster that it already
belongs to. In the second step, the terms are visited in a random order. For each term, t j , we compute the change in
�2 that is obtained by moving ti to one of the other k − 1 clusters. If there exist some moves that decrease � 2, then
t j is moved to the cluster that leads to the highest reduction. If no such cluster exists, t j remains in the cluster that it
already belongs to. The refinement phase ends, as soon as we perform an iteration in which no documents and terms
are moved between clusters. As it was with the first refinement strategy, this approach will also converge to a local
minima.

The algorithms used during the refinement phase are greedy in nature, they are not guaranteed to converge to a
global minima, and the local minima solution they obtain depends on the particular set of seed documents that were
selected to obtain the initial clustering. To eliminate some of this sensitivity, the overall process is repeated a number
of times. That is, we compute N different clustering solutions (i.e., initial clustering followed by cluster refinement),
and the one that achieves the best value for the particular criterion function is kept. In all of our experiments, we used
N = 10. For the rest of this discussion when we refer to the clustering solution we will mean the solution that was
obtained by selecting the best out of these N potentially different solutions.

4 Experimental Results

We experimentally evaluated the performance of the different clustering criterion functions on a number of different
datasets. In the rest of this section we first describe the various datasets and our experimental methodology, followed
by a description of the experimental results.

4.1 Document Collections

In our experiments, we used a total of fifteen different datasets 3, whose general characteristics are summarized in
Table 1. The smallest of these datasets contained 878 documents and the largest contained 11,162 documents. To
ensure diversity in the datasets, we obtained them from different sources. For all data sets, we used a stop-list to
remove common words, and the words were stemmed using Porter’s suffix-stripping algorithm [36]. Moreover, any
term that occurs in fewer than two documents was eliminated.

The classic dataset was obtained by combining the CACM, CISI, CRANFIELD, and MEDLINE abstracts that
were used in the past to evaluate various information retrieval systems 4. In this data set, each individual set of ab-
stracts formed one of the four classes. The fbis dataset is from the Foreign Broadcast Information Service data of
TREC-5 [42], and the classes correspond to the categorization used in that collection. The hitech, reviews, and sports
datasets were derived from the San Jose Mercury newspaper articles that are distributed as part of the TREC collection
(TIPSTER Vol. 3). Each one of these datasets were constructed by selecting documents that are part of certain topics
in which the various articles were categorized (based on the DESCRIPT tag). The hitech dataset contained documents
about computers, electronics, health, medical, research, and technology; the reviews dataset contained documents
about food, movies, music, radio, and restaurants; and the sports dataset contained documents about baseball, basket-
ball, bicycling, boxing, football, golfing, and hockey. In selecting these documents we ensured that no two documents
share the same DESCRIPT tag (which can contain multiple categories). The la12 dataset was obtained from articles
of the Los Angeles Times that was used in TREC-5 [42]. The categories correspond to the desk of the paper that each
article appeared and include documents from the entertainment, financial, foreign, metro, national, and sports desks.

3The datasets are available online at http://www.cs.umn.edu/˜karypis/cluto/files/datasets.tar.gz.
4They are are available from ftp://ftp.cs.cornell.edu/pub/smart.
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Data Source # of documents # of terms # of classes
classic CACM/CISI/CRANFIELD/MEDLINE 7089 12009 4
fbis FBIS (TREC) 2463 12674 17
hitech San Jose Mercury (TREC) 2301 13170 6
reviews San Jose Mercury (TREC) 4069 23220 5
sports San Jose Mercury (TREC) 8580 18324 7
la12 LA Times (TREC) 6279 21604 6
new3 TREC 9558 36306 44
tr31 TREC 927 10128 7
tr41 TREC 878 7454 10
ohscal OHSUMED-233445 11162 11465 10
re0 Reuters-21578 1504 2886 13
re1 Reuters-21578 1657 3758 25
k1a WebACE 2340 13879 20
k1b WebACE 2340 13879 6
wap WebACE 1560 8460 20

Table 1: Summary of data sets used to evaluate the various clustering criterion functions.

Datasets new3, tr31, and tr41 are derived from TREC-5 [42], TREC-6 [42], and TREC-7 [42] collections. The classes
of these datasets correspond to the documents that were judged relevant to particular queries. The ohscal dataset was
obtained from the OHSUMED collection [19], which contains 233,445 documents indexed using 14,321 unique cat-
egories. Our dataset contained documents from the antibodies, carcinoma, DNA, in-vitro, molecular sequence data,
pregnancy, prognosis, receptors, risk factors, and tomography categories. The datasets re0 and re1 are from Reuters-
21578 text categorization test collection Distribution 1.0 [32]. We divided the labels into two sets and constructed
data sets accordingly. For each data set, we selected documents that have a single label. Finally, the datasets k1a,
k1b, and wap are from the WebACE project [34, 16, 3, 4]. Each document corresponds to a web page listed in the
subject hierarchy of Yahoo! [44]. The datasets k1a and k1b contain exactly the same set of documents but they differ
in how the documents were assigned to different classes. In particular, k1a contains a finer-grain categorization than
that contained in k1b.

4.2 Experimental Methodology and Metrics

For each one of the different datasets we obtained a 5-, 10-, 15-, and 20-way clustering solution that optimized
the various clustering criterion functions. The quality of a clustering solution was measured by using two different
metrics that look at the class labels of the documents assigned to each cluster. The first metric is the widely used
entropy measure that looks are how the various classes of documents are distributed within each cluster, and the
second measure is the purity that measures the extend to which each cluster contained documents from primarily one
class.

Given a particular cluster Sr of size nr , the entropy of this cluster is defined to be

E(Sr ) = − 1

log q

q∑
i=1

ni
r

nr
log

ni
r

nr
,

where q is the number of classes in the dataset, and n i
r is the number of documents of the i th class that were assigned

to the r th cluster. The entropy of the entire clustering solution is then defined to be the sum of the individual cluster
entropies weighted according to the cluster size. That is,

Entropy =
k∑

r=1

nr

n
E(Sr ).

A perfect clustering solution will be the one that leads to clusters that contain documents from only a single class, in
which case the entropy will be zero. In general, the smaller the entropy values, the better the clustering solution is. In
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a similar fashion, the purity of this cluster is defined to be

P(Sr ) = 1

nr
max

i
(ni

r ),

which is nothing more than the fraction of the overall cluster size that the largest class of documents assigned to that
cluster represents. The overall purity of the clustering solution is obtained as a weighted sum of the individual cluster
purities and is given by

Purity =
k∑

r=1

nr

n
P(Sr ).

In general, the larger the values of purity, the better the clustering solution is.
To eliminate any instances that a particular clustering solution for a particular criterion function got trapped into a

bad local minima, in all of our experiments we actually found ten different clustering solutions. The various entropy
and purity values that are reported in the rest of this section correspond to the average entropy and purity over these ten
different solutions. As discussed in Section 3.2 each of the ten clustering solutions corresponds to the best solution out
of ten different initial partitioning and refinement phases. As a result, for each particular value of k and criterion func-
tion we computed 100 clustering solutions. The overall number of experiments that we performed was 3*100*4*8*15
= 144,000, that were completed in about 8 days on a Pentium III@600MHz workstation.

4.3 Evaluation of Direct k-way Clustering

Our first set of experiments was focused on evaluating the quality of the clustering solutions produced by the various
criterion functions when they were used directly to compute a k-way clustering solution. The results for the various
datasets and criterion functions for 5-, 10-, 15-, and 20-way clustering solutions are shown in Table 2, which shows
both the entropy and the purity results for the entire set of experiments. The results in this table are provided primarily
for completeness and in order to evaluate the various criterion functions we actually summarized these results by
looking at the average performance of each criterion function over the entire set of datasets.

One way of summarizing the results is to average the entropies (or purities) for each criterion function over the
fifteen different datasets. However, since the clustering quality for different datasets is quite different and since the
quality tends to improve as we increase the number of clusters, we felt that such simple averaging may distort the
overall results. For this reason, our summarization is based on averaging relative entropies, as follows. For each
dataset and value of k, we divided the entropy obtained by a particular criterion function by the smallest entropy
obtained for that particular dataset and value of k over the different criterion functions. These ratios represent the
degree to which a particular criterion function performed worse than the best criterion function for that particular
series of experiments. Note that for different datasets and values of k, the criterion function that achieved the best
solution as measured by entropy may be different. These ratios are less sensitive to the actual entropy values and the
particular value of k. We will refer to these ratios as relative entropies. Now, for each criterion function and value
of k we averaged these relative entropies over the various datasets. A criterion function that has an average relative
entropy close to 1.0 will indicate that this function did the best for most of the datasets. On the other hand, if the
average relative entropy is high, then this criterion function performed poorly. We performed a similar transformation
for the various purity functions. However, since higher values of purity are better, instead of dividing a particular
purity value with the best-achieved purity (i.e., higher purity), we took the opposite ratios. That is, we divided the
best-achieved purity with that achieved by a particular criterion function, and then averaged them over the various
datasets. In this way, the values for the average relative purity can be interpreted in a similar manner as those of the
average relative entropy (they are good if they are close to 1.0 and they are getting worse as they become greater than
1.0).

The values for the average relative entropies and purities for the 5-, 10-, 15-, and 20-way clustering solutions are
shown in Table 3. Furthermore, the rows labeled “Avg” contain the average of these averages over the four sets of
clustering solutions. The entries that are underlined correspond to the criterion functions that performed the best,
whereas the boldfaced entries correspond to the criterion functions that performed within 2% of the best.
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Entropy
5-way Clustering 10-way Clustering

DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.41 0.23 0.21 0.24 0.22 0.29 0.49 0.29 0.20 0.16 0.17 0.17 0.24 0.30
fbis 0.53 0.51 0.51 0.51 0.51 0.53 0.56 0.43 0.40 0.40 0.40 0.40 0.45 0.48
hitech 0.76 0.67 0.64 0.67 0.66 0.68 0.70 0.68 0.61 0.63 0.63 0.63 0.60 0.69
k1a 0.57 0.48 0.50 0.49 0.49 0.48 0.52 0.49 0.39 0.40 0.39 0.39 0.41 0.46
k1b 0.27 0.20 0.23 0.20 0.22 0.19 0.18 0.20 0.12 0.17 0.14 0.15 0.14 0.16
la12 0.65 0.39 0.38 0.41 0.39 0.47 0.47 0.48 0.38 0.40 0.38 0.39 0.42 0.47
new3 0.75 0.69 0.70 0.70 0.69 0.70 0.76 0.67 0.59 0.60 0.60 0.59 0.62 0.69
ohscal 0.74 0.66 0.63 0.66 0.65 0.65 0.69 0.63 0.55 0.54 0.55 0.54 0.58 0.64
re0 0.55 0.51 0.48 0.51 0.49 0.51 0.56 0.41 0.40 0.38 0.37 0.38 0.40 0.51
re1 0.56 0.49 0.49 0.50 0.48 0.51 0.64 0.49 0.41 0.42 0.41 0.42 0.44 0.56
reviews 0.54 0.32 0.36 0.34 0.34 0.31 0.58 0.30 0.27 0.29 0.28 0.28 0.31 0.42
sports 0.42 0.22 0.22 0.25 0.20 0.23 0.45 0.35 0.21 0.20 0.23 0.18 0.29 0.35
tr31 0.45 0.39 0.40 0.39 0.38 0.47 0.36 0.29 0.22 0.23 0.22 0.21 0.22 0.32
tr41 0.40 0.36 0.34 0.38 0.35 0.36 0.46 0.29 0.24 0.26 0.22 0.25 0.29 0.34
wap 0.55 0.48 0.49 0.49 0.49 0.48 0.54 0.46 0.39 0.42 0.39 0.41 0.41 0.47

15-way Clustering 20-way Clustering
DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.25 0.19 0.17 0.17 0.17 0.24 0.23 0.28 0.19 0.18 0.16 0.17 0.23 0.27
fbis 0.36 0.34 0.35 0.35 0.34 0.38 0.46 0.34 0.33 0.33 0.32 0.33 0.34 0.44
hitech 0.63 0.60 0.62 0.59 0.61 0.60 0.69 0.61 0.57 0.60 0.58 0.59 0.59 0.68
k1a 0.43 0.35 0.36 0.34 0.35 0.37 0.45 0.38 0.32 0.33 0.31 0.33 0.35 0.44
k1b 0.19 0.12 0.15 0.13 0.13 0.13 0.16 0.17 0.12 0.14 0.13 0.13 0.14 0.17
la12 0.44 0.38 0.38 0.37 0.38 0.39 0.49 0.44 0.37 0.38 0.37 0.38 0.40 0.50
new3 0.60 0.53 0.53 0.53 0.52 0.56 0.65 0.57 0.49 0.49 0.48 0.48 0.52 0.61
ohscal 0.60 0.54 0.54 0.54 0.54 0.56 0.66 0.58 0.53 0.54 0.53 0.54 0.55 0.66
re0 0.38 0.37 0.37 0.36 0.37 0.37 0.49 0.36 0.34 0.36 0.34 0.35 0.35 0.45
re1 0.43 0.37 0.37 0.36 0.36 0.42 0.53 0.40 0.32 0.33 0.33 0.33 0.38 0.49
reviews 0.28 0.24 0.28 0.25 0.25 0.26 0.37 0.28 0.24 0.26 0.24 0.24 0.25 0.37
sports 0.28 0.18 0.20 0.20 0.19 0.21 0.33 0.24 0.15 0.19 0.17 0.16 0.19 0.33
tr31 0.25 0.18 0.22 0.19 0.19 0.22 0.28 0.20 0.17 0.20 0.17 0.16 0.20 0.27
tr41 0.22 0.18 0.20 0.20 0.19 0.22 0.31 0.18 0.15 0.17 0.15 0.17 0.18 0.28
wap 0.42 0.35 0.36 0.34 0.35 0.38 0.45 0.37 0.33 0.33 0.32 0.33 0.35 0.44

Purity
5-way Clustering 10-way Clustering

DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.77 0.89 0.92 0.89 0.91 0.82 0.66 0.85 0.91 0.93 0.93 0.93 0.87 0.83
fbis 0.50 0.53 0.51 0.52 0.51 0.50 0.52 0.60 0.62 0.61 0.62 0.62 0.58 0.59
hitech 0.43 0.54 0.56 0.52 0.54 0.49 0.50 0.50 0.58 0.57 0.58 0.57 0.58 0.51
k1a 0.42 0.49 0.49 0.49 0.49 0.50 0.47 0.52 0.61 0.62 0.62 0.63 0.59 0.54
k1b 0.84 0.83 0.81 0.84 0.82 0.85 0.86 0.90 0.91 0.87 0.89 0.89 0.91 0.89
la12 0.53 0.79 0.78 0.76 0.78 0.67 0.73 0.68 0.78 0.77 0.78 0.78 0.74 0.73
new3 0.21 0.24 0.23 0.23 0.24 0.23 0.21 0.28 0.31 0.31 0.31 0.31 0.29 0.26
ohscal 0.34 0.41 0.45 0.41 0.43 0.44 0.39 0.47 0.55 0.56 0.56 0.56 0.52 0.47
re0 0.43 0.48 0.56 0.47 0.54 0.52 0.46 0.61 0.63 0.66 0.66 0.66 0.61 0.50
re1 0.47 0.53 0.53 0.53 0.53 0.52 0.38 0.55 0.61 0.59 0.62 0.61 0.60 0.48
reviews 0.62 0.81 0.79 0.80 0.81 0.82 0.58 0.84 0.84 0.83 0.84 0.84 0.82 0.74
sports 0.66 0.87 0.87 0.80 0.87 0.87 0.65 0.74 0.85 0.86 0.83 0.87 0.77 0.72
tr31 0.64 0.69 0.68 0.69 0.70 0.64 0.72 0.79 0.85 0.83 0.85 0.86 0.86 0.77
tr41 0.67 0.71 0.71 0.69 0.71 0.71 0.63 0.77 0.79 0.75 0.81 0.76 0.76 0.73
wap 0.44 0.50 0.49 0.49 0.50 0.51 0.46 0.54 0.60 0.60 0.62 0.60 0.59 0.53

15-way Clustering 20-way Clustering
DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.88 0.91 0.93 0.93 0.93 0.87 0.88 0.85 0.92 0.92 0.93 0.93 0.88 0.86
fbis 0.66 0.68 0.66 0.68 0.67 0.63 0.61 0.69 0.69 0.69 0.69 0.69 0.68 0.62
hitech 0.53 0.58 0.57 0.58 0.58 0.57 0.51 0.56 0.59 0.58 0.59 0.58 0.57 0.51
k1a 0.58 0.66 0.67 0.69 0.68 0.63 0.56 0.63 0.70 0.68 0.71 0.70 0.66 0.58
k1b 0.89 0.92 0.90 0.91 0.91 0.92 0.90 0.89 0.92 0.90 0.91 0.91 0.90 0.90
la12 0.72 0.78 0.78 0.79 0.78 0.77 0.70 0.71 0.78 0.78 0.78 0.78 0.76 0.68
new3 0.34 0.38 0.38 0.37 0.39 0.35 0.30 0.38 0.42 0.43 0.43 0.43 0.39 0.35
ohscal 0.49 0.55 0.57 0.55 0.56 0.52 0.46 0.52 0.57 0.57 0.58 0.57 0.56 0.46
re0 0.64 0.66 0.67 0.67 0.67 0.62 0.53 0.65 0.68 0.68 0.68 0.68 0.65 0.57
re1 0.58 0.64 0.63 0.64 0.65 0.60 0.49 0.60 0.67 0.67 0.66 0.67 0.62 0.53
reviews 0.85 0.86 0.83 0.85 0.85 0.85 0.79 0.83 0.87 0.85 0.86 0.86 0.85 0.79
sports 0.79 0.87 0.85 0.85 0.86 0.84 0.73 0.81 0.89 0.87 0.87 0.88 0.86 0.74
tr31 0.82 0.87 0.83 0.85 0.86 0.85 0.81 0.85 0.88 0.85 0.87 0.88 0.86 0.82
tr41 0.83 0.85 0.83 0.82 0.83 0.81 0.74 0.85 0.87 0.85 0.87 0.86 0.85 0.77
wap 0.59 0.66 0.67 0.67 0.67 0.62 0.56 0.64 0.68 0.70 0.70 0.69 0.66 0.57

Table 2: Entropy and Purity for the various datasets and criterion functions for the clustering solutions obtained via direct k-way
clustering.
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Average Relative Entropy
k �1 �2 �1 �1 �2 �1 �2
5 1.361 1.041 1.044 1.069 1.033 1.092 1.333
10 1.312 1.042 1.069 1.035 1.040 1.148 1.380
15 1.252 1.019 1.071 1.029 1.029 1.132 1.402
20 1.236 1.018 1.086 1.022 1.035 1.139 1.486
Avg 1.290 1.030 1.068 1.039 1.034 1.128 1.400

Average Relative Purity
k �1 �2 �1 �1 �2 �1 �2
5 1.209 1.034 1.018 1.051 1.021 1.054 1.173
10 1.112 1.017 1.024 1.008 1.013 1.054 1.161
15 1.087 1.012 1.019 1.012 1.009 1.057 1.163
20 1.076 1.007 1.017 1.006 1.009 1.047 1.165
Avg 1.121 1.018 1.019 1.019 1.013 1.053 1.166

Table 3: Relative entropies and purities averaged over the different datasets for different criterion functions for the clustering
solutions obtained via direct k-way clustering. Underlined entries represent the best performing scheme, and boldfaced entries
correspond to schemes that performed within 2% of the best.

A number of observations can be made by analyzing the results in Table 3. First, the � 1 and the �2 criterion
functions lead to clustering solutions that are consistently worse than the solutions obtained using the other criterion
functions. This is true both when the quality of the clustering solution was evaluated using the entropy as well as the
purity measures. They lead to solutions that are 19%–35% worse in terms of entropy and 8%–15% worse in terms of
purity than the best solution. Second, the �2 and the �2 criterion functions lead to the best solutions irrespective of
the number of clusters or the measure used to evaluate the clustering quality. Over the entire set of experiments, these
methods are either the best or always within 2% of the best solution. Third, the � 1 criterion function performs the
next best and overall is within 2% of the best solution for both entropy and purity. Fourth, the � 1 criterion function
also performs quite well when the quality is evaluated using purity. Finally, the � 1 criterion function always performs
somewhere in the middle of the road. It is on the average 9% worse in terms of entropy and 4% worse in terms of
purity when compared to the best scheme. Also note that the relative performance of the various criterion functions
remains more-or-less the same for both the entropy- and the purity-based evaluation methods. The only change is that
the relative differences between the various criterion functions as measured by entropy are somewhat greater when
compared to those measured by purity. This should not be surprising, as the entropy measure takes into account the
entire distribution of the documents in a particular cluster and not just the largest class as it is done by the purity
measure.

4.4 Evaluation of k-way Clustering via Repeated Bisections

Our second set of experiments was focused on evaluating the clustering solutions produced by the various criterion
functions when the overall k-way clustering solution was obtained via a sequence of cluster bisections (RB). In this
approach, a k-way solution is obtained by first bisecting the entire collection. Then, one of the two clusters is selected
and it is further bisected, leading to a total of three clusters. The process of selecting and bisecting a particular
cluster continues until k clusters are obtained. Each of these bisections is performed so that the resulting two-way
clustering solution optimizes a particular criterion function. However, the overall k-way clustering solution will not
necessarily be at a local minima with respect to the criterion function. Obtaining a k-way clustering solution in this
fashion may be desirable because the resulting solution is hierarchical, and thus it can be easily visualized. The key
step in this algorithm is the method used to select which cluster to bisect next, and a number of different approaches
were described in [39, 23]. In all of our experiments, we chose to select the largest cluster, as this approach lead to
reasonably good and balanced clustering solutions [39].

Table 4 shows the quality of the clustering solutions produced by the various criterion functions for 5-, 10-, 15-,
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Entropy
5-way Clustering 10-way Clustering

DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.38 0.25 0.29 0.32 0.34 0.26 0.32 0.19 0.22 0.17 0.17 0.21 0.23 0.15
fbis 0.50 0.50 0.54 0.49 0.52 0.49 0.53 0.40 0.40 0.44 0.40 0.44 0.41 0.43
hitech 0.71 0.63 0.63 0.63 0.62 0.67 0.71 0.66 0.59 0.58 0.60 0.57 0.60 0.66
k1a 0.55 0.50 0.49 0.52 0.49 0.50 0.52 0.43 0.42 0.41 0.42 0.40 0.41 0.42
k1b 0.23 0.23 0.23 0.24 0.22 0.22 0.22 0.20 0.18 0.15 0.18 0.14 0.15 0.16
la12 0.61 0.47 0.49 0.44 0.41 0.48 0.42 0.43 0.40 0.42 0.40 0.38 0.41 0.39
new3 0.76 0.70 0.69 0.72 0.69 0.70 0.74 0.64 0.59 0.59 0.61 0.59 0.58 0.64
ohscal 0.72 0.63 0.64 0.64 0.64 0.63 0.67 0.62 0.54 0.54 0.56 0.54 0.56 0.60
re0 0.54 0.51 0.49 0.49 0.49 0.51 0.55 0.41 0.39 0.39 0.39 0.39 0.40 0.44
re1 0.55 0.49 0.52 0.51 0.52 0.50 0.62 0.45 0.42 0.41 0.42 0.41 0.42 0.54
reviews 0.39 0.33 0.31 0.34 0.31 0.35 0.55 0.35 0.30 0.24 0.31 0.26 0.29 0.36
sports 0.39 0.27 0.24 0.30 0.24 0.28 0.36 0.28 0.16 0.15 0.21 0.13 0.15 0.27
tr31 0.35 0.32 0.29 0.32 0.32 0.31 0.35 0.22 0.17 0.21 0.18 0.18 0.18 0.23
tr41 0.36 0.38 0.43 0.39 0.37 0.36 0.38 0.27 0.28 0.30 0.26 0.28 0.27 0.24
wap 0.53 0.50 0.49 0.51 0.48 0.49 0.53 0.43 0.42 0.40 0.43 0.39 0.41 0.44

15-way Clustering 20-way Clustering
DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.18 0.21 0.17 0.16 0.20 0.22 0.13 0.18 0.20 0.15 0.16 0.19 0.21 0.13
fbis 0.36 0.37 0.40 0.35 0.38 0.34 0.39 0.34 0.34 0.38 0.33 0.36 0.33 0.37
hitech 0.64 0.56 0.56 0.57 0.55 0.57 0.64 0.61 0.53 0.54 0.56 0.53 0.55 0.62
k1a 0.38 0.36 0.35 0.35 0.34 0.37 0.38 0.35 0.32 0.32 0.31 0.32 0.33 0.35
k1b 0.17 0.13 0.14 0.13 0.13 0.14 0.14 0.15 0.12 0.12 0.12 0.12 0.12 0.13
la12 0.41 0.38 0.39 0.38 0.38 0.38 0.37 0.37 0.37 0.38 0.37 0.36 0.38 0.36
new3 0.57 0.54 0.53 0.55 0.53 0.53 0.58 0.52 0.49 0.49 0.50 0.49 0.49 0.53
ohscal 0.57 0.52 0.52 0.54 0.52 0.53 0.57 0.56 0.51 0.51 0.53 0.51 0.52 0.56
re0 0.36 0.35 0.37 0.36 0.37 0.35 0.39 0.32 0.33 0.32 0.33 0.32 0.33 0.36
re1 0.40 0.36 0.35 0.37 0.35 0.37 0.49 0.37 0.33 0.33 0.33 0.32 0.34 0.44
reviews 0.29 0.25 0.23 0.27 0.23 0.24 0.33 0.26 0.24 0.20 0.25 0.21 0.24 0.32
sports 0.20 0.12 0.12 0.16 0.12 0.12 0.23 0.19 0.12 0.12 0.14 0.12 0.11 0.21
tr31 0.18 0.15 0.16 0.17 0.17 0.15 0.19 0.16 0.14 0.14 0.15 0.15 0.14 0.17
tr41 0.20 0.22 0.23 0.24 0.23 0.23 0.19 0.18 0.16 0.19 0.17 0.18 0.16 0.16
wap 0.38 0.34 0.35 0.35 0.34 0.35 0.39 0.35 0.31 0.32 0.32 0.32 0.32 0.35

Purity
5-way Clustering 10-way Clustering

DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.79 0.88 0.85 0.81 0.77 0.87 0.80 0.92 0.88 0.93 0.93 0.90 0.88 0.94
fbis 0.54 0.51 0.50 0.53 0.50 0.50 0.51 0.64 0.59 0.58 0.62 0.55 0.57 0.60
hitech 0.48 0.59 0.55 0.55 0.58 0.48 0.48 0.53 0.61 0.61 0.56 0.62 0.59 0.56
la12 0.57 0.71 0.69 0.75 0.76 0.70 0.78 0.73 0.77 0.74 0.77 0.78 0.75 0.79
new3 0.20 0.24 0.24 0.22 0.24 0.23 0.22 0.28 0.31 0.32 0.30 0.31 0.32 0.28
ohscal 0.36 0.47 0.45 0.47 0.46 0.47 0.42 0.46 0.60 0.59 0.58 0.59 0.56 0.51
re0 0.50 0.53 0.55 0.52 0.53 0.52 0.47 0.60 0.64 0.64 0.62 0.63 0.63 0.60
re1 0.48 0.53 0.50 0.53 0.50 0.52 0.40 0.56 0.61 0.62 0.60 0.62 0.62 0.47
reviews 0.75 0.80 0.83 0.79 0.82 0.78 0.58 0.78 0.80 0.87 0.81 0.86 0.81 0.79
sports 0.69 0.76 0.85 0.75 0.79 0.79 0.71 0.77 0.88 0.91 0.83 0.92 0.90 0.79
tr31 0.73 0.75 0.78 0.74 0.74 0.75 0.74 0.85 0.89 0.84 0.88 0.89 0.89 0.85
tr41 0.70 0.69 0.61 0.69 0.73 0.73 0.71 0.79 0.75 0.73 0.77 0.73 0.74 0.80
wap 0.45 0.49 0.49 0.47 0.49 0.49 0.46 0.56 0.59 0.61 0.56 0.62 0.59 0.57

15-way Clustering 20-way Clustering
DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.92 0.89 0.93 0.93 0.90 0.88 0.95 0.92 0.90 0.94 0.93 0.91 0.89 0.95
fbis 0.67 0.62 0.63 0.65 0.63 0.68 0.63 0.69 0.67 0.63 0.68 0.64 0.68 0.65
hitech 0.55 0.62 0.62 0.60 0.62 0.61 0.57 0.56 0.63 0.62 0.60 0.64 0.61 0.58
k1a 0.63 0.66 0.68 0.67 0.69 0.66 0.64 0.66 0.69 0.70 0.70 0.70 0.69 0.66
k1b 0.89 0.91 0.89 0.90 0.91 0.89 0.90 0.90 0.91 0.91 0.91 0.92 0.92 0.91
la12 0.74 0.78 0.77 0.78 0.78 0.76 0.79 0.77 0.78 0.77 0.78 0.79 0.76 0.79
new3 0.33 0.37 0.38 0.36 0.38 0.37 0.33 0.38 0.42 0.41 0.42 0.42 0.41 0.38
ohscal 0.52 0.61 0.62 0.59 0.62 0.60 0.52 0.52 0.62 0.62 0.59 0.62 0.60 0.54
re0 0.64 0.67 0.64 0.64 0.64 0.66 0.64 0.67 0.69 0.68 0.66 0.69 0.68 0.66
re1 0.60 0.65 0.65 0.63 0.66 0.65 0.51 0.62 0.68 0.67 0.67 0.68 0.67 0.55
reviews 0.83 0.86 0.87 0.84 0.87 0.87 0.81 0.84 0.87 0.89 0.85 0.88 0.87 0.81
sports 0.85 0.90 0.93 0.89 0.92 0.92 0.83 0.86 0.90 0.93 0.90 0.92 0.93 0.85
tr31 0.87 0.89 0.89 0.88 0.89 0.90 0.87 0.88 0.90 0.90 0.89 0.89 0.90 0.88
tr41 0.83 0.79 0.78 0.78 0.78 0.78 0.85 0.84 0.86 0.82 0.85 0.83 0.86 0.87
wap 0.62 0.67 0.68 0.67 0.68 0.66 0.63 0.66 0.69 0.70 0.69 0.70 0.69 0.66

Table 4: Entropy and Purity for the various datasets and criterion functions for the clustering solutions obtained via repeated
bisections.
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and 20-way clustering, when these solutions were obtained via repeated bisections. Again, these results are primarily
provided for completeness and our discussion will focus on the average relative entropies and purities for the various
clustering solutions shown in Table 5. The values in this table were obtained by using exactly the same procedure
discussed in Section 4.3 for averaging the results of Table 4.

Average Relative Entropy
k �1 �2 �1 �1 �2 �1 �2
5 1.207 1.050 1.060 1.083 1.049 1.053 1.191
10 1.243 1.112 1.083 1.129 1.056 1.106 1.221
15 1.190 1.085 1.077 1.102 1.079 1.085 1.205
20 1.183 1.070 1.057 1.085 1.072 1.075 1.209
Avg 1.206 1.079 1.069 1.100 1.064 1.080 1.207

Average Relative Purity
k �1 �2 �1 �1 �2 �1 �2
5 1.137 1.035 1.047 1.055 1.041 1.050 1.127
10 1.099 1.039 1.030 1.051 1.024 1.043 1.089
15 1.077 1.029 1.022 1.038 1.021 1.029 1.081
20 1.063 1.016 1.018 1.025 1.014 1.021 1.068
Avg 1.094 1.030 1.030 1.042 1.025 1.036 1.091

Table 5: Relative entropies and purities averaged over the different datasets for different criterion functions for the clustering solu-
tions obtained via repeated bisections. Underlined entries represent the best performing scheme, and boldfaced entries correspond
to schemes that performed within 2% of the best.

A number of observations can be made by analyzing these results. First, the � 1 and �2 criterion functions lead to
the worse clustering solutions, both in terms of entropy and in terms of purity. Second, the � 2 criterion function leads
to the best overall solutions, whereas the �2, �1, and �1 criterion functions are within 2% of the best. The �1 criterion
function performs within 2% of the best solution when the quality is measured using purity, and it is about 3.3% from
the best when the quality is measured using entropy. These results are in general consistent with those obtained for
direct k-way clustering but in the case of repeated bisections, there is a reduction in the relative difference between
the best and the worst schemes. For example, in terms of entropy, � 2 is only 13% worse than the best (compared to
35% for direct k-way). Similar trends can be observed for the other criterion functions and for purity. This relative
improvement becomes most apparent for the �1 criterion function that now almost always performs within 2% of the
best. The reason for these improvements will be discussed in Section 5. Also, another interesting observation is that
the average relative entropies (and purities) for repeated bisections are higher than the corresponding results obtained
for direct k-way. This indicates that there is a higher degree of variation between the relative performance of the
various criterion functions for the different data sets.

Finally, Figure 1 compares the quality of the clustering solutions obtained via direct k-way clustering to those
obtained via repeated bisections. These plots were obtained by dividing the entropy (or purity) achieved by the direct
k-way approach (Table 2) with that of the entropy (or purity) achieved by the RB approach, and then averaging these
ratios over the fifteen data sets for each one of the criterion functions and number of clusters. Since lower entropy
values are better, ratios that are greater than one indicate that the RB approach leads to better solutions than direct
k-way and vice versa. Similarly, since higher purity values are better, ratios that are smaller than one indicate the RB
approach leads to better solutions than direct k-way.

Looking at the plots in Figure 1 we can make a number of observations. First, in terms of both entropy and purity,
the �1, �1, and �2 criterion functions lead to worse solutions with direct k-way than with RB clustering. Second, for
the remaining criterion functions, the relative performance appears to be sensitive on the number of clusters. For small
number of clusters, the direct k-way approach tends to lead to better solutions; however, as the number of clusters
increases the RB approach tends to outperform direct k-way. In fact, this sensitivity on the number of clusters appears
to be true for all eight clustering criterion functions, and the main difference has to do with how quickly the quality
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Figure 1: The relative performance of direct k-way clustering over that of repeated bisections (RB) averaged over the different
datasets, for the entropy and purity measures.

of the direct k-way clustering solution degrades. Third, the � 2, �1, and �2 criterion functions appear to be the least
sensitive, as their relative performance does not change significantly between direct k-way and RB.

The fact that for many of the clustering criterion functions the quality of the solutions obtained via repeated bi-
sections is better than that achieved by direct k-way clustering is both surprising and alarming. This is because,
even-though the solution obtained by the RB approach is not even at a local minima with respect to the particular
criterion function, it leads to qualitatively better clusters. Intuitively, we expected that direct k-way will be strictly
better than RB and the fact that this does not happen suggests that there may be some problems with some of the
criterion functions. This will be further discussed and analyzed in Section 5.

4.5 Evaluation of k-way Clustering via Repeated Bisections followed by k-way Re-
finement

To further investigate the surprising behavior of the RB-based clustering approach we performed a sequence of ex-
periments in which the final solution obtained by the RB-approach for a particular criterion functions, was further
refined using a greedy k-way refinement algorithm whose goal was to optimize the particular criterion function. The
k-way refinement algorithm that we used is identical to that described in Section 3.2. We will refer to this scheme as
RB-k-way. The detailed experimental results from this sequence of experiments is shown in Table 6, and the summary
of these results in terms of average relative entropies and purities is shown in Table 7.

Comparing the relative performance of the various criterion functions we can see that they are more similar to those
of direct k-way (Table 3) than those of the RB-based approach (Table 5). In particular, � 2, �1, �1, and �2 tend to
outperform the rest, with �2 doing the best in terms of entropy and �2 doing the best in terms of purity. Also, we can
see that both �1, �1, and �2 are considerably worse than the best scheme. Figure 2 compares the relative quality of the
RB-k-way solutions to the solutions obtained by the RB-based scheme. These plots were generated using the same
method for generating the plots in Figure 1. Looking at these results we can see that by optimizing the � 1, �1, �1, and
�2 criterion functions, the quality of the solutions become worse, especially for large number of clusters. The largest
degradation happens for �1 and �2. On the other hand, as we optimize either �2, �1, or �2, the overall cluster quality
changes only slightly (sometimes it gets better and sometimes it gets worse). These results verify the observations we
made in Section 4.4 that suggest that the optimization of some of the criterion functions does not necessarily lead to
better quality clusters, especially for large values of k.

5 Discussion & Analysis

The experimental evaluation of the various criterion functions presented in Section 4 show two interesting trends. First,
the quality of the clustering solutions produced by some seemingly similar criterion functions is often substantially
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Entropy
5-way Clustering 10-way Clustering

DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.40 0.23 0.21 0.30 0.33 0.26 0.32 0.27 0.23 0.17 0.16 0.18 0.24 0.17
fbis 0.49 0.50 0.51 0.48 0.50 0.53 0.55 0.39 0.39 0.42 0.40 0.42 0.43 0.48
hitech 0.75 0.64 0.64 0.66 0.62 0.67 0.72 0.67 0.59 0.61 0.61 0.59 0.62 0.67
k1a 0.55 0.49 0.50 0.51 0.49 0.48 0.52 0.44 0.40 0.42 0.40 0.40 0.41 0.42
k1b 0.23 0.22 0.24 0.23 0.23 0.19 0.21 0.22 0.15 0.17 0.17 0.16 0.13 0.15
la12 0.65 0.47 0.46 0.41 0.40 0.53 0.44 0.47 0.39 0.40 0.37 0.38 0.41 0.43
new3 0.76 0.69 0.69 0.71 0.69 0.71 0.75 0.65 0.58 0.59 0.60 0.59 0.61 0.68
ohscal 0.75 0.61 0.62 0.61 0.61 0.61 0.68 0.63 0.54 0.53 0.56 0.53 0.59 0.63
re0 0.54 0.50 0.48 0.49 0.48 0.50 0.56 0.42 0.39 0.38 0.37 0.37 0.40 0.46
re1 0.58 0.48 0.50 0.50 0.50 0.50 0.64 0.47 0.42 0.42 0.41 0.41 0.44 0.57
reviews 0.39 0.35 0.35 0.35 0.29 0.30 0.58 0.32 0.30 0.28 0.30 0.29 0.31 0.38
sports 0.44 0.28 0.24 0.33 0.27 0.34 0.40 0.33 0.17 0.19 0.22 0.16 0.19 0.34
tr31 0.35 0.31 0.29 0.31 0.30 0.33 0.36 0.20 0.17 0.20 0.17 0.18 0.19 0.23
tr41 0.37 0.35 0.39 0.36 0.33 0.30 0.38 0.28 0.26 0.28 0.23 0.27 0.28 0.25
wap 0.54 0.49 0.50 0.51 0.48 0.48 0.53 0.43 0.39 0.41 0.42 0.40 0.42 0.44

15-way Clustering 20-way Clustering
DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.23 0.20 0.15 0.16 0.17 0.23 0.17 0.23 0.19 0.17 0.16 0.17 0.21 0.20
fbis 0.36 0.36 0.37 0.34 0.36 0.38 0.46 0.35 0.33 0.36 0.32 0.35 0.33 0.45
hitech 0.65 0.58 0.59 0.60 0.58 0.59 0.66 0.62 0.56 0.58 0.57 0.57 0.58 0.66
k1a 0.40 0.33 0.36 0.34 0.34 0.37 0.40 0.38 0.30 0.33 0.30 0.31 0.33 0.39
k1b 0.19 0.11 0.17 0.13 0.13 0.13 0.14 0.17 0.11 0.14 0.12 0.12 0.14 0.14
la12 0.44 0.37 0.39 0.36 0.38 0.41 0.43 0.40 0.36 0.38 0.35 0.37 0.40 0.44
new3 0.58 0.52 0.52 0.53 0.51 0.55 0.64 0.52 0.47 0.48 0.47 0.46 0.51 0.60
ohscal 0.59 0.51 0.53 0.53 0.52 0.54 0.64 0.58 0.52 0.53 0.52 0.52 0.56 0.64
re0 0.37 0.34 0.36 0.36 0.35 0.33 0.41 0.34 0.32 0.33 0.34 0.32 0.31 0.39
re1 0.40 0.35 0.36 0.36 0.34 0.41 0.53 0.38 0.32 0.33 0.32 0.32 0.39 0.50
reviews 0.28 0.25 0.25 0.25 0.24 0.25 0.36 0.26 0.24 0.25 0.25 0.22 0.24 0.37
sports 0.25 0.17 0.16 0.17 0.17 0.18 0.31 0.23 0.16 0.17 0.17 0.16 0.19 0.32
tr31 0.19 0.17 0.20 0.18 0.17 0.20 0.26 0.19 0.16 0.18 0.15 0.17 0.22 0.25
tr41 0.23 0.21 0.20 0.21 0.21 0.23 0.24 0.21 0.15 0.17 0.15 0.17 0.19 0.24
wap 0.38 0.32 0.35 0.35 0.34 0.36 0.40 0.36 0.29 0.32 0.32 0.33 0.34 0.39

Purity
5-way Clustering 10-way Clustering

DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.78 0.89 0.92 0.81 0.80 0.86 0.80 0.86 0.87 0.92 0.94 0.92 0.86 0.93
fbis 0.54 0.51 0.52 0.53 0.50 0.48 0.50 0.64 0.61 0.61 0.63 0.56 0.60 0.57
hitech 0.44 0.59 0.57 0.55 0.58 0.50 0.48 0.51 0.60 0.60 0.57 0.60 0.57 0.54
k1a 0.44 0.49 0.48 0.47 0.48 0.49 0.47 0.55 0.60 0.60 0.60 0.61 0.59 0.60
k1b 0.86 0.80 0.80 0.80 0.80 0.84 0.84 0.85 0.87 0.85 0.86 0.88 0.92 0.89
la12 0.53 0.72 0.72 0.76 0.77 0.65 0.76 0.68 0.78 0.77 0.79 0.78 0.77 0.74
new3 0.20 0.24 0.23 0.22 0.24 0.22 0.21 0.29 0.32 0.32 0.30 0.32 0.29 0.26
ohscal 0.35 0.48 0.47 0.48 0.47 0.48 0.42 0.48 0.59 0.59 0.57 0.59 0.51 0.48
re0 0.51 0.53 0.56 0.52 0.54 0.52 0.46 0.59 0.62 0.66 0.63 0.66 0.63 0.59
re1 0.43 0.53 0.53 0.53 0.53 0.53 0.38 0.55 0.61 0.61 0.61 0.62 0.59 0.45
reviews 0.76 0.79 0.81 0.79 0.81 0.83 0.56 0.83 0.84 0.85 0.82 0.83 0.81 0.78
sports 0.64 0.75 0.81 0.72 0.76 0.72 0.67 0.76 0.88 0.87 0.83 0.90 0.87 0.74
tr31 0.72 0.76 0.79 0.76 0.77 0.75 0.72 0.87 0.88 0.87 0.89 0.88 0.90 0.85
tr41 0.71 0.71 0.62 0.71 0.75 0.78 0.71 0.77 0.76 0.73 0.78 0.74 0.73 0.80
wap 0.45 0.49 0.49 0.47 0.49 0.50 0.46 0.56 0.61 0.60 0.58 0.62 0.57 0.57

15-way Clustering 20-way Clustering
DataSet �1 �2 �1 �1 �2 �1 �2 �1 �2 �1 �1 �2 �1 �2
classic 0.89 0.90 0.94 0.94 0.93 0.89 0.93 0.89 0.91 0.93 0.94 0.93 0.89 0.90
fbis 0.66 0.64 0.64 0.66 0.65 0.65 0.58 0.68 0.69 0.65 0.69 0.66 0.69 0.59
hitech 0.53 0.60 0.60 0.57 0.61 0.59 0.54 0.55 0.61 0.60 0.60 0.61 0.59 0.54
k1a 0.58 0.69 0.69 0.68 0.69 0.62 0.63 0.62 0.71 0.70 0.72 0.71 0.69 0.64
k1b 0.88 0.93 0.88 0.91 0.91 0.92 0.92 0.89 0.92 0.90 0.91 0.92 0.91 0.92
la12 0.70 0.79 0.77 0.79 0.78 0.73 0.73 0.74 0.79 0.78 0.80 0.79 0.75 0.72
new3 0.35 0.38 0.39 0.37 0.39 0.35 0.31 0.40 0.43 0.42 0.43 0.44 0.40 0.34
ohscal 0.52 0.60 0.59 0.58 0.60 0.58 0.47 0.53 0.59 0.59 0.59 0.59 0.53 0.47
re0 0.61 0.67 0.67 0.64 0.68 0.66 0.63 0.66 0.68 0.68 0.67 0.70 0.69 0.64
re1 0.60 0.66 0.64 0.63 0.66 0.60 0.47 0.61 0.68 0.67 0.67 0.68 0.61 0.49
reviews 0.82 0.86 0.86 0.86 0.87 0.86 0.79 0.83 0.87 0.87 0.85 0.88 0.86 0.77
sports 0.80 0.88 0.90 0.87 0.89 0.88 0.76 0.82 0.88 0.89 0.87 0.89 0.85 0.75
tr31 0.87 0.88 0.87 0.86 0.89 0.86 0.83 0.86 0.88 0.87 0.89 0.88 0.84 0.83
tr41 0.80 0.81 0.82 0.79 0.81 0.79 0.81 0.82 0.88 0.85 0.86 0.85 0.85 0.80
wap 0.62 0.68 0.69 0.67 0.69 0.64 0.61 0.65 0.71 0.71 0.70 0.70 0.67 0.63

Table 6: Entropy and Purity for the various datasets and criterion functions for the clustering solutions obtained via repeated
bisections followed by k-way refinement.
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Average Relative Entropy
k �1 �2 �1 �1 �2 �1 �2
5 1.304 1.081 1.077 1.121 1.076 1.097 1.273
10 1.278 1.065 1.088 1.063 1.051 1.127 1.255
15 1.234 1.037 1.089 1.057 1.046 1.140 1.334
20 1.248 1.030 1.098 1.041 1.051 1.164 1.426
Avg 1.266 1.053 1.088 1.070 1.056 1.132 1.322

Average Relative Purity
k �1 �2 �1 �1 �2 �1 �2
5 1.181 1.040 1.039 1.063 1.040 1.063 1.160
10 1.105 1.026 1.027 1.035 1.023 1.058 1.115
15 1.092 1.015 1.017 1.027 1.008 1.051 1.133
20 1.079 1.010 1.020 1.014 1.009 1.049 1.148
Avg 1.114 1.023 1.026 1.035 1.020 1.055 1.139

Table 7: Relative entropies and purities averaged over the different datasets for different criterion functions for the clustering
solutions obtained via repeated bisections followed by k-way refinement. Underlined entries represent the best performing scheme,
and boldfaced entries correspond to schemes that performed within 2% of the best.
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Figure 2: The relative performance of repeated bisections-based clustering followed by k-way refinement over that of repeated
bisections alone. The results are averaged over the different datasets, for the entropy and purity measures.

different. For instance, both internal criterion functions, � 1 and �2, try to produce a clustering solution that maximizes
a particular within cluster similarity function. However, �2 performs substantially better than �1. This is also true for
the �1 and �1 criterion functions, that attempt to minimize a function that takes into account both the within cluster
similarity and the across cluster dissimilarity. However, in most of the experiments, � 1 tends to perform consistently
better than �1. The second trend is that for many criterion functions, the quality of the solutions produced via repeated
bisections is in general better than the corresponding solution produced either via direct k-way clustering or after
performing k-way refinement. Furthermore, this performance gap seems to increase with the number of clusters k. In
the remaining of this section we analyze the different criterion functions and explain the cause of these trends.

5.1 Analysis of the �1 and �2 Criterion Functions

As a starting point for analyzing the performance of the three internal criterion functions it is important to qualitatively
understand how they fail. Table 8 shows the 10-way clustering solutions obtained for the sports dataset using each
one of the three internal criterion functions. The row of each subtable represents a particular cluster, and it shows
the class-distribution of the documents assigned to it. For example, the first cluster for � 1 contains 1034 documents
from the “baseball” category and a single document from the “football” category. The columns labeled “Size” show
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the number of documents assigned to each cluster, whereas the column labeled “Sim” shows the average similarity
between any two documents in each cluster. The last row of each subtable shows the values for the entropy and purity
measures for the particular clustering solution. Note that these clusterings were computed using the direct k-way
clustering approach.

�1 Criterion
cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 1035 0.098 1034 1
2 594 0.125 1 592 1
3 322 0.191 321 1
4 653 0.127 1 652
5 413 0.163 413
6 1041 0.058 1041
7 465 0.166 464 1
8 296 0.172 296
9 3634 0.020 1393 789 694 157 121 145 335

10 127 0.268 108 1 17 1
Entropy=0.357, Purity=0.736

�2 Criterion
cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 475 0.087 97 35 143 8 112 64 16
2 384 0.129 1 1 381 1
3 1508 0.032 310 58 1055 11 5 59 10
4 844 0.094 1 1 841 1
5 400 0.163 1 399
6 835 0.097 829 6
7 1492 0.067 1489 1 2
8 756 0.099 2 752 1 1
9 621 0.108 618 1 2

10 1265 0.036 65 560 296 9 5 22 308
Entropy=0.240, Purity=0.824

Table 8: The cluster-class distribution of the clustering solutions for the �1 and �2 criterion functions for the sports dataset.

Looking at the results in Table 8 we can see that both criterion functions produce unbalanced clustering solutions,
i.e. mixtures of large, loose clusters and small, tight clusters. However, � 1 behaves differently from �2 in two ways. �1

produces solutions in which at least one cluster (the ninth in this example) contains a very large number of documents
from different categories with very low pairwise similarities. One the other hand, � 2 does not produce a single very
large cluster of very poor quality. The second qualitative difference between the clusters produced by � 1 over those
produced by �2 is that if we exclude the large poor cluster, the remaining of the clusters tend to be quite pure as well as
relatively tight (i.e., the average similarity between their documents is high). The � 2 criterion function also produces
fairly pure clusters, but they tend to contain somewhat more noise and be less tight. These observations on the nature
of the clustering solutions produced by the two criterion functions also hold for the remaining of the datasets and they
are not specific to the sports dataset.

To analyze this behavior we will focus on the conditions under which the movement of a particular document from
one cluster to another will lead to an improvement in the value of the criterion function. Consider a k-way clustering
solution, let Si and S j be two clusters, and d be a document that is initially part of Si . Furthermore, let µi and µ j

be the average similarity between the documents in Si and S j , respectively (i.e., µi = Ci
t Ci , and µ j = C j

tC j ), and
let δi and δ j be the average similarity between d and the documents in Si and S j , respectively (i.e., δi = dtCi , and
δ j = dtC j ).

It is shown in Appendix A that according to the �1 criterion function the document d will be moved from S i to S j

iff
δi − δ j <

µi − µ j

2
, (18)
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and in the case of the �2 criterion function this move will happen iff

δi

δ j
<

√
µi

µ j
. (19)

Comparing Equation 18 with Equation 19, we can make two observations that explain the different behavior of
�1 and �2. First, when two clusters contain documents that have substantially different average pairwise similarities,
both criterion functions will tend to move some of the peripheral documents of the tight cluster to the loose cluster,
even when these documents are more similar to the tight cluster. That is, without loss of generality, if µ i > µ j ,
then a document for which δ i is small will tend to be moved to S j , even if δ j < δi . However, what differentiates
the two criterion functions is how small δ j can be before such a move can still take place. In the case of � 1, even
if δ j = 0 (i.e., document d has nothing in common with the documents of S j ), d can still be moved to S j as long
as δi < (µi − µ j )/2, i.e., d has a relatively low average similarity with the other documents of its cluster. On the
other hand, the �2 criterion function will only move d if it has a non-trivial average similarity to the documents of
Sj . In particular, from Equation 19 we have that d will be moved iff δ j > δi

√
µ j/µi . This observation explains the

results shown in Table 8, in which �1’s clustering solution contains nine fairly pure and tight clusters, and a single
large and poor quality cluster. That single cluster acts almost like a garbage collector which attracts all the peripheral
documents of the other clusters.

Second, when δi and δ j are relatively small, that is

δ j < µ j
α − 1

2(
√

α − 1)
and δi < µi

√
α(α − 1)

2(
√

α − 1)
, where α = µi

µ j
,

the move condition of �1 can be satisfied more easily than that of �2, (i.e., the range of δi and δ j values to meet the
move condition of �1 is larger than that of �2). Given the same δ j , �1 can move documents with higher δ i than �2.
To this extent, �1 is more powerful to pull the peripheral documents of the tight cluster towards the loose cluster. For
these two reasons, �2 does not lead to clustering solutions in which there exist one single large cluster that contains
peripheral documents from the rest of the clusters and makes those clusters very pure and tight. Moreover, when
documents have relatively high degree of similarity to other documents in S j and Si , that is

δ j > µ j
α − 1

2(
√

α − 1)
and δi > µi

√
α(α − 1)

2(
√

α − 1)
, where α = µi

µ j
,

�2 tends to more frequently move them from the tight cluster to the loose cluster compared to the � 1 criterion function,
as long as Equation 19 is satisfied.

To graphically illustrate this Figure 3 shows the range of δ i and δ j values for which the movement of a particular
document d from the i th to the j th cluster leads to an improvement in either the � 1 or �2 criterion function. The plots
in Figure 3(a) were obtained using µ i = .10, µ j = 0.05, whereas the plot in Figure 3(b) were obtained using µ i = .20
and µ j = 0.05. For both sets of plots was used ni = n j = 400. The x-axis of the plots in Figure 3 correspond to δ j ,
whereas the y-axis corresponds to δ i . For both cases, we let these average similarities take values between zero and
one. The various regions in the plots of Figure 3 are labeled based on whether or not any of the criterion functions will
move d to the other cluster, based on the particular set of δ i and δ j values.

Looking at these plots we can see that there is a region of small δ i and δ j values for which �1 will perform the move
where �2 will not. These conditions are the ones that we already discuss and are the main reason why � 1 tends to create
a large poor quality cluster and �2 does not. There is also a region for which �2 will perform the move but �1 will not.
This is the region for which δi > δ j + (µi − µ j )/2 but δ j/

√
µ j > δi/

√
µi . That is the average similarity between

document d and cluster S j relative to the square-root of the internal similarity of S j is greater than the corresponding
quantity of Si . Moreover, as the plots illustrate, the size of this region increases as the difference between the tightness
of the two clusters increases.

The justification for this type of moves is that d behaves more like the documents in S j (as measured by
√

µ j ) than
the documents in Si . To that extent, �2 exhibits some dynamic modeling characteristics [24], in the sense that its move
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Figure 3: The range of values of δi and δ j for which a particular document d will move from the i th to the j th cluster. The first
plot (a) shows the ranges when the average similarity of the documents in the i th and j th cluster are 0.10 and 0.05, respectively.
The second plot (b) shows the ranges when the respective similarities are 0.20 and 0.05. For both cases each of the clusters was
assumed to have 400 documents.

is based both on how close it is to a particular cluster as well as on the properties of the cluster itself. However, even
though the principle of dynamic modeling has been shown to be useful for clustering, it may sometimes lead to errors
as primary evidence of cluster membership (i.e., the actual δ i & δ j values) are second guessed. This may be one of the
reasons why the �2 criterion function leads to clusters that in general are more noisy than the corresponding clusters
of �1, as the example in Table 8 illustrates.

5.2 Analysis of the �1 and �1 Criterion Functions

The �1 and �1 criterion functions both measure the quality of the overall clustering solution by taking into account
both the separation between clusters and the tightness of each cluster. However, as the experiments presented in
Section 4 show �1 leads to better clustering solutions that �1 for all three sets of experiments. Furthermore, the highest
performance difference between these two criterion functions occurs during the direct k-way clustering. Table 9 shows
the 10-way clustering solutions for the sports data set produced by � 1 and �1 that illustrate this difference in the overall
clustering quality. As we can see from these results the �1 criterion function leads to clustering solutions that are
considerably more balanced than those produced by the � 1 criterion function. In fact, the solution obtained by the � 1

criterion function exhibits similar characteristics (but to a lesser extend) with the corresponding solutions obtained by
the �1 criterion function described in the previous section. It tends to produce a mixture of large and small clusters,
with the smaller clusters being quite tight and the larger clusters being quite loose.

In order to compare the �1 and �1 criterion functions it is important to rewrite them in a way that makes their
similarities and dissimilarities apparent. To this end, let µr be the average similarity between the documents of the r th
cluster Sr , and let ξr be the average similarity between the documents in Sr to the entire set of documents S. Using
these definitions, the �1 criterion function (Equation 12) can be rewritten as

�1 =
k∑

r=1

nr
Dr

t D

‖Dr ‖ =
k∑

r=1

nr
nr nξr

nr
√

µr
= n

k∑
r=1

nr
ξr√
µr

, (20)
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�1 Criterion
cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 1330 0.076 1327 2 1
2 975 0.080 3 5 966 1
3 742 0.072 15 703 24
4 922 0.079 84 8 32 797 1
5 768 0.078 760 1 6 1
6 897 0.054 6 2 889
7 861 0.091 845 0 15 1
8 565 0.079 24 525 13 1 2
9 878 0.034 93 128 114 4 97 121 321

10 642 0.068 255 36 286 7 24 24 10
Entropy=0.203, Purity=0.865

�1 Criterion
cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 519 0.146 516 3
2 597 0.118 1 595 1
3 1436 0.033 53 580 357 13 100 20 313
4 720 0.105 718 1 1
5 1664 0.032 1387 73 77 49 7 63 8
6 871 0.101 871
7 1178 0.049 6 5 1167
8 728 0.111 1 727
9 499 0.133 498 1

10 368 0.122 80 33 145 19 15 62 14
Entropy=0.239, Purity=0.840

Table 9: The cluster-class distribution of the clustering solutions for the �1 and �1 criterion functions for the sports dataset.

and the �1 criterion function (Equation 16) can be rewritten as

�1 =
k∑

r=1

Dr
t D

‖Dr‖2 =
k∑

r=1

nr nξr

n2
r µr

= n
k∑

r=1

1

nr

ξr

µr
. (21)

Comparing Equations 20 and 21 we can see that they differ in two ways. The first difference has to do with the way
they measure the quality of a particular cluster, and the second has to do with the way they combine the individual
cluster quality measures to derive the overall quality of the clustering solution.

In the case of �1, the quality of the r th cluster is given by ξr /
√

µr whereas in the case of �1 the quality is measured
as ξr/µr . Since for both �1 and �1, the quality of each cluster is inversely related to either µr or

√
µr , both of them

will prefer clustering solutions in which there are no clusters that are extremely loose (i.e., they have small µ r values).
Now, because large clusters tend to have small µr values, both of the cluster quality measures will tend to produce
solutions that contain reasonably balanced clusters. Furthermore, because µ r ≤ 1, we have that µr ≤ √

µr , which
in turn implies that the sensitivity of �1’s cluster quality measure on clusters with small µr values is higher than the
corresponding sensitivity of �1. Consequently, due to the way �1 measures the quality of a cluster, we would have
expected it to lead to more balanced clustering solutions than � 1, which as the results in Table 9 show it does not
happen. For this reason, the unbalanced clusters produced by � 1 cannot be attributed to this difference.

This suggest that the second difference between �1 and �1, that is, the way they combine the individual cluster
quality measures to derive the overall quality of the clustering solution, is the reason for the unbalanced clusters. The
�1 criterion function sums the individual cluster qualities weighting them proportionally to the size of each cluster. � 1

performs a similar summation but each cluster quality is weighted proportionally to the inverse of the size of the cluster.
This weighting scheme is similar in nature to that used in the ratio-cut objective—used widely in graph partitioning.
This difference on how the individual cluster qualities are weighted is the reason why � 1 leads to significantly more
unbalanced clustering solutions than �1.

This is because of the following reason. Recall from our previous discussion that since the quality measure of each
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cluster is inversely related on µr , the quality measure of large clusters will have large values, as these clusters will
tend to be loose (i.e., µr will be small). Now, in the case of �1, by multiplying the quality measure of a cluster by its
size, it ensures that these large loose clusters contribute a lot to the overall value of � 1’s criterion function. As a result,
�1 will tend to be optimized when there are no large loose clusters. On the other hand, in the case of � 1, by dividing
the quality measure of a large loose cluster by its size, it has the net effect of decreasing the contribution of this cluster
to the overall value of �1’s criterion function. As a result, �1 can be optimized at a point in which there exist some
large and loose clusters.

To illustrate this, we created a new criterion function that is derived from � 1’s cluster quality measure but uses �1’s
combining mechanism. That is, this new criterion function � ′

1 is defined as follows:

minimize � ′
1 = n

k∑
r=1

nr
ξr

µr
=

k∑
r=1

n2
r

Dr
t D

‖Dr ‖2
(22)

We used � ′
1 to find a 10-way clustering solution of the sports dataset which is shown in Table 10. Comparing the

clustering solution produced by � ′
1 to that produced by �1 (Table 9) we can see that � ′

1’s solution is more balanced
and it achieves substantially lower entropy.

�′
1 Criterion

cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 972 0.081 948 24
2 948 0.075 81 13 61 792 1
3 528 0.051 3 107 11 2 86 1 318
4 898 0.079 19 861 17 1
5 806 0.076 795 1 9 1
6 988 0.077 5 2 980 1
7 793 0.058 2 791
8 713 0.053 46 388 272 2 5
9 586 0.061 167 37 180 12 35 144 11

10 1348 0.075 1346 1 1
Entropy=0.189, Purity=0.862

Table 10: The cluster-class distribution of the clustering solutions for the � ′
1 criterion function for the sports dataset.

5.3 Analysis of the �2 Criterion Function

The various experiments presented in Section 4 showed that the � 2 criterion function consistently led to clustering
solutions that were among the worst over the solutions produced by the various criterion functions that were considered
in this study. To illustrate how the �2 criterion function fails, Table 11 shows the 10-way clustering solution produced
via direct k-way clustering on the sports dataset.

Looking at this solution we can see that �2 produces solutions that are highly unbalanced. For example, the sixth
cluster contains over 2500 documents from many difference categories, whereas the third cluster contains only 42
documents that are primarily from a single category. Note that, the clustering solution produced by � 2 is very similar
to that produced by the �1 criterion function (Table 8). In fact, for most of the clusters we can find a good one-to-one
mapping between the two schemes.

The nature of �2’s criterion function makes it extremely hard to analyze it. However, one reason that can potentially
explain the unbalanced clusters produced by � 2 is the fact that it uses a normalized-cut inspired approach to trade-off
separation between the clusters (as measured by the cut) versus the size of the respective clusters. It has been shown in
[11] that when the normalized cut approach is used in the context of traditional graph partitioning, it leads to a solution
that is considerably more unbalanced than that obtained by the � 1 criterion function. However, as our discussion in
Section 5.2 showed, even �1’s balancing mechanism often leads to quite unbalanced clustering solutions.
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�2 Criterion
cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 491 0.096 1 5 485
2 1267 0.056 8 5 1244 10
3 42 0.293 2 1 3 1 35
4 630 0.113 0 627 2 1
5 463 0.126 462 1
6 2596 0.027 1407 283 486 184 42 107 87
7 998 0.040 49 486 124 8 79 3 249
8 602 0.120 1 601
9 1202 0.081 1194 2 1 5

10 289 0.198 289
Entropy=0.315, Purity=0.796

Table 11: The cluster-class distribution of the clustering solutions for the �2 criterion function for the sports dataset.

5.4 Analysis of the �1 and �2 Criterion Functions

The last set of criterion function that we will focus on are the hybrid criterion functions � 1 and �2 that were derived
by combining the �1 and �1 and the �2 and �1 criterion functions, respectively. The 10-way clustering solutions
produced by these criterion functions on the sports dataset are shown in Table 12. Looking at the results in this table
and comparing them against the results produced by the � 1, �2, and �1, criterion functions we can see that �1 and �2

lead to clustering solutions that combine the characteristics of their respective pairs of individual criterion functions.
In particular, the �1 criterion function leads to a solution that is considerably more balanced than that of � 1 and
somewhat more unbalanced than that of �1. Similarly, �2’s solution is also more balanced than �2 and somewhat less
balanced than �1.

�1 Criterion
cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 1220 0.049 60 20 1131 5 2 2
2 724 0.106 722 1 1
3 696 0.111 1 694 1
4 1469 0.070 1468 1
5 562 0.138 560 2
6 576 0.118 574 1 1
7 764 0.108 1 1 762
8 1000 0.045 63 554 370 5 1 7
9 1261 0.023 397 109 130 36 118 145 326

10 308 0.116 289 1 17 1
Entropy=0.221, Purity=0.833

�2 Criterion
cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 1462 0.997 1457 2 3
2 908 0.994 2 2 903 1
3 707 0.960 11 679 17
4 831 0.957 23 4 8 795 1
5 701 0.989 693 1 6 1
6 999 0.978 15 7 977
7 830 0.986 818 11 1
8 526 0.949 17 499 7 1 2
9 997 0.321 128 181 149 5 101 113 320

10 619 0.428 248 35 265 8 20 32 11
Entropy=0.196, Purity=0.863

Table 12: The cluster-class distribution of the clustering solutions for the�1 and�2 criterion functions for the sports dataset.

Overall, from the experiments in Section 4 we can see that the quality of the solutions (as measured by entropy)
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produced by �1 tends to be between that of �1 and �1—but closer to that of �1’s; and the solution produced by �2

tends to be between that of �2 and �1—but closer to that of �2’s. If the quality is measured in terms of purity, the
performance of �1 relative to �1 and �1 remains the same, whereas �2 tends to outperform both �2 and �1.

To understand how these criterion functions consider the conditions under which a particular document d will move
from its current cluster Si to another cluster S j . This document will always be moved (or stay where it is), if each
one of the two criterion functions used to define either � 1 or �2 would improve (or degrade) by performing such a
move. The interesting case happens when according to one criterion function d should be moved and according to
the other one d should remain where it is. In that case, the overall decision will depend at how much a particular
criterion function improves relative to the degradation of the other function. In general, if such a move leads to a large
improvement and a small degradation, it is performed. In order to make such trade-offs possible it is important for the
pair of criterion functions involved to take roughly the same range of values (i.e., be of the same order). If that is not
true, then improvements in one criterion function will not be comparable to degradations in the other.

In the case of the �1 and �2 criterion functions, our studies showed that as long as k is sufficiently large, both the
�1 and �2 criterion functions are of the same order than �1. However, in most cases �2 is closer to �1 that �1. This
better match between the �2 and �1 criterion functions may explain why �2 seems to perform better than �1 relative
to their respective pairs of criterion functions, and why � 1’s solutions are much closer to those of �1 instead of �1.

5.5 Analysis of Direct k-way Clustering versus Repeated Bisections

As discussed in the beginning of this section, the experiments presented in Section 4 show that for most criterion
functions, for sufficiently large values of k, the clustering solutions produced by repeated bisections are better than the
solutions obtained via direct k-way clustering. We believe this is because of the following reason.

From our analysis of the �1, �2, and �1 criterion functions we know that based on the difference between the
tightness (i.e., the average pairwise similarity between the documents in the cluster) of the two clusters, documents
that are naturally part of the tighter cluster will end up moving to the looser cluster. In other words, the various criterion
functions will tend to produce incorrect clustering results when clusters have different degrees of tightness. Of course,
the degree to which a particular criterion function is sensitive to tightness differences will be different for the various
criterion functions.

Now, when the clustering solution is obtained via repeated bisections, the difference in tightness between each pair
of clusters in successive bisections will tend to be relatively small. This is because, each cluster to be bisected, will
tend to be relatively homogeneous (due to the way it was discovered), resulting in a pair of subclusters with small
tightness differences. On the other hand, when the clustering is computed directly or when the final k-way clustering
obtained via a sequence of repeated bisections is refined, there can exist clusters that have significant differences in
tightness. Whenever there exist such pairs of clusters, most of the criterion functions will end up moving some of their
documents of the tighter cluster (that are weakly connected to the rest of the documents in that cluster) to the looser
cluster. Consequently, the final clustering solution can potentially be worse than that obtained via repeated bisections.

To illustrate this behavior we used the �2 criterion function and computed a 15-way clustering solution using
repeated bisections, and then refined this solution by performing a 15-way refinement. These results are shown in
Table 13. The repeated-bisections solution contains some clusters that are quite loose as well as some clusters that are
quite tight. Comparing this solution against the one obtained after performing k-way refinement we can see that the
size of cluster 6 and 8 (which are among the looser clusters) increased substantially, whereas the size of some of the
tighter clusters decreased (e.g., cluster 5, 10, and 14).

Finally, in the case of �1, the reason that the clusters produced by direct k-way clustering are worse than the
corresponding clusters produced via repeated bisections has to do with the tendency of � 1 to produce solutions that
are balanced. As a result, the degree of cluster size imbalance is greater when the clusters are obtained via repeated
bisections, than the corresponding imbalance of direct k-way clustering. We believe that this additional constraint of
the k-way clustering is the reason for the somewhat worse performance observed for direct k-way clustering.
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�2 Criterion - Repeated Bisections
cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 245 0.121 243 0 2
2 596 0.067 2 1 593
3 485 0.097 1 480 3 1
4 333 0.080 3 6 3 2 1 318
5 643 0.104 642 1
6 674 0.047 669 2 1 1 1
7 762 0.099 1 760 1
8 826 0.045 42 525 247 6 6
9 833 0.105 832 1

10 795 0.102 1 1 1 791 1
11 579 0.061 6 573
12 647 0.034 174 34 156 10 119 144 10
13 191 0.110 189 2
14 611 0.125 608 3
15 360 0.168 359 1

Entropy=0.125, Purity=0.904

�2 Criterion — After k-way Refinement
cid Size Sim baseball basketball football hockey boxing bicycling golfing
1 292 0.120 280 11 1
2 471 0.080 1 2 468
3 468 0.100 1 464 2 1
4 363 0.072 3 7 5 1 6 20 321
5 545 0.123 542 1 2
6 1030 0.033 832 36 73 18 4 65 2
7 661 0.110 1 0 660
8 914 0.046 52 514 334 8 1 5
9 822 0.105 822

10 771 0.105 1 1 769
11 641 0.052 2 639
12 447 0.091 89 30 139 11 110 60 8
13 250 0.105 244 5 1
14 545 0.138 540 5
15 360 0.168 2 355 3

Entropy=0.168, Purity=0.884

Table 13: The cluster-class distribution of the clustering solutions for the �2 criterion function for the sports dataset, for the
repeated-bisections solution and the repeated-bisections followed by k-way refinement.

6 Concluding Remarks

In this paper we studied eight different global criterion functions for clustering large documents datasets. Four of
these functions (�1, �2, �1, and �2) have been previously proposed for document clustering, whereas the remaining
three (�1, �1, and �2) were introduced by us. Our study consisted of a detailed experimental evaluation using fifteen
different datasets and three different approaches to find the desired clusters, followed by a theoretical analysis of the
characteristics of the various criterion functions. Our experiments showed that the criterion functions used by the
traditional K -means algorithm (�1 & �3) perform poorly, whereas the criterion function used by the vector-space
variants of the K -means (�2) lead to reasonably good results that outperform the solutions produced by some recently
proposed criterion functions (�1 and �2). Our three new criterion functions performed reasonably well, with the � 2

criterion function achieving the best overall results. Our analysis showed that the performance difference observed by
the various criterion functions can be attributed to the extent to which the criterion functions are sensitive to clusters
of different degrees of tightness, and the extend to which they can lead to reasonably balanced solutions. Moreover,
our analysis was able to identify the deficiencies of the �1 criterion function and provide guidance on how to improve
it (� ′

1).
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A Analysis of �1’s and �2’s Document Move Condition

Consider a k-way clustering solution, let Si and S j be two of these clusters, and d be a particular document that is
initially part of Si , and let Di , Ci , and D j , C j be the composite and centroid vectors of these two clusters, such that
Di and Ci contain all the documents of Si except d. According to the �1 criterion function (Equation 7) the move of
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d from Si to S j will reduce the overall value of the criterion function if and only if

‖Di + d‖2

ni + 1
+ ‖Dj ‖2

n j
<

‖Di‖2

ni
+ ‖Dj + d‖2

n j + 1
.

This equation can be rewritten as:

‖Di + d‖2

ni + 1
− ‖Di ‖2

ni
<

‖Dj + d‖2

n j + 1
− ‖Dj ‖2

n j

(Di + d)t (Di + d)

ni + 1
− Di

t Di

ni
<

(Dj + d)t (Dj + d)

n j + 1
− Dj

t D j

n j

Di
t Di + 1 + 2dt Di

ni + 1
− Di

t Di

ni
<

Dj
t D j + 1 + 2dt D j

n j + 1
− Dj

t D j

n j

2nidt Di + ni − Di
t Di

ni (ni + 1)
<

2n j dt D j + n j − Dj
t D j

n j (n j + 1)

2
ni

ni + 1
dt Ci + 1

ni + 1
− ni

ni + 1
Ci

tCi < 2
n j

n j + 1
dt C j + 1

n j + 1
− n j

n j + 1
C j

tC j .

Now, if we assume that both ni and n j are sufficiently large, then ni/(ni + 1) and n j/(n j + 1) will be close to one,
and 1/(ni + 1), 1/(n j + 1) will be close to zero. Under these assumptions, the various factors involving n i and n j can
be eliminated leading to

2dtCi − Ci
tCi < 2dtC j − C j

tC j .

Now, if µi and µ j is the average similarity between the documents in Si and S j , respectively (i.e., µi = Ci
tCi , and

µ j = C j
tC j ), and δi and δ j is the average similarity between d and the documents in Si and S j , respectively (i.e.,

δi = dtCi , and δ j = dtC j ), the above equation can be rewritten as

δi − δ j <
µi − µ j

2
. (23)

That is, the document d will be moved to the S j cluster as long as the difference between the average similarities of d
to the documents of each cluster (δ i − δ j ) is less than half of the difference between the average similarity among the
documents in Si and S j ((µi − µ j )/2).

On the other hand, the �2 criterion function will move d from Si to S j if and only if

‖Di + d‖ + ‖D j ‖ < ‖Di‖ + ‖Dj + d‖.

In a similar fashion with �1’s condition, the above equation can be rewritten as:

‖Di + d‖ − ‖Di‖ < ‖Dj + d‖ − ‖D j ‖
√

Di
t Di + 1 + 2dt Di −

√
Di

t Di <

√
Dj

t D j + 1 + 2dt D j −
√

Dj
t D j . (24)

Now, for sufficiently large clusters, we have that Di
t Di + 2dt Di >> 1, and thus

Di
t Di + 1 + 2dt Di ≈ Di

t Di + 2dt Di . (25)

Furthermore, the following holds

(√
Di

t Di + dt Di√
Di

t Di

)2

= Di
t Di + (dt Di )

2

Di
t Di

+ 2dt Di ≈ Di
t Di + 2dt Di , (26)
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as long as
(dt Di )

2

Di
t Di

= δ2
i

µi
= o(1),

that is, it is not significantly larger than one. This condition is fairly mild as it essentially requires that µ i is sufficiently
large relative to δ2

i , which is always true for sets of documents that form clusters.
Now, using Equations 25 and 26 for both clusters, Equation 24 can be rewritten as

√√√√(√Di
t Di + dt Di√

Di
t Di

)2

−
√

Di
t Di <

√√√√√√

√Dj

t D j + dt D j√
Dj

t D j




2

−
√

Dj
t D j

dt Di√
Di

t Di

<
dt D j√
Dj

t D j

.

Finally, using the µi , µ j , and δi , δ j notation, from the above equation we get that �2 will move document d as long as

δi

δ j
<

√
µi

µ j
. (27)
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