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Abstract

In recent years, we have witnessed atremendous growth in the volume of text documents available on the Internet,
digital libraries, news sources, and company-wide intranets. This has led to an increased interest in developing
methods that can help users to effectively navigate, summarize, and organize this information with the ultimate
goal of helping them to find what they are looking for. Fast and high-quality document clustering algorithms play an
important role towards this goal asthey have been shown to provide both an intuitive navigation/browsing mechanism
by organizing large amounts of information into a small number of meaningful clusters as well asto greatly improve
theretrieval performance either viacluster-driven dimensionality reduction, term-weighting, or query expansion. This
ever-increasing importance of document clustering and the expanded range of its applications led to the devel opment
of a number of new and novel agorithms with different complexity-quality trade-offs. Among them, a class of
clustering algorithms that have relatively low computational requirements are those that treat the clustering problem
as an optimization process which seeks to maximize or minimize a particular clustering criterion function defined
over the entire clustering solution.

The focus of this paper isto evaluate the performance of different criterion functions for the problem of clustering
documents. Our study involves a total of seven different criterion functions, three of which are introduced in this
paper and four that have been proposed in the past. Our evaluation consists of both a comprehensive experimental
evauation involving fifteen different datasets, as well as an analysis of the characteristics of the various criterion
functions and their effect on the clusters they produce. Our experimental results show that there are a set of criterion
functions that consistently outperform the rest, and that some of the newly proposed criterion functions lead to the
best overall results. Our theoretical analysis of the criterion function shows that their relative performance depends
on (i) the degree to which they can correctly operate when the clusters are of different tightness, and (ii) the degree to
which they can lead to reasonably balanced clusters.

1 Introduction

The topic of clustering has been extensively studied in many scientific disciplines and over the years a variety of
different algorithms have been developed [31, 22, 6, 27, 20, 35, 2, 48, 13, 43, 14, 15, 24]. Two recent surveys on
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the topics [21, 18] offer a comprehensive summary of the different applications and algorithms. These algorithms
can be categorized along different dimensions based either on the underlying methodology of the algorithm, leading
to agglomerative or partitional approaches, or on the structure of the final solution, leading to hierarchical or non-
hierarchical solutions.

Agglomerative algorithms find the clusters by initialy assigning each object to its own cluster and then repeatedly
merging pairs of clusters until a certain stopping criterion is met. A number of different methods have been proposed
for determining the next pair of clustersto be merged, such as group average (UPGMA) [22], single-link [38], complete
link [28], CURE [14], ROCK [15], and CHAMELEON [24]. Hierarchical agorithms produce a clustering that forms
adendrogram, with asingle al inclusive cluster at the top and single-point clusters at the leaves. On the other hand,
partitional algorithms, such as K -means [33, 22], K-medoids[22, 27, 35], Autoclass [8, 6], graph-partitioning-based
[45, 22, 17, 40Q], or spectral-partitioning-based [5, 11], find the clusters by partitioning the entire dataset into either
a predetermined or an automatically derived number of clusters. Depending on the particular algorithm, a k-way
clustering solution can be obtained either directly, or via a sequence of repeated bisections. In the former case, there
isin genera no relation between the clustering solutions produced at different levels of granularity, whereas the later
case givesrise to hierarchical solutions.

In recent years, variousresearchers have recognized that partitional clustering algorithmsare well-suited for cluster-
ing large document datasets due to their relatively low computational requirements|[7, 30, 1, 39]. A key characteristic
of many partitional clustering algorithms is that they use a global criterion function whose optimization drives the
entire clustering process'. For some of these algorithms the criterion function is implicit (e.g., PDDP), whereas for
other algorithms (e.g, K-means and Autoclass) the criterion function is explicit and can be easily stated. This later
class of algorithms can be thought of as consisting of two key components. First is the criterion function that needs to
be optimized by the clustering solution, and second is the actual algorithm that achieves this optimization. These two
components are largely independent of each other.

The focus of this paper is to study the suitability of different criterion functions to the problem of clustering docu-
ment datasets. In particular, we evaluate a total of seven different criterion functions that measure various aspects of
intra-cluster similarity, inter-cluster dissimilarity, and their combinations2. These criterion functions utilize different
views of the underlying collection, by either modeling the documents as vectors in a high dimensional space, or by
modeling the collection as a graph. We experimentally eval uated the performance of these criterion functionsusing 15
different data sets obtained from various sources. Our experiments showed that different criterion functions do lead to
substantially different results, and that there are a set of criterion functionsthat produce the best clustering solutions.

Our analysis of the different criterion functions shows that their overall performance depends on the degree to
which they can correctly operate when the dataset contains clusters of different densities (i.e., they contain documents
whose pairwise similarities are different) and the degree to which they can produce balanced clusters. Moreover, our
analysis also shows that the sensitivity to the differencein the cluster density can also explain an outcome of our study
(that was also observed in earlier results reported in [39]), that for some clustering algorithms the solution obtained
by performing a sequence of repeated bisectionsis better (and for some criterion functions by a considerable amount)
than the solution obtained by computing the clustering directly. When the solutionis computed viarepeated bisections,
the differencein density between the two clustersthat are discovered isin general smaller than the density differences
between all the clusters. Asaresult, clustering algorithmsthat cannot handle well the variation in cluster density tend
to perform substantially better when used to compute the clustering via repeated bisections.

Therest this paper is organized as follows. Section 2 provides someinformation on how documents are represented
and how the similarity or distance between documentsis computed. Section 3 describesthe different criterion functions
as well as the algorithms used to optimize them. Section 4 provides the detailed experimental evaluation of the
various criterion functions. Section 5 analyzesthe different criterion functionsand explainstheir performance. Finally,
Section 6 provides some concluding remarks and directions of future research.

1Global clustering criterion functions are not an inherent feature of partitional clustering algorithms but they can also be used in the context of
agglomerative algorithms.

2Thevarious cl ustering algorithms and criterion functions described in this paper are available in the CLUTO clustering toolkit that is available
online at http://www.cs.umn.edu/"karypis/cluto.



2 Preliminaries

Document Representation The various clustering algorithms that are described in this paper use the vector-
space model [37] to represent each document. In this model, each document d is considered to be a vector in the
term-space. In its simplest form, each document is represented by the term-frequency (TF) vector

dit = (tfy, thy, ..., thy),

where tf; is the frequency of theith term in the document. A widely used refinement to this model is to weight each

term based on its inverse document frequency (IDF) in the document collection. The motivation behind this weighting

isthat terms appearing frequently in many documents have limited discrimination power, and for this reason they need

to be de-emphasized. Thisis commonly done [37] by multiplying the frequency of each termi by log(N/df ;), where
N isthetotal number of documentsin the collection, and df; isthe number of documentsthat contain theithterm (i.e.,

document frequency). This leads to the tf-idf representation of the document, i.e.,

Oiigr = (tf log(N/dfy), tfo log(N/df5), . .., tf,, log(N/df ).

To account for documents of different lengths, the length of each document vector is normalized so that it is of unit
length (|| dgigr]| = 1), that is each document is a vector in the unit hypersphere. In the rest of the paper, we will assume
that the vector representation for each document has been weighted using tf-idf and it has been normalized so that it is
of unit length.

Similarity Measures Over the years, two prominent ways have been proposed to compute the similarity between
two documents d; and d;. Thefirst method is based on the commonly used cosine function [37] given by

ditdj

cos(di, dj) = ——————
C T diid |

D
and since the document vectors are of unit length, the above formulasimplifiesto cos(d;, dj) = di'd;. This measure
becomes one if the documentsare identical, and zero if thereis nothing in common between them (i.e., the vectors are
orthogonal to each other). The second method computes the similarity between the documents using the Euclidean
distance, give by

distch. dj) = /(¢ — d)'(ch —dj) = i — . @

If the distance is zero, then the documents are identical, and if there is nothing in common between their distance is
/2. Note that besides the fact that one measures similarity and the other measures distance, these measures are quite
similar to each other because the document vectors are of unit length.

Definitions  Through-out this paper we will use the symbols n, m, and k to denote the number of documents, the
number of terms, and the number of clusters, respectively. We will use the symbol Sto denote the set of n documents
that we want to cluster, S;, S, ..., S to denote each one of the k clusters, and n1, n2, ..., ng to denote the sizes of
the corresponding clusters.

Given aset A of documents and their corresponding vector representations, we define the composite vector D A to

be
Da=) d, ©)
deA
and the centroid vector C 5 to be 5
A
Ca=—. 4
[Al

The composite vector D a is nothing more than the sum of all documents vectorsin A, and the centroid C 4 is nothing
more than the vector obtained by averaging the weights of the various terms present in the documents of A. Note that



even though the document vectors are of length one, the centroid vectors will not necessarily be of unit length.

Vector Properties By using the cosine function as the measure of similarity between documents we can take
advantage of a number of propertiesinvolving the composite and centroid vectors of a set of documents. In particular,
if § and §j are two sets of unit-length documents containing nj and n; documents respectively, and Dj, Dj and C;,
C; aretheir corresponding composite and centroid vectors then the following is true:

1. The sum of the pair-wise similarities between the documentsin S and the document in S; is equal to D;'D;.
That is,
> cos(dg.d)= D dg'd =Di'Dj. (5)

dqeDi.dreDj dqeDi.dreDj
2. The sum of the pair-wise similarities between the documentsin S; isequal to || Dj||2. That s,

Y cos(dg,d)= Y dg'de =Di'Di = |IDi || (6)
dq.dr €Dj dg,dr€Dj

Note that this equation includes the pairwise similarities involving the same pairs of vectors.

3 Document Clustering

At a high-level the problem of of clustering is defined as follows. Given a set S of n documents, we would like to
partition them into a pre-determined number of k subsets S1, S, ..., &, such that the documents assigned to each
subset are more similar to each other than the documents assigned to different subsets.

As discussed in the introduction, our focus in this paper is to study the suitability of various clustering criterion
functionsin the context of partitional document clustering algorithms. Consequently, the clustering problem becomes
that of given a particular clustering criterion function C, compute a k-way clustering solution such that the value of C
is optimized. In the rest of this section we first present a number of different criterion functions that can be used to
both evaluate and drive the clustering process, followed by a description of our optimization algorithms.

3.1 Clustering Criterion Functions

3.1.1 Internal Criterion Functions

This class of clustering criterion functions focuses on producing a clustering solution that optimizes a particular cri-
terion function that is defined over the documents that are part of each cluster and does not take into account the
documents assigned to different clusters. Dueto this intra-cluster view of the clustering process we will refer to these
criterion functions asinternal.

The first internal criterion function that we will study maximizes the sum of the average pairwise similarities
between the documents assigned to each cluster, weighted according to the size of each cluster. Specificaly, if we use
the cosine function to measure the similarity between documents, then we want the clustering solution to optimize the
following criterion function:

K
1
maximize 11=an = Z cos(di, dj) | - 7

=1 N7 4. des

By using Equation 6, the above formula can be re-written as:

K 2
D
Loy IO

=

Note that our definition of Z1 includes the self-similarities between the documents of each cluster. The Z; criterion



function is similar to that used in the context of hierarchical agglomerative clustering that uses the group-average
heuristic to determine which pair of clusters to merge next.

The second criterion function that we will study is used by the popular vector-space variant of the K -means algo-
rithm [7, 30, 10, 39, 23]. In this algorithm each cluster is represented by its centroid vector and the goal is to find
the clustering solution that maximizes the similarity between each document and the centroid of the cluster that is
assigned to. Specifically, if we use the cosine function to measure the similarity between a document and a centroid,
then the criterion function becomes the following:

k
maximize 7, = Z Z cos(d;, Cr). (8)
r=1deS
Thisformulacan be re-written as follows:

k ditCr k k k
2= 2 2 G T Y e ; il

1d r=1

Comparing the Z, criterion function with Z; we can see that the essential difference between these criterion functions
is that 7, scales the within-cluster similarity by the || D; || term as opposed to n, term used by Z1. Theterm ||D; || is
nothing morethan the square-root of the pairwise similarity between al thedocument in S;, and will tend to emphasize
the importance of clusters (beyond the || D, |2 term) whose documents have smaller pairwise similarities compared to
clusters with higher pair-wise similarities. Also note that if the similarity between a document and the centroid vector
of its cluster is defined as just the dot-product of these vectors, then we will get back the Z 1 criterion function.

Finally, the last internal criterion function that we will study is that used by the traditional K-means agorithm.
This criterion function uses the Euclidean distance to determine which documents should be clustered together, and
determines the overall quality of the clustering solution by using the sum-of-squared-errors function. In particular,
this criterion is defined as follows:

k
minimize Zz = Z Z Idi —Cr |12 9)
r=1dieS
By some simple agebraic manipulations[12], the above equation can be rewritten as:

k

1
T3=)Y = > ld —dj|? (10)
r=1

'ddjes
which shows that the Z3 criterion function is similar in nature to 71 but instead of using similaritiesit is expressed in
terms of squared distances. Now, from basi c trigonometric properties we have that
lldi — dj || = sin*(dh, dj) + (L — cos(di, dj))* = 2(1 — cos(d;, d})),
and using this relation, Equation 10 can be re-written as.

kK kK kK
zgzzi > 21— cos(di. dj)) =2 an—zi > cos(di. dj) | =2(n—1Iy).

r=1 ™ g des =1 r=1 ™ g des
Thus, minimizing 73 is the same as maximizing Z1. For this reason, we will not discuss Z3 any further.

3.1.2 External Criterion Functions

Unlikeinternal criterion functions, external criterion functions derive the clustering solution by focusing on optimizing
afunction that is based on how the various clusters are different from each other. Due to thisinter-cluster view of the
clustering process we will refer to these criterion functions as external.



It is quite hard to define external criterion functions that lead to meaningful clustering solutions. For example, it
may appear that an intuitive external function may be derived by requiring that the centroid vectors of the different
clusters are as mutually orthogonal as possible, i.e., they contain documents that share very few terms across the
different clusters. However, for many problems this criterion function has trivia solutions that can be achieved by
assigning to the first k — 1 clusters a single document that shares very few terms with the rest, and then assigning the
rest of the documentsto the kth cluster.

For this reason, the externa function that we will study tries to separate the documents of each cluster from the
entire collection, as opposed trying to separate the documents among the different clusters. In particular, our external

criterion function is defined as ’

minimize Z ny cos(Cy, C), (11)
r=1

where C is the centroid vector of the entire collection. From this equation we can see that we try to minimize the
cosine between the centroid vector of each cluster to the centroid vector of the entire collection. By minimizing the
cosine we essentially try to increase the angle between them as much as possible. Also note that the contribution of
each cluster is weighted based on the cluster size, so that larger clusters will weight heavier in the overall clustering
solution. Thisexternal criterion function was motivated by multiple discriminant analysis and is similar to minimizing
the trace of the between-cluster scatter matrix [12, 41]. Equation 11 can be re-written as

k k t k k t
G 'C 1 D,'D
§ncos(C,C) En E En—,
S e e |Dr||||D|| IDI (,:1 r||Dr||>

r=1

where D isthe composite vector of the entire document collection. Note that since 1/||D|| is constant irrespective of
the clustering solution the criterion function can be re-stated as:

k t
. D,'D
minimize &1 = E ny ”[r) I
r

(12)

As we can see from Equation 12, even-though our initial motivation was to define an external criterion function,
because we used the cosine function to measure the separation between the cluster and the entire collection, the
criterion function does take into account the within-cluster similarity of the documents (due to the || D || term). Thus,
&1 isactually ahybrid criterion function that combines both external as well asinternal characteristics of the clusters.

Another external criterion function can be defined with respect to the Euclidean distance function and the squared-
errors of the centroid vectors as follows:

K
maximize €2 =Y n;||C; — CJ|%. (13)
r=1

However, it can be shown that maximizing £ is identical to minimizing Z3 [12], and we will not consider it any
further.

3.1.3 Hybrid Criterion Functions

The various criterion functions we described so far focused only on optimizing a single criterion function the was
either defined in terms on how documents assigned to each cluster are related together, or on how the documents
assigned to each cluster are related with the entire collection. Inthefirst case, they tried to maximize various measures
of similarity over the documentsin each cluster, and in the second case, they tried to minimize the similarity between
the cluster’s documents and the collection. However, the various clustering criterion function can be combined to
define a set of hybrid criterion functions that simultaneously optimize multiple individual criterion functions.

In our study, we will focus on two hybrid criterion function that are obtained by combining criterion 7 ; with &1,



and 7 with &1, respectively. Formally, thefirst criterion functionis

T k D 2 n
maximize Hi = -1 D r—1 IIDr 15/

& YK nD'D/ID |

(14)

and the second is

T k D
maximize Ho = =2 = > r=1 IDrl

& Yr_ DD/
Note that since £1 is minimized, both 1 and 72 need to be maximized as they are inversely related to £1.

(15)

3.1.4 Graph Based Criterion Functions

Thevariouscriterion functionsthat we described so far, view each document asamultidimensional vector. An aternate
way of viewing the relations between the documents is to use graphs. In particular, two types of graphs have been
proposed for modeling the document in the context of clustering. The first graph is nothing more than the graph
obtained by computing the pair-wise similarities between the documents, and the second graph is obtained by viewing
the documents and the terms as a bipartite graph.

Given a collection of n documents S, the similarity graph G s is obtained by modeling each document as a vertex,
and having an edge between each pair of vertices whose weight is equal to the similarity between the corresponding
documents. Viewing the documents in this fashion, a number of internal, external, or combined criterion functions
can be defined that measure the overall clustering quality. In our study we will investigate one such criterion function
called MinMaxCut, that was proposed recently [11]. MinMaxCut falls under the category of criterion functions that
combine both the internal and external views of the clustering process and is defined as[11]

K aut(§.S-S)

minimize : ’
r=1 Zdi,djeS, sim(d;, dj)

wherecut(S, S— S ) isthe edge-cut between the verticesin S; to therest of the verticesinthe graph S— S;. The edge-
cut between two sets of vertices A and B is defined to be the sum of the edges connecting verticesin A to verticesin
B. The motivation behind this criterion function is that the clustering process can be viewed as that of partitioning the
documents into groups by minimizing the edge-cut of each partition. However, for reasons similar to those discussed
in Section 3.1.2, such an externa criterion may have trivial solutions, and for this reason each edge-cut is scaled by
the sum of the internal edges. As shown in [11], this scaling leads to better balanced clustering solutions.

If we use the cosine function to measure the similarity between the documents, and Equations 5 and 6, then the
above criterion function can be re-written as

K g k
ZdieS,djeS—S cos(d, dj) _ Z DY (D —2Dr) _ Z DrtD2 k
e Zdi,djes cos(d;, dj) = Dl = ID |l

and since k is constant, the criterion function can be ssimplified to

k t

L D,'D

minimize G1 = E D ”2.
r=1 r

(16)

An alternate graph model views the various documents and their terms as a bipartite graph G, = (V, E), whereV
consists of two sets Vg and V;. The vertex set Vy correspondsto the documents whereas the vertex set V; corresponds
to the terms. In this modél, if the i th document contains the jth term, there is an edge connecting the corresponding
i th vertex of Vg to the jth vertex of V;. The weights of these edges are set using the tf-idf model discussed in Section 2.
Given such abipartite graph, the problem of clustering can be viewed as that of computing a simultaneous partitioning
of the documents and the terms so that a criterion function defined on the edge-cut is optimized. In our study we
will focus on a particular edge-cut based criterion function called the normalized cut, which was recently used in the



context of this bipartite graph model for document clustering [46, 9]. The normalized cut criterion function is defined
as
K\ cut(Vr,V — Vi)

minimize Go = ,
; W(Vp)

(17)

where V; isthe set of vertices assigned to the rth cluster, and W(V; ) is the sum of the weights of the adjacency lists
of the vertices assigned to ther th cluster. Note that the r th cluster will contain vertices from both the V4 and V4, i.e,,
both documents as well as terms. The key motivation behind this representation and criterion function is to compute
aclustering that groups together documents as well as the terms associated with these documents. Also, note that the
various W(V;) quantities are used primarily as normalization factors, to ensure that the optimization of the criterion
function does not lead to trivial solutions. Its purposeis similar to the || D, ||? factor used in G1 (Equation 16).

3.2 Criterion Function Optimization

There are many ways that the various criterion functions described in the previous section can be optimized. A
common way of performing this optimizationis to use a greedy strategy. Such greedy approaches are commonly used
in the context of partitional clustering algorithms (e.g., K-means), and for many criterion functionsit has been shown
that they converge to alocal minima. An aternate way is to use more powerful optimizers such as those based on
the spectral properties of the document’s similarity matrix [47] or document-term matrix [46, 9], or various multilevel
optimization methods [26, 25]. However, such optimization methods have only been developed for a subset of the
various criterion functions that are used in our study. For this reason, in our study, the various criterion functionswere
optimized using a greedy strategy. This was done primarily to ensure that the optimizer was equally powerful (or
weak), regardless of the particular criterion function.

Our greedy optimizer consists of two phases: (i) initial clustering, and (ii) cluster refinement. In the initia
clustering phase, a clustering solution is computed as follows. If k is the number of desired clusters, k documents are
randomly selected to form the seeds of these clusters. The similarity of each document to each of these k seeds is
computed, and each document is assigned to the cluster corresponding to its most similar seed. The similarity between
documents and seeds is determined using the cosine measure of the corresponding document vectors. This approach
leadsto aninitial clustering solution for al but the G criterion function. For G2 the above approach will only produce
aninitial partitioning of Vq (i.e., the document vertices) and does not producean initial partitioning of V1 (i.e., theterm
vertices). Our algorithm obtains an initial partitioning of V¢ by inducing it from the partitioning of V4. Thisis done
as follows. For each term-vertex v, we compute the edge-cut of v to each one of the k partitions of V4, and assign v
to the partition the corresponds to the highest cut. In other words, if we look at the column corresponding to v in the
document-term matrix, and sum-up the various weights of this column according to the partitioning of the rows, then
v isassigned to the partition that has the highest sum. Note that by assigning v to that partition, the total edge-cut due
to v is minimized.

The goal of the cluster refinement phase is to take the initial clustering solution and iteratively refine it. Since the
various criterion functions have different characteristics, depending on the particular criterion function we use two
different refinement strategies.

The refinement strategy that we used for 71, 7o, £1, H1, H2, and G1 is the following. It consists of a number of
iterations. During each iteration, the documents are visited in a random order. For each document, d;, we compute
the change in the value of the criterion function obtained by moving d; to one of the other k — 1 clusters. If there
exist some moves that lead to an improvement in the overall value of the criterion function, then d; is moved to the
cluster that leads to the highest improvement. If no such cluster exists, d; remainsin the cluster that it already belongs
to. The refinement phase ends, as soon as we perform an iteration in which no documents moved between clusters.
Note that unlike the traditional refinement approach used by K -means type of agorithms, the above algorithm moves
a document as soon as it is determined that it will lead to an improvement in the value of the criterion function. This
type of refinement algorithms are often called incremental [12]. Since each move directly optimizes the particular
criterion function, this refinement strategy always converges to a local minima. Furthermore, because the various
criterion functions that use this refinement strategy are defined in terms of cluster composite and centroid vectors, the



change in the value of the criterion functions as aresult of single document moves can be computed efficiently.

The refinement strategy that we used for the G2 criterion function is based on aternating the cluster refinement
between document-verticesand term-vertices, that was used in the past for partitioning bipartite graphs[29]. Similarly
to the other two refinement strategies, it consists of a number of iterations but each iteration consists of two steps. In
thefirst step, the documents are visited in arandom order. For each document, d;, we compute the changein Go that is
obtained by moving d; to one of the other k — 1 clusters. If there exist some movesthat decrease G 2, then d; is moved
to the cluster that leads to the highest reduction. If no such cluster exists, di remains in the cluster that it already
belongsto. In the second step, the terms are visited in a random order. For each term, t j, we compute the change in
G» that is obtained by moving t; to one of the other k — 1 clusters. If there exist some moves that decrease G 2, then
t; is moved to the cluster that leads to the highest reduction. If no such cluster exists, tj remainsin the cluster that it
aready belongsto. The refinement phase ends, as soon as we perform an iteration in which no documents and terms
are moved between clusters. As it was with the first refinement strategy, this approach will also converge to a local
minima.

The agorithms used during the refinement phase are greedy in nature, they are not guaranteed to converge to a
globa minima, and the local minima solution they obtain depends on the particular set of seed documents that were
selected to obtain the initial clustering. To eliminate some of this sensitivity, the overall processis repeated a number
of times. That is, we compute N different clustering solutions (i.e., initia clustering followed by cluster refinement),
and the one that achieves the best value for the particular criterion function is kept. In all of our experiments, we used
N = 10. For the rest of this discussion when we refer to the clustering solution we will mean the solution that was
obtained by selecting the best out of these N potentially different solutions.

4 Experimental Results

We experimentally evaluated the performance of the different clustering criterion functions on a number of different
datasets. In the rest of this section we first describe the various datasets and our experimental methodol ogy, followed
by a description of the experimental results.

4.1 Document Collections

In our experiments, we used a total of fifteen different datasets®, whose general characteristics are summarized in
Table 1. The smallest of these datasets contained 878 documents and the largest contained 11,162 documents. To
ensure diversity in the datasets, we obtained them from different sources. For all data sets, we used a stop-list to
remove common words, and the words were stemmed using Porter’s suffix-stripping algorithm [36]. Moreover, any
term that occurs in fewer than two documents was eliminated.

The classic dataset was obtained by combining the CACM, CISI, CRANFIELD, and MEDLINE abstracts that
were used in the past to evaluate various information retrieval systems®. In this data set, each individual set of ab-
stracts formed one of the four classes. The fbis dataset is from the Foreign Broadcast Information Service data of
TREC-5 [42], and the classes correspond to the categorization used in that collection. The hitech, reviews, and sports
datasets were derived from the San Jose M ercury newspaper articles that are distributed as part of the TREC collection
(TIPSTER Vol. 3). Each one of these datasets were constructed by selecting documents that are part of certain topics
in which the various articles were categorized (based on the DESCRIPT tag). The hitech dataset contained documents
about computers, electronics, health, medical, research, and technology; the reviews dataset contained documents
about food, movies, music, radio, and restaurants; and the sports dataset contained documents about baseball, basket-
ball, bicycling, boxing, football, golfing, and hockey. In selecting these documents we ensured that no two documents
share the same DESCRIPT tag (which can contain multiple categories). The lal2 dataset was obtained from articles
of the Los Angeles Times that was used in TREC-5 [42]. The categories correspond to the desk of the paper that each
article appeared and include documents from the entertainment, financial, foreign, metro, national, and sports desks.

3The datasets are available online at http://www.cs.umn.edu/"karypis/cluto/files/datasets.tar.gz.
4They are are available from ftp://ftp.cs.cornell.edu/pub/smart.



Data Source # of documents | #of terms | # of classes
classic CACM/CISI/CRANFIELD/MEDLINE 7089 12009 4
fbis FBIS (TREC) 2463 12674 17
hitech San Jose Mercury (TREC) 2301 13170 6
reviews | San Jose Mercury (TREC) 4069 23220 5
sports San Jose Mercury (TREC) 8580 18324 7
lal2 LA Times (TREC) 6279 21604 6
new3 TREC 9558 36306 44
tr31 TREC 927 10128 7
tr4l TREC 878 7454 10
ohscal OHSUMED-233445 11162 11465 10
re0 Reuters-21578 1504 2886 13
rel Reuters-21578 1657 3758 25
kla WebACE 2340 13879 20
klb WebACE 2340 13879 6
wap WebACE 1560 8460 20

Table 1: Summary of data sets used to evaluate the various clustering criterion functions.

Datasets new3, tr31, and tr41 are derived from TREC-5 [42], TREC-6 [42], and TREC-7 [42] collections. The classes
of these datasets correspond to the documents that were judged relevant to particular queries. The ohscal dataset was
obtained from the OHSUMED collection [19], which contains 233,445 documents indexed using 14,321 unigue cat-
egories. Our dataset contained documents from the antibodies, carcinoma, DNA, in-vitro, molecular sequence data,
pregnancy, prognosis, receptors, risk factors, and tomography categories. The datasets re0 and rel are from Reuters-
21578 text categorization test collection Distribution 1.0 [32]. We divided the labels into two sets and constructed
data sets accordingly. For each data set, we selected documents that have a single label. Finally, the datasets kla,
klb, and wap are from the WebACE project [34, 16, 3, 4]. Each document corresponds to a web page listed in the
subject hierarchy of Yahoo! [44]. The datasets kla and klb contain exactly the same set of documents but they differ
in how the documents were assigned to different classes. In particular, kla contains a finer-grain categorization than
that contained in k1b.

4.2 Experimental Methodology and Metrics

For each one of the different datasets we obtained a 5-, 10-, 15-, and 20-way clustering solution that optimized
the various clustering criterion functions. The quality of a clustering solution was measured by using two different
metrics that look at the class labels of the documents assigned to each cluster. The first metric is the widely used
entropy measure that 1ooks are how the various classes of documents are distributed within each cluster, and the
second measure is the purity that measures the extend to which each cluster contained documents from primarily one
class.

Given aparticular cluster S of size n, the entropy of this cluster is defined to be

q i
ES) = _Lzﬂ log—*,

logq = n nr

where q is the number of classes in the dataset, and nir is the number of documents of thei th class that were assigned
to the rth cluster. The entropy of the entire clustering solution is then defined to be the sum of the individual cluster
entropies weighted according to the cluster size. That is,

=~

n
Entropy = » | Fr E(S).
r=1

A perfect clustering solution will be the one that leads to clusters that contain documents from only asingle class, in
which case the entropy will be zero. In general, the smaller the entropy values, the better the clustering solutioniis. In
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asimilar fashion, the purity of this cluster is defined to be
1 i
P(S) = — max(n),
Ny |

which is nothing more than the fraction of the overall cluster size that the largest class of documents assigned to that
cluster represents. The overall purity of the clustering solution is obtained as a weighted sum of the individual cluster
purities and is given by

K
Purity = Z % P(S).
r=1

In general, the larger the values of purity, the better the clustering solutioniis.

To eliminate any instances that a particular clustering solution for a particular criterion function got trapped into a
bad local minima, in al of our experiments we actually found ten different clustering solutions. The various entropy
and purity valuesthat are reported in the rest of this section correspond to the average entropy and purity over these ten
different solutions. Asdiscussed in Section 3.2 each of the ten clustering sol utions correspondsto the best solution out
of ten different initial partitioning and refinement phases. As aresult, for each particular value of k and criterion func-
tion we computed 100 clustering solutions. The overall number of experimentsthat we performed was 3* 100* 4* 8* 15
= 144,000, that were completed in about 8 days on a Pentium 111 @600M Hz workstation.

4.3 Evaluation of Direct k-way Clustering

Our first set of experiments was focused on evaluating the quality of the clustering solutions produced by the various
criterion functions when they were used directly to compute a k-way clustering solution. The results for the various
datasets and criterion functions for 5-, 10-, 15-, and 20-way clustering solutions are shown in Table 2, which shows
both the entropy and the purity results for the entire set of experiments. The resultsin this table are provided primarily
for completeness and in order to evaluate the various criterion functions we actually summarized these results by
looking at the average performance of each criterion function over the entire set of datasets.

One way of summarizing the results is to average the entropies (or purities) for each criterion function over the
fifteen different datasets. However, since the clustering quality for different datasets is quite different and since the
quality tends to improve as we increase the number of clusters, we felt that such simple averaging may distort the
overal results. For this reason, our summarization is based on averaging relative entropies, as follows. For each
dataset and value of k, we divided the entropy obtained by a particular criterion function by the smallest entropy
obtained for that particular dataset and value of k over the different criterion functions. These ratios represent the
degree to which a particular criterion function performed worse than the best criterion function for that particular
series of experiments. Note that for different datasets and values of k, the criterion function that achieved the best
solution as measured by entropy may be different. These ratios are less sensitive to the actual entropy values and the
particular value of k. We will refer to these ratios as relative entropies. Now, for each criterion function and value
of k we averaged these relative entropies over the various datasets. A criterion function that has an average relative
entropy close to 1.0 will indicate that this function did the best for most of the datasets. On the other hand, if the
average relative entropy is high, then this criterion function performed poorly. We performed a similar transformation
for the various purity functions. However, since higher values of purity are better, instead of dividing a particular
purity value with the best-achieved purity (i.e., higher purity), we took the opposite ratios. That is, we divided the
best-achieved purity with that achieved by a particular criterion function, and then averaged them over the various
datasets. In this way, the values for the average relative purity can be interpreted in a similar manner as those of the
average relative entropy (they are good if they are close to 1.0 and they are getting worse as they become greater than
1.0).

The values for the average relative entropies and purities for the 5-, 10-, 15-, and 20-way clustering solutions are
shown in Table 3. Furthermore, the rows labeled “Avg” contain the average of these averages over the four sets of
clustering solutions. The entries that are underlined correspond to the criterion functions that performed the best,
whereas the bol dfaced entries correspond to the criterion functions that performed within 2% of the best.
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Entropy
5-way Clustering 10-way Clustering
DataSet | 73 I & | Ha | Hp | G G2 I 1 & | Ha | Hp | G G2
classic 041 0.23 0.21 0.24 0.22 0.29 0.49 0.29 0.20 0.16 0.17 0.17 0.24 0.30

fbis 053 | 051 | 051 | 051 | 051 | 053 | 056 | 043 | 040 | 040 | 040 | 040 | 045 | 0.48
hitech 0.76 | 067 | 064 | 067 | 066 | 068 | 0.70 | 068 | 061 | 0.63 | 0.63 | 0.63 | 0.60 | 0.69
kla 057 | 048 | 050 | 049 | 049 | 048 | 052 | 049 | 039 | 040 | 039 | 039 | 041 | 0.46
kib 027 | 020 | 023 | 020 | 022 | 019 | 018 | 0.20 | 012 | 017 | 014 | 015 | 014 | 0.16
la12 065 | 039 | 038 | 041 | 039 | 047 | 047 | 048 | 038 | 040 | 038 | 039 | 042 | 047

new3 075 | 069 | 070 | O.70 | 069 | 0.70 | 0.76 | 067 | 059 | 0.60 | 060 | 059 | 0.62 | 0.69
ohscal 074 | 066 | 063 | 0.66 | 065 | 065 | 0.69 | 0.63 | 055 | 054 | 055 | 054 | 058 | 0.64
re 055 | 051 | 048 | 051 | 049 | 051 | 056 | 0.41 | 040 | 038 | 037 | 038 | 040 | 051
rel 056 | 049 | 049 | 050 | 048 | 051 | 064 | 049 | 041 | 042 | 041 | 042 | 044 | 056
reviews | 054 | 032 | 036 | 034 | 034 | 031 | 058 | 030 | 027 | 029 | 028 | 0.28 | 0.31 | 0.42
sports 042 | 022 | 022 | 025 | 020 | 023 | 045 | 035 | 021 | 020 | 023 | 018 | 0.29 | 0.35

tr31 045 | 039 | 040 | 039 | 038 | 047 | 036 | 029 | 022 | 023 | 022 | 0.21 | 022 | 032

tr4l 040 | 036 | 034 | 038 | 035 | 036 | 046 | 029 | 024 | 026 | 022 | 025 | 029 | 0.34

wap 055 | 048 | 049 | 049 | 049 | 048 | 054 | 046 | 039 | 042 | 039 | 041 | 041 | 047
15-way Clustering 20-way Clustering

Dalaset | 71 I, &1 | Hi | Ha | &1 G2 I I &S | Ha [ Ho | G G2
clasic | 025 | 019 | 017 | 017 | 017 | 024 | 023 | 028 | 019 | 018 | 0.6 | 0.17 | 0.23 | 0.27

fbis 036 | 034 | 035 | 035 | 034 | 038 | 046 | 034 | 033 | 033 | 032 | 033 | 0.34 | 044
hitech 063 | 060 | 062 | 059 | 061 | 060 | 069 | 061 | 057 | 060 | 0.58 | 059 | 0.59 | 0.68
kla 043 | 035 | 036 | 034 | 035 | 037 | 045 | 038 | 032 | 033 | 031 | 033 | 035 | 0.44
kib 019 | 012 | 015 | 013 | 013 | 013 | 016 | 017 | 012 | 014 | 013 | 013 | 014 | 017
la12 044 | 038 | 038 | 037 | 038 | 039 | 049 | 044 | 037 | 038 | 037 | 038 | 040 | 050

new3 0.60 | 053 | 053 | 053 | 052 | 056 | 065 | 057 | 049 | 049 | 048 | 048 | 052 | 0.61
ohscal 060 | 054 | 054 | 054 | 054 | 056 | 066 | 058 | 053 | 054 | 053 | 054 | 055 | 0.66
re 038 | 037 | 037 | 036 | 037 | 037 | 049 | 036 | 034 | 036 | 034 | 035 | 0.35 | 0.45
rel 043 | 037 | 037 | 036 | 036 | 042 | 053 | 040 | 032 | 033 | 033 | 033 | 0.38 | 0.49
reviews | 028 | 024 | 028 | 025 | 025 | 026 | 037 | 028 | 024 | 026 | 024 | 0.24 | 0.25 | 0.37
sports 028 | 018 | 020 | 020 | 019 | 021 | 033 | 024 | 015 | 019 | 0.17 | 016 | 0.19 | 0.33

tr31 025 | 018 | 022 | 019 | 019 | 022 | 028 | 0.20 | 017 | 020 | 0.17 | 0.16 | 0.20 | 027
trdl 022 | 018 | 020 | 020 | 019 | 022 | 031 | 018 | 015 | 017 | 015 | 0.17 | 018 | 0.28
wap 042 | 035 | 036 | 034 | 035 | 038 | 045 | 037 | 033 | 033 | 032 | 033 | 0.35 | 0.44
Purity
5-way Clustering 10-way Clustering

DataSet | 73 I & Hi | Hp g1 G2 7 g2 & Hi | Hp g1 G2
classic 0.77 | 0.89 0.92 0.89 | 091 | 0.82 0.66 0.85 091 | 093 093 | 093 | 0.87 | 0.83

fbis 050 | 053 | 051 | 052 | 051 | 050 | 052 | 060 | 062 | 061 | 062 | 0.62 | 0.58 | 0.59
hitech 043 | 054 | 056 | 052 | 054 | 049 | 050 | 050 | 058 | 057 | 058 | 057 | 058 | 0.51
kla 042 | 049 | 049 | 049 | 049 | 050 | 047 | 052 | 061 | 062 | 062 | 0.63 | 0.59 | 0.54
kib 084 | 083 | 081 | 084 | 082 | 085 | 086 | 090 | 091 | 087 | 0.89 | 0.89 | 091 | 0.89
la12 053 | 079 | 0.78 | 0.76 | 0.78 | 067 | 0.73 | 068 | 0.78 | 0.77 | 0.78 | 0.78 | 0.74 | 0.73

new3 021 | 024 | 023 | 023 | 024 | 023 | 021 | 028 | 031 | 031 | 031 | 031 | 0.29 | 0.26
ohscal 034 | 041 | 045 | 041 | 043 | 044 | 039 | 047 | 055 | 056 | 056 | 056 | 052 | 0.47
re0 043 | 048 | 056 | 047 | 054 | 052 | 046 | 061 | 063 | 0.66 | 066 | 0.66 | 0.61 | 0.50
rel 0.47 | 053 | 053 | 053 | 053 | 052 | 038 | 055 | 061 | 059 | 062 | 0.61 | 0.60 | 0.48
reviews | 062 | 081 | 079 | 080 | 081 | 082 | 058 | 084 | 084 | 083 | 0.84 | 0.84 | 082 | 0.74
sports 0.66 | 087 | 087 | 080 | 087 | 087 | 065 | 0.74 | 085 | 0.86 | 0.83 | 0.87 | 0.77 | 0.72

tr31 064 | 069 | 068 | 0.69 | 0.70 | 064 | 0.72 | 0.79 | 085 | 0.83 | 085 | 0.86 | 0.86 | 0.77

tr4l 067 | 071 | 071 | 069 | 071 | 0.71 | 063 | 0.77 | 079 | 0.75 | 081 | 0.76 | 0.76 | 0.73

wap 044 | 050 | 049 | 049 | 050 | 051 | 046 | 054 | 060 | 0.60 | 062 | 0.60 | 0.59 | 0.53
15-way Clustering 20-way Clustering

DataSet | 73 Iy & Hi | Ho g1 G2 I Iy & Hi | Ho g1 G2
classic 0.88 | 091 0.93 093 | 093 | 0.87 0.88 0.85 0.92 | 092 093 | 093 | 0.88 | 0.86

fbis 0.66 | 068 | 066 | 068 | 067 | 063 | 061 | 069 | 069 | 0.69 | 069 | 0.69 | 0.68 | 0.62
hitech 053 | 058 | 057 | 058 | 058 | 057 | 051 | 056 | 059 | 058 | 059 | 058 | 057 | 0.51
kla 058 | 066 | 0.67 | 069 | 068 | 063 | 056 | 063 | 0.70 | 068 | 0.71 | 0.70 | 0.66 | 0.58
kib 089 | 092 | 090 | 091 | 091 | 092 | 090 | 0.89 | 092 | 090 | 091 | 091 | 0.90 | 0.90
la12 072 | 078 | 0.78 | 0.79 | 0.78 | 0.77 | O.70 | O.71 | 0.78 | 0.78 | 0.78 | 0.78 | 0.76 | 0.68

new3 034 | 038 | 038 | 037 | 039 | 035 | 030 | 038 | 042 | 043 | 043 | 043 | 039 | 0.35
ohscal 049 | 055 [ 057 | 055 | 056 | 052 | 046 | 052 | 057 | 057 | 058 | 057 | 056 | 0.46
re 064 | 066 | 067 | 067 | 067 | 062 | 053 | 065 | 0.68 | 068 | 068 | 0.68 | 0.65 | 0.57
rel 058 | 064 | 063 | 064 | 065 | 060 | 049 | 060 | 067 | 067 | 0.66 | 0.67 | 0.62 | 0.53
reviews | 0.85 | 086 | 083 | 085 | 085 | 08 | 0.79 | 083 | 087 | 085 | 0.86 | 0.86 | 0.85 | 0.79
sports 079 | 087 | 085 | 085 | 086 | 084 | 0.73 | 081 | 089 | 087 | 0.87 | 0.88 | 0.86 | 0.74

tr31 082 | 087 | 083 | 085 | 086 | 0.85 | 081 | 085 | 0.88 | 0.85 | 0.87 | 0.88 | 0.86 | 0.82
tr4l 083 | 08 | 083 | 082 | 083 | 081 | 0.74 | 085 | 087 | 085 | 0.87 | 0.86 | 0.85 | 0.77
wap 059 | 066 | 067 | 067 | 067 | 062 | 056 | 064 | 068 | 0.70 | 0.70 | 0.69 | 0.66 | 0.57

Table 2: Entropy and Purity for the various datasets and criterion functions for the clustering solutions obtained via direct k-way
clustering.
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Average Relative Entropy
k 2 I &1 Hq Ho g1 G2
5 1361 | 1.041 | 1.044 | 1.069 | 1.033 | 1.092 | 1.333
10 1312 | 1.042 | 1.069 | 1.035 | 1.040 | 1.148 | 1.380
15 1252 | 1.019 | 1.071 | 1.029 | 1.029 | 1.132 | 1.402
20 1236 | 1.018 | 1.086 | 1.022 | 1.035 | 1.139 | 1.486
Avg | 1.290 | 1.030 | 1.068 | 1.039 | 1.034 | 1.128 | 1.400

Average Relative Purity
k In I &1 H1 Ho g1 Go

5 1209 | 1.034 | 1.018 | 1.051 | 1.021 | 1.054 | 1.173
10 1112 | 1.017 | 1.024 | 1.008 | 1.013 | 1.054 | 1.161
15 1.087 | 1.012 | 1.019 | 1.012 | 1.009 | 1.057 | 1.163
20 1076 | 1.007 | 1.017 | 1.006 | 1.009 | 1.047 | 1.165
Avg | 1.121 | 1.018 | 1.019 | 1.019 | 1.013 | 1.053 | 1.166

Table 3: Relative entropies and purities averaged over the different datasets for different criterion functions for the clustering
solutions obtained via direct k-way clustering. Underlined entries represent the best performing scheme, and boldfaced entries
correspond to schemes that performed within 2% of the best.

A number of observations can be made by analyzing the results in Table 3. First, the 71 and the G2 criterion
functions lead to clustering solutions that are consistently worse than the solutions obtained using the other criterion
functions. Thisis true both when the quality of the clustering solution was evaluated using the entropy as well as the
purity measures. They lead to solutions that are 19%—-35% worse in terms of entropy and 8%—15% worse in terms of
purity than the best solution. Second, the 7, and the > criterion functions lead to the best solutions irrespective of
the number of clusters or the measure used to evaluate the clustering quality. Over the entire set of experiments, these
methods are either the best or always within 2% of the best solution. Third, the 7 1 criterion function performs the
next best and overall is within 2% of the best solution for both entropy and purity. Fourth, the £ 1 criterion function
aso performs quite well when the quality is evaluated using purity. Finally, the G 1 criterion function always performs
somewhere in the middie of the road. It is on the average 9% worse in terms of entropy and 4% worse in terms of
purity when compared to the best scheme. Also note that the relative performance of the various criterion functions
remains more-or-less the same for both the entropy- and the purity-based eval uation methods. The only changeis that
the relative differences between the various criterion functions as measured by entropy are somewhat greater when
compared to those measured by purity. This should not be surprising, as the entropy measure takes into account the
entire distribution of the documents in a particular cluster and not just the largest class as it is done by the purity
measure.

4.4 Evaluation of k-way Clustering via Repeated Bisections

Our second set of experiments was focused on evaluating the clustering solutions produced by the various criterion
functions when the overall k-way clustering solution was obtained via a sequence of cluster bisections (RB). In this
approach, ak-way solution is obtained by first bisecting the entire collection. Then, one of the two clustersis selected
and it is further bisected, leading to a total of three clusters. The process of selecting and bisecting a particular
cluster continues until k clusters are obtained. Each of these bisections is performed so that the resulting two-way
clustering solution optimizes a particular criterion function. However, the overall k-way clustering solution will not
necessarily be at alocal minima with respect to the criterion function. Obtaining a k-way clustering solution in this
fashion may be desirable because the resulting solution is hierarchical, and thus it can be easily visualized. The key
step in this algorithm is the method used to select which cluster to bisect next, and a number of different approaches
were described in [39, 23]. In al of our experiments, we chose to select the largest cluster, as this approach lead to
reasonably good and balanced clustering solutions[39].

Table 4 shows the quality of the clustering solutions produced by the various criterion functions for 5-, 10-, 15-,
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Entropy
5-way Clustering 10-way Clustering
DataSet | 73 1 & Hi | Ho g1 G2 I 1 & Hi | Ho g1 G2
classic 038 | 025 | 0.29 032 | 034 | 0.26 0.32 0.19 022 | 017 017 | 0.21 023 [ 015

fbis 050 | 050 | 054 | 049 | 052 | 049 | 053 | 0.40 | 040 | 0.44 | 040 | 044 | 041 | 043
hitech 071 | 063 | 063 | 063 | 062 | 067 | 0.71 | 066 | 059 | 058 | 0.60 | 057 | 0.60 | 0.66
kla 055 | 050 | 049 | 052 | 049 | 050 | 052 | 043 | 042 | 041 | 042 | 040 | 041 | 042
klb 023 | 023 | 023 | 024 | 022 | 022 | 022 | 020 | 018 | 015 | 0.18 | 0.14 | 0.15 | 0.16
la12 061 | 047 | 049 | 044 | 041 | 048 | 042 | 043 | 040 | 042 | 040 | 038 | 041 | 0.39

new3 076 | 070 | 069 | 072 | 069 | 0.70 | 0.74 | 064 | 059 | 059 | 061 | 059 | 058 | 0.64
ohscal 072 | 063 | 064 | 064 | 064 | 063 | 067 | 062 | 054 | 054 | 056 | 054 | 056 | 0.60
re 054 | 051 | 049 | 049 | 049 | 051 | 055 | 041 | 039 | 039 | 039 | 039 | 040 | 0.44
rel 055 | 049 | 052 | 051 | 052 | 050 | 062 | 045 | 042 | 041 | 042 | 041 | 042 | 054
reviews | 039 | 033 | 031 | 034 | 031 | 035 | 055 | 035 | 030 | 024 | 031 | 0.26 | 0.29 | 0.36
sports 039 | 027 | 024 | 030 | 024 | 028 | 036 | 0.28 | 016 | 0.15 | 021 | 013 | 0.15 | 0.27

tr31 035 | 032 | 029 | 032 | 032 | 031 | 035 022 | 017 | 021 | 018 | 018 | 0.18 | 0.23

tr4l 036 | 038 | 043 | 039 | 037 | 036 | 038 | 027 | 028 | 0.30 | 0.26 | 0.28 | 0.27 | 0.24

wap 053 | 050 | 049 | 051 | 048 | 049 | 053 | 043 | 042 | 040 | 043 | 039 | 041 | 044
15-way Clustering 20-way Clustering

DataSet | 73 g2 & Hi | Hp g1 G2 I g2 &1 Hi | Hp g1 G2
classic 0.18 0.21 0.17 0.16 0.20 0.22 0.13 0.18 0.20 0.15 0.16 0.19 0.21 0.13

fbis 036 | 037 | 040 | 035 | 038 | 034 | 039 | 034 | 034 | 038 | 033 | 036 | 033 | 037
hitech 064 | 056 | 056 | 057 | 055 | 057 | 064 | 061 | 053 | 054 | 056 | 053 | 055 | 0.62
kla 038 | 036 | 035 | 035 | 034 | 037 | 038 | 035 | 032 | 032 | 031 | 032 | 0.33 | 0.35
klb 017 | 013 | 014 | 013 | 013 | 014 | 014 | 015 | 012 | 012 | 012 | 012 | 012 | 0.13
lal2 041 | 038 | 039 | 038 | 038 | 038 | 037 | 037 | 037 | 038 | 0.37 | 036 | 038 | 0.36

new3 057 | 054 | 053 | 055 | 053 | 053 | 058 | 052 | 049 | 049 | 050 | 049 | 049 | 053
ohscal 057 | 052 | 052 | 054 | 052 | 053 | 057 | 056 | 051 | 051 | 053 | 051 | 052 | 0.56
re0 036 | 035 | 037 | 036 | 037 | 035 | 039 | 032 | 033 | 032 | 033 | 032 | 0.33 | 0.36
rel 040 | 036 | 035 | 037 | 035 | 037 | 049 | 037 | 033 | 033 | 033 | 032 | 0.34 | 044
reviews | 029 | 025 | 023 | 027 | 023 | 024 | 033 | 026 | 024 | 020 | 025 | 0.21 | 0.24 | 0.32
sports 020 | 012 | 012 | 016 | 012 | 012 | 023 | 019 | 012 | 012 | 014 | 012 | 011 | 0.21

tr31 018 | 015 | 016 | 017 | 017 | 015 | 019 | 016 | 014 | 014 | 015 | 015 | 014 | 017
tr4l 020 | 022 | 023 | 024 | 023 | 023 | 019 | 018 | 016 | 019 | 017 | 018 | 0.16 | 0.16
wap 038 | 034 | 035 | 035 | 034 | 035 | 039 | 035 | 031 | 032 | 032 | 032 | 0.32 | 0.35
Purity
5-way Clustering 10-way Clustering

DataSet 71 e &1 H1 Ho g1 Go 71 e &1 H1 Ho g1 Go
classic 079 | 088 | 085 | 081 | 0.77 | 087 | 080 | 092 | 088 | 093 | 0.93 | 090 | 0.88 | 094

fbis 054 | 051 | 050 | 053 | 050 | 050 | 051 | 064 | 059 | 058 | 062 | 055 | 057 | 0.60
hitech 048 | 059 | 055 | 055 | 058 | 048 | 048 | 053 | 061 | 061 | 056 | 062 | 0.59 | 0.56
lal2 057 | 071 | 069 | 075 | 0.76 | 070 | 0.78 | 0.73 | O0.77 | 0.74 | 0.77 | 0.78 | 0.75 | 0.79

new3 020 | 024 | 024 | 022 | 024 | 023 | 022 | 028 | 031 | 032 | 030 | 031 | 032 | 0.28
ohscal 036 | 047 | 045 | 047 | 046 | 047 | 042 | 046 | 060 | 059 | 058 | 059 | 056 | 051
red 050 | 053 | 055 | 052 | 053 | 052 | 047 | 060 | 064 | 064 | 062 | 0.63 | 0.63 | 0.60
rel 048 | 053 | 050 | 053 | 050 | 052 | 040 | 056 | 061 | 062 | 060 | 0.62 | 0.62 | 0.47
reviews | 0.75 | 080 | 083 | 0.79 | 082 | 0.78 | 058 | 0.78 | 0.80 | 0.87 | 0.81 | 0.86 | 0.81 | 0.79
sports 069 | 0.76 | 085 | 0.75 | 0.79 | 079 | 0.71 | O.77 | 088 | 091 | 0.83 | 092 | 0.90 | 0.79

tr31 073 | 0.75 | 0.78 | 0.74 | 074 | 0.75 | 0.74 | 085 | 089 | 0.84 | 0.88 | 0.89 | 0.89 | 0.85

tr4l 070 | 069 | 061 | 069 | 0.73 | 073 | 0.71 | 0.79 | 0.75 | 0.73 | 0.77 | 0.73 | 0.74 | 0.80

wap 045 | 049 | 049 | 047 | 049 | 049 | 046 | 056 | 059 | 0.61 | 056 | 0.62 | 0.59 | 057
15-way Clustering 20-way Clustering

DalaSet | 17 I, &1 | Hi | Ha | &1 G2 I I & | Ha | Ho | G G2
Classic | 092 | 0.89 | 093 | 093 | 090 | 0.88 | 095 | 0.92 | 000 | 0.94 | 0.93 | 091 | 0.89 | 0.95

fbis 0.67 | 062 | 063 | 065 | 063 | 068 | 063 | 069 | 067 | 0.63 | 0.68 | 0.64 | 0.68 | 0.65
hitech 055 | 062 | 062 | 060 | 062 | 061 | 057 | 056 | 063 | 0.62 | 0.60 | 0.64 | 0.61 | 0.58
kla 063 | 066 | 068 | 067 | 069 | 066 | 064 | 066 | 069 | 0.70 | 0.70 | 0.70 | 0.69 | 0.66
kib 089 | 091 | 089 | 090 | 091 | 089 | 090 | 090 [ 091 | 091 | 091 | 092 | 092 | 0.91
la12 074 | 078 | 0.77 | 0.78 | 0.78 | 0.76 | 0.79 | 0.77 | 0.78 | 0.77 | 0.78 | 0.79 | 0.76 | 0.79

new3 033 | 037 | 038 | 036 | 038 | 037 | 033 | 038 | 042 | 041 | 042 | 042 | 041 | 0.38
ohscal 052 | 061 | 062 | 059 | 062 | 060 | 052 | 052 | 062 | 062 | 059 | 062 | 0.60 | 0.54
re 064 | 067 | 064 | 064 | 064 | 066 | 064 | 067 | 0.69 | 068 | 0.66 | 069 | 0.68 | 0.66
rel 060 | 065 | 065 | 063 | 066 | 065 | 051 | 062 | 0.68 | 0.67 | 0.67 | 068 | 0.67 | 0.55
reviews | 0.83 | 086 | 087 | 084 | 087 | 087 | 081 | 084 | 087 | 0.89 | 0.85 | 0.88 | 0.87 | 0.81
sports 085 | 090 | 093 | 089 | 092 | 092 | 083 | 086 | 090 | 093 | 090 | 092 | 0.93 | 0.85

tr31 087 | 089 | 089 | 088 | 089 | 090 | 087 | 0.88 | 090 | 0.90 | 089 | 0.89 | 0.90 | 0.88
tr4l 083 | 079 | 078 | 0.78 | 0.78 | 0.78 | 085 | 084 | 086 | 082 | 0.85 | 0.83 | 0.86 | 0.87
wap 062 | 067 | 068 | 067 | 068 | 066 | 063 | 0.66 | 069 | 0.70 | 069 | 0.70 | 0.69 | 0.66

Table 4: Entropy and Purity for the various datasets and criterion functions for the clustering solutions obtained via repeated
bisections.
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and 20-way clustering, when these sol utions were obtained via repeated bisections. Again, these results are primarily
provided for completeness and our discussion will focus on the average relative entropies and purities for the various
clustering solutions shown in Table 5. The values in this table were obtained by using exactly the same procedure
discussed in Section 4.3 for averaging the results of Table 4.

Average Relative Entropy
k 2 I &1 Hq Ho g1 G2
5 1.207 | 1.050 | 1.060 | 1.083 | 1.049 | 1.053 | 1.191
10 1243 | 1.112 | 1.083 | 1.129 | 1.056 | 1.106 | 1.221
15 1.190 | 1.085 | 1.077 | 1.102 | 1.079 | 1.085 | 1.205
20 1183 | 1.070 | 1.057 | 1.085 | 1.072 | 1.075 | 1.209
Avg | 1.206 | 1.079 | 1.069 | 1.100 | 1.064 | 1.080 | 1.207

Average Relative Purity
k 2 I &1 Hq Ho g1 G2

5 1137 | 1.035 | 1.047 | 1.055 | 1.041 | 1.050 | 1.127
10 1.099 | 1.039 | 1.030 | 1.051 | 1.024 | 1.043 | 1.089
15 1.077 | 1.029 | 1.022 | 1.038 | 1.021 | 1.029 | 1.081
20 1.063 | 1.016 | 1.018 | 1.025 | 1.014 | 1.021 | 1.068
Avg | 1.094 | 1.030 | 1.030 | 1.042 | 1.025 | 1.036 | 1.091

Table 5: Relative entropies and purities averaged over the different datasets for different criterion functions for the clustering solu-
tions obtained via repeated bisections. Underlined entries represent the best performing scheme, and boldfaced entries correspond
to schemes that performed within 2% of the best.

A number of observations can be made by analyzing these results. First, the Z1 and G2 criterion functions lead to
the worse clustering solutions, both in terms of entropy and in terms of purity. Second, the H > criterion function leads
to the best overall solutions, whereasthe 7, £1, and G4 criterion functions are within 2% of the best. The H 1 criterion
function performswithin 2% of the best solution when the quality is measured using purity, and it is about 3.3% from
the best when the quality is measured using entropy. These results are in general consistent with those obtained for
direct k-way clustering but in the case of repeated bisections, there is a reduction in the relative difference between
the best and the worst schemes. For example, in terms of entropy, G2 is only 13% worse than the best (compared to
35% for direct k-way). Similar trends can be observed for the other criterion functions and for purity. This relative
improvement becomes most apparent for the G 1 criterion function that now almost always performs within 2% of the
best. The reason for these improvements will be discussed in Section 5. Also, another interesting observation is that
the average relative entropies (and purities) for repeated bisections are higher than the corresponding results obtained
for direct k-way. This indicates that there is a higher degree of variation between the relative performance of the
various criterion functions for the different data sets.

Finaly, Figure 1 compares the quality of the clustering solutions obtained via direct k-way clustering to those
obtained via repeated bisections. These plots were obtained by dividing the entropy (or purity) achieved by the direct
k-way approach (Table 2) with that of the entropy (or purity) achieved by the RB approach, and then averaging these
ratios over the fifteen data sets for each one of the criterion functions and number of clusters. Since lower entropy
values are better, ratios that are greater than one indicate that the RB approach leads to better solutions than direct
k-way and vice versa. Similarly, since higher purity values are better, ratios that are smaller than one indicate the RB
approach leads to better solutions than direct k-way.

Looking at the plotsin Figure 1 we can make a number of observations. First, in terms of both entropy and purity,
the 71, G1, and G criterion functions lead to worse solutions with direct k-way than with RB clustering. Second, for
the remaining criterion functions, the relative performance appears to be sensitive on the number of clusters. For small
number of clusters, the direct k-way approach tends to lead to better solutions; however, as the number of clusters
increases the RB approach tends to outperform direct k-way. In fact, this sensitivity on the number of clusters appears
to be true for al eight clustering criterion functions, and the main difference has to do with how quickly the quality
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Figure 1: The relative performance of direct k-way clustering over that of repeated bisections (RB) averaged over the different
datasets, for the entropy and purity measures.

of the direct k-way clustering solution degrades. Third, the Z», #1, and H criterion functions appear to be the |east
sensitive, as their relative performance does not change significantly between direct k-way and RB.

The fact that for many of the clustering criterion functions the quality of the solutions obtained via repeated bi-
sections is better than that achieved by direct k-way clustering is both surprising and alarming. This is because,
even-though the solution obtained by the RB approach is not even at a local minima with respect to the particular
criterion function, it leads to qualitatively better clusters. Intuitively, we expected that direct k-way will be strictly
better than RB and the fact that this does not happen suggests that there may be some problems with some of the
criterion functions. Thiswill be further discussed and analyzed in Section 5.

4.5 Evaluation of k-way Clustering via Repeated Bisections followed by k-way Re-
finement

To further investigate the surprising behavior of the RB-based clustering approach we performed a sequence of ex-
periments in which the final solution obtained by the RB-approach for a particular criterion functions, was further
refined using a greedy k-way refinement algorithm whose goal was to optimize the particular criterion function. The
k-way refinement algorithm that we used is identical to that described in Section 3.2. We will refer to this scheme as
RB-k-way. The detailed experimental results from this sequence of experimentsis shown in Table 6, and the summary
of these resultsin terms of average relative entropies and puritiesis shown in Table 7.

Comparing the relative performance of the various criterion functionswe can see that they are more similar to those
of direct k-way (Table 3) than those of the RB-based approach (Table 5). In particular, Z 2, £1, H1, and H2 tend to
outperform the rest, with Z, doing the best in terms of entropy and H > doing the best in terms of purity. Also, we can
seethat both 71, G1, and G, are considerably worse than the best scheme. Figure 2 comparesthe relative quality of the
RB-k-way solutions to the solutions obtained by the RB-based scheme. These plots were generated using the same
method for generating the plotsin Figure 1. Looking at these results we can see that by optimizingthe 7 1, £1, G1, and
G- criterion functions, the quality of the solutions become worse, especially for large number of clusters. The largest
degradation happensfor G1 and G,. On the other hand, as we optimize either Z,, 1, or H2, the overal cluster quality
changes only slightly (sometimesit gets better and sometimesit gets worse). These results verify the observationswe
made in Section 4.4 that suggest that the optimization of some of the criterion functions does not necessarily lead to
better quality clusters, especially for large values of k.

5 Discussion & Analysis

The experimental evaluation of the various criterion functions presented in Section 4 show two interesting trends. First,
the quality of the clustering solutions produced by some seemingly similar criterion functions is often substantially
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Entropy
5-way Clustering 10-way Clustering
DataSet | 73 I & | Ha | Hp | G G2 I 1 & | Ha | Hp | G G2
classic 0.40 0.23 0.21 0.30 0.33 0.26 0.32 0.27 0.23 0.17 0.16 0.18 0.24 0.17

fbis 049 | 050 | 051 | 048 | 050 | 053 | 055 | 039 | 039 | 042 | 040 | 042 | 043 | 048
hitech 075 | 064 | 064 | 066 | 062 | 067 | 0.72 | 067 | 059 | 061 | 061 | 059 | 0.62 | 0.67
kla 055 | 049 | 050 | 051 | 049 | 048 | 052 | 0.44 | 040 | 042 | 040 | 040 | 041 | 042
kib 023 | 022 | 024 | 023 | 023 | 019 | 021 | 0.22 | 015 | 017 | 017 | 016 | 013 | 0.15
la12 0.65 | 047 | 046 | 041 | 040 | 053 | 044 | 047 | 039 | 040 | 037 | 038 | 041 | 043

new3 076 | 069 | 069 | 071 | 069 | 071 | 075 | 065 | 058 | 059 | 060 | 059 | 0.61 | 0.68
ohscal 075 | 061 | 062 | 061 | 061 | 061 | 068 | 0.63 | 0.54 | 053 | 056 | 053 | 059 | 0.63
re 054 | 050 | 048 | 049 | 048 | 050 | 056 | 0.42 | 039 | 038 | 0.37 | 037 | 040 | 0.46
rel 058 | 048 | 050 | 050 | 050 | 050 | 0.64 | 0.47 | 042 | 042 | 041 | 041 | 044 | 057
reviews | 039 | 035 | 035 | 035 | 029 | 030 | 058 | 032 | 030 | 028 | 0.30 | 0.29 | 0.31 | 0.38
sports 044 | 028 | 024 | 033 | 027 | 034 | 040 | 033 | 017 | 019 | 022 | 016 | 0.19 | 0.34

tr31 035 | 031 | 029 | 031 | 030 | 033 | 036 | 020 | 017 | 020 | 0.17 | 0.18 | 0.19 | 0.23

tr4l 037 | 035 | 039 | 036 | 033 | 030 | 038 | 028 | 026 | 028 | 023 | 0.27 | 028 | 0.25

wap 054 | 049 | 050 | 051 | 048 | 048 | 053 | 043 | 039 | 041 | 042 | 040 | 042 | 044
15-way Clustering 20-way Clustering

DataSet | 7y 1 & | Ha | Hp | G G2 7 1 & | Ha | Hp | G G2
classic 023 | 020 | 015 | 016 | 0.17 | 0.23 | 0.17 023 | 019 | 017 | 016 | 017 | 021 | 0.20

fbis 036 | 036 | 037 | 034 | 036 | 038 | 046 | 035 | 033 | 036 | 032 | 035 | 0.33 | 045
hitech 065 | 058 | 059 | 0.60 | 058 | 059 | 066 | 0.62 | 056 | 058 | 0.57 | 057 | 0.58 | 0.66
kla 040 | 033 | 036 | 034 | 034 | 037 | 040 | 038 | 030 | 033 | 030 | 031 | 033 | 0.39
kib 019 | 011 | 017 | 013 | 013 | 013 | 014 | 017 | 011 | 024 | 012 | 012 | 014 | 0.14
la12 044 | 037 | 039 | 036 | 038 | 041 | 043 | 040 | 036 | 038 | 035 | 037 | 040 | 0.44

new3 058 | 052 | 052 | 053 | 051 | 055 | 064 | 052 | 047 | 048 | 047 | 046 | 051 | 0.60
ohscal 059 | 051 | 053 | 053 | 052 | 054 | 064 | 058 | 052 | 053 | 052 | 052 | 056 | 0.64
re 037 | 034 | 036 | 036 | 035 | 033 | 041 | 034 | 032 | 033 | 034 | 032 | 031 | 039
rel 040 | 035 | 036 | 036 | 034 | 041 | 053 | 038 | 032 | 033 | 032 | 032 | 0.39 | 050
reviews | 028 | 025 | 025 | 025 | 024 | 025 | 036 | 026 | 024 | 025 | 025 | 0.22 | 0.24 | 0.37
sports 025 | 017 | 016 | 017 | 017 | 018 | 031 | 023 | 016 | 017 | 0.17 | 016 | 0.19 | 0.32

tr31 019 | 017 | 020 | 018 | 017 | 020 | 026 | 019 | 016 | 018 | 015 | 0.17 | 022 | 0.25
trdl 023 | 021 | 020 | 021 | 021 | 023 | 024 | 021 | 015 | 017 | 015 | 017 | 019 | 024
wap 038 | 032 | 035 | 035 | 034 | 036 | 040 | 036 | 029 | 032 | 032 | 033 | 0.34 | 0.39
Purity
5-way Clustering 10-way Clustering

DataSet | 73 I & Hi | Hp 91 G2 7 D) & Hi | Hp g1 G2
classic 0.78 | 0.89 0.92 0.81 | 0.80 | 0.86 0.80 0.86 0.87 | 092 0.94 | 0.92 0.86 | 0.93

fbis 054 | 051 | 052 | 053 | 050 | 048 | 050 | 064 | 061 | 061 | 063 | 056 | 0.60 | 0.57
hitech 044 | 059 | 057 | 055 | 058 | 050 | 048 | 051 | 060 | 0.60 | 057 | 0.60 | 0.57 | 0.54
kla 044 | 049 | 048 | 047 | 048 | 049 | 047 | 055 | 060 | 0.60 | 060 | 0.61 | 0.59 | 0.60
kib 086 | 080 | 0.80 | 080 | 080 | 084 | 084 | 085 | 087 | 085 | 0.86 | 0.88 | 0.92 | 0.89
la12 053 | 072 | 072 | O.76 | 0.77 | 065 | 0.76 | 068 | 0.78 | 0.77 | 0.79 | 0.78 | 0.77 | 0.74

new3 020 | 024 | 023 | 022 | 024 | 022 | 021 | 029 | 032 | 032 | 030 | 032 | 0.29 | 0.26
ohscal 035 | 048 | 047 | 048 | 047 | 048 | 042 | 048 | 059 | 059 | 057 | 059 | 051 | 0.48
re0 051 | 053 | 056 | 052 | 054 | 052 | 046 | 059 | 062 | 0.66 | 063 | 0.66 | 0.63 | 0.59
rel 043 | 053 | 053 | 053 | 053 | 053 | 038 | 055 | 061 | 061 | 061 | 062 | 0.59 | 0.45
reviews | 0.76 | 079 | 081 | 0.79 | 081 | 083 | 056 | 083 | 084 | 085 | 0.82 | 0.83 | 0.81 | 0.78
sports 064 | 075 | 081 | 072 | 0.76 | 0.72 | 067 | O.76 | 0.88 | 0.87 | 0.83 | 0.90 | 0.87 | 0.74

tr31 072 | 0.76 | 0.79 | 0.76 | 077 | 0.75 | 0.72 | 087 | 088 | 0.87 | 0.89 | 0.88 | 0.90 | 0.85

tr4l 071 | 071 | 062 | 071 | 0.75 | 078 | 0.71 | 0.77 | 0.76 | 0.73 | 0.78 | 0.74 | 0.73 | 0.80

wap 045 | 049 | 049 | 047 | 049 | 050 | 046 | 056 | 061 | 0.60 | 058 | 0.62 | 057 | 057
15-way Clustering 20-way Clustering

DataSet 71 e &1 H1 Ho g1 Go 71 e &1 H1 Ho g1 Go
classic 089 [ 090 | 094 | 094 | 093 | 089 | 093 | 089 | 091 | 093 | 0.94 | 093 | 0.89 | 0.90

fbis 0.66 | 064 | 064 | 066 | 065 | 0.65 | 058 | 068 | 069 | 0.65 | 0.69 | 0.66 | 0.69 | 0.59
hitech 053 | 060 | 060 | 057 | 061 | 059 [ 054 | 055 | 061 | 0.60 | 0.60 | 0.61 | 0.59 | 0.54
kla 058 | 069 | 069 | 068 | 069 | 062 | 063 | 062 | O.71 | 0.70 | 0.72 | 0.71 | 0.69 | 0.64
kib 088 | 093 | 088 | 091 | 091 | 092 | 092 | 089 | 092 | 090 | 091 | 092 | 091 | 092
la12 070 | 079 | 0.77 | O.79 | 0.78 | 073 | 0.73 | 0.74 | 0.79 | 0.78 | 0.80 | 0.79 | 0.75 | 0.72

new3 035 | 038 | 039 | 037 | 039 | 035 | 031 | 040 | 043 | 042 | 043 | 044 | 040 | 0.34
ohscal 052 | 060 | 059 | 058 | 060 | 058 | 047 | 053 | 059 | 059 | 059 | 059 | 053 | 0.47
re 061 | 067 | 067 | 064 | 068 | 066 | 063 | 066 | 0.68 | 068 | 0.67 | 0.70 | 0.69 | 0.64
rel 060 | 066 | 064 | 063 | 066 | 060 | 0.47 | 061 | 068 | 0.67 | 0.67 | 068 | 0.61 | 0.49
reviews | 0.82 | 086 | 0.86 | 086 | 087 | 086 | 0.79 | 083 | 087 | 087 | 0.85 | 0.88 | 0.86 | 0.77
sports 080 | 088 | 090 | 087 | 089 | 088 | 0.76 | 082 | 0.88 | 0.89 | 0.87 | 0.89 | 0.85 | 0.75

tr31 087 | 088 | 087 | 086 | 089 | 0.86 | 083 | 086 | 0.88 | 0.87 | 0.89 | 0.88 | 0.84 | 0.83
tr4l 080 | 081 | 082 | 079 | 081 | 0.79 | 081 | 082 | 088 | 0.85 | 0.86 | 0.85 | 0.85 | 0.80
wap 062 | 068 | 069 | 067 | 069 | 064 | 061 | 065 | 0.71 | 0.71 | 0.70 | 0.70 | 0.67 | 0.63

Table 6: Entropy and Purity for the various datasets and criterion functions for the clustering solutions obtained via repeated
bisections followed by k-way refinement.
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Average Relative Entropy
I I & Ha Ha g1 Go
5 1304 | 1.081 | 1.077 | 1.121 | 1.076 | 1.097 | 1.273
10 1278 | 1.065 | 1.088 | 1.063 | 1.051 | 1.127 | 1.255
15 1234 | 1.037 | 1.089 | 1.057 | 1.046 | 1.140 | 1.334
20 1248 | 1.030 | 1.098 | 1.041 | 1.051 | 1.164 | 1.426
Avg | 1.266 | 1.053 | 1.088 | 1.070 | 1.056 | 1.132 | 1.322

=~

Average Relative Purity
k In I &1 H1 Ho g1 Go

5 1.181 | 1.040 | 1.039 | 1.063 | 1.040 | 1.063 | 1.160
10 1105 | 1.026 | 1.027 | 1.035 | 1.023 | 1.058 | 1.115
15 1092 | 1.015 | 1.017 | 1.027 | 1.008 | 1.051 | 1.133
20 1079 | 1.010 | 1.020 | 1.014 | 1.009 | 1.049 | 1.148
Avg | 1.114 | 1.023 | 1.026 | 1.035 | 1.020 | 1.055 | 1.139

Table 7: Relative entropies and purities averaged over the different datasets for different criterion functions for the clustering
solutions obtained via repeated bisections followed by k-way refinement. Underlined entries represent the best performing scheme,
and boldfaced entries correspond to schemes that performed within 2% of the best.
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Figure 2: The relative performance of repeated bisections-based clustering followed by k-way refinement over that of repeated
bisections alone. The results are averaged over the different datasets, for the entropy and purity measures.

different. For instance, both internal criterion functions, Z1 and 75, try to produce a clustering solution that maximizes
a particular within cluster similarity function. However, 7, performs substantially better than Z;. Thisis aso true for
the £1 and G1 criterion functions, that attempt to minimize a function that takes into account both the within cluster
similarity and the across cluster dissimilarity. However, in most of the experiments, £ 1 tends to perform consistently
better than G1. The second trend is that for many criterion functions, the quality of the solutions produced viarepeated
bisections is in general better than the corresponding solution produced either via direct k-way clustering or after
performing k-way refinement. Furthermore, this performance gap seems to increase with the number of clustersk. In
the remaining of this section we analyze the different criterion functions and explain the cause of these trends.

5.1 Analysis of the Z; and Z, Criterion Functions

Asadtarting point for analyzing the performance of the threeinternal criterion functionsit isimportant to qualitatively
understand how they fail. Table 8 shows the 10-way clustering solutions obtained for the sports dataset using each
one of the three internal criterion functions. The row of each subtable represents a particular cluster, and it shows
the class-distribution of the documents assigned to it. For example, the first cluster for Z; contains 1034 documents
from the “baseball” category and a single document from the “football” category. The columns labeled “ Size” show
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the number of documents assigned to each cluster, whereas the column labeled “Sim” shows the average similarity
between any two documentsin each cluster. The last row of each subtable shows the values for the entropy and purity
measures for the particular clustering solution. Note that these clusterings were computed using the direct k-way
clustering approach.

T, Criterion

cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing
1 | 1035 | 0.098 1034 1
2 594 | 0.125 1 592 1
3 322 | 0.191 321 1
4 653 | 0.127 1 652
5 413 | 0.163 413
6 | 1041 | 0.058 1041
7 465 | 0.166 464 1
8 296 | 0.172 296
9 | 3634 | 0.020 1393 789 694 157 121 145 335
10 127 | 0.268 108 1 17 1

Entropy=0.357, Purity=0.736

T Criterion

cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing
1 475 | 0.087 97 35 143 8 112 64 16
2 384 | 0.129 1 1 381 1
3 | 1508 | 0.032 310 58 1055 11 5 59 10
4 844 | 0.094 1 1 841 1
5 400 | 0.163 1 399
6 835 | 0.097 829 6
7 | 1492 | 0.067 1489 1 2
8 756 | 0.099 2 752 1 1
9 621 | 0.108 618 1 2
10 | 1265 | 0.036 65 560 296 9 5 22 308

Entropy=0.240, Purity=0.824

Table 8: The cluster-class distribution of the clustering solutions for the Z1 and Z criterion functions for the sports dataset.

Looking at the results in Table 8 we can see that both criterion functions produce unbalanced clustering solutions,
i.e. mixtures of large, loose clusters and small, tight clusters. However, 71 behavesdifferently from Z» in two ways. 71
produces solutions in which at least one cluster (the ninth in this example) contains a very large number of documents
from different categories with very low pairwise similarities. One the other hand, Z > does not produce a single very
large cluster of very poor quality. The second qualitative difference between the clusters produced by 7 1 over those
produced by 7 isthat if we exclude the large poor cluster, the remaining of the clusterstend to be quite pure aswell as
relatively tight (i.e., the average similarity between their documentsis high). The Z» criterion function also produces
fairly pure clusters, but they tend to contain somewhat more noise and be less tight. These observations on the nature
of the clustering solutions produced by the two criterion functions also hold for the remaining of the datasets and they
are not specific to the sports dataset.

To analyze this behavior we will focus on the conditions under which the movement of a particular document from
one cluster to another will lead to an improvement in the value of the criterion function. Consider a k-way clustering
solution, let § and S; be two clusters, and d be a document that is initially part of Sj. Furthermore, let ui and p
be the average similarity between the documentsin S and Sj, respectively (i.e., uj = Gi'Ci, and wj = Cthj), and
let 8 and §; be the average similarity between d and the documentsin S; and Sj, respectively (i.e, 8; = d'C;, and
8j = dic i)

Itis shown in Appendix A that according to the Z; criterion function the document d will be moved from S to S
it i — [

5 —dj < >

(18)
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and in the case of the 7> criterion function this move will happen iff

S [m (19)
Ji i
Comparing Equation 18 with Equation 19, we can make two observations that explain the different behavior of
71 and 7. First, when two clusters contain documents that have substantially different average pairwise similarities,
both criterion functions will tend to move some of the peripheral documents of the tight cluster to the loose cluster,
even when these documents are more similar to the tight cluster. That is, without loss of generdlity, if i > uj,
then a document for which §; is small will tend to be moved to Sj, evenif §; < ;. However, what differentiates
the two criterion functions is how small §; can be before such a move can still take place. In the case of 71, even
if 5§ = 0 (i.e., document d has nothing in common with the documents of Sj), d can still be moved to S; as long
asdi < (ui —pj)/2, 1.e,d hasarelatively low average similarity with the other documents of its cluster. On the
other hand, the Z» criterion function will only move d if it has a non-trivial average similarity to the documents of
Sj. In particular, from Equation 19 we have that d will be moved iff §j > & ,/uj/ui. This observation explains the
results shown in Table 8, in which 71’s clustering solution contains nine fairly pure and tight clusters, and a single
large and poor quality cluster. That single cluster acts almost like a garbage collector which attracts all the peripheral
documents of the other clusters.
Second, when §; and §; are relatively small, that is

-1 -1 .
b <=2 and 5 <w Y@ e o=
o

2(Ja — 1) e -1y i
the move condition of 7; can be satisfied more easily than that of Z», (i.e., the range of §; and §; valuesto meet the
move condition of Z; is larger than that of Z). Given the same §j, Z; can move documents with higher §; than Zo.
To this extent, 71 is more powerful to pull the peripheral documents of the tight cluster towards the loose cluster. For
these two reasons, 7, does not lead to clustering solutions in which there exist one single large cluster that contains
peripheral documents from the rest of the clusters and makes those clusters very pure and tight. Moreover, when
documents have rel atively high degree of similarity to other documentsin Sj and S, that is

~1 ~1 i
8j>uja7 and §; > .\/&(a ) where a:ﬂ,

2(Ja - 1) Moa -1 i
7> tends to more frequently move them from the tight cluster to the loose cluster compared to the 7 1 criterion function,
aslong as Equation 19 is satisfied.

To graphically illustrate this Figure 3 shows the range of §; and §; values for which the movement of a particular
document d from theith to the jth cluster leads to an improvement in either the 7 1 or Z, criterion function. The plots
in Figure 3(a) wereobtained using i = .10, uj = 0.05, whereasthe plot in Figure 3(b) were obtained using i1j = .20
and pj = 0.05. For both sets of plots was used nj = n; = 400. The x-axis of the plotsin Figure 3 correspond to § j,
whereas the y-axis correspondsto §;. For both cases, we let these average similarities take values between zero and
one. The variousregionsin the plots of Figure 3 are labeled based on whether or not any of the criterion functionswill
moved to the other cluster, based on the particular set of §; and §; values.

Looking at these plots we can see that thereis aregion of small §; and é; valuesfor which Z; will perform the move
whereZ, will not. These conditionsare the onesthat we aready discuss and are the main reason why 7 1 tendsto create
alarge poor quality cluster and Z, does not. Thereis also aregion for which Z, will perform the move but 71 will not.
Thisis theregion for which §;i > 8 + (ui — wj)/2but 8j/ . /;j > & //wi. That is the average similarity between
document d and cluster S; relative to the square-root of the internal similarity of S; is greater than the corresponding
quantity of §. Moreover, asthe plotsillustrate, the size of this region increases as the difference between the tightness
of the two clustersincreases.

Thejustification for this type of movesisthat d behaves more like the documentsin S (as measured by , /i) than
thedocumentsin S. To that extent, Z, exhibits some dynamic modeling characteristics[24], in the sense that its move
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71 & T, move conditions for uj = 0.10& pj = 0.05 71 & I, move conditions for uj = 0.20& pj = 0.05
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Figure 3: The range of values of §; and &; for which a particular document d will move from the ith to the jth cluster. The first
plot (a) shows the ranges when the average similarity of the documents in the ith and jth cluster are 0.10 and 0.05, respectively.
The second plot (b) shows the ranges when the respective similarities are 0.20 and 0.05. For both cases each of the clusters was
assumed to have 400 documents.

is based both on how close it isto a particular cluster as well as on the properties of the cluster itself. However, even
though the principle of dynamic modeling has been shown to be useful for clustering, it may sometimes lead to errors
as primary evidence of cluster membership (i.e., theactual §; & §; values) are second guessed. This may be one of the
reasons why the Z criterion function leads to clusters that in general are more noisy than the corresponding clusters
of 71, asthe examplein Table 8 illustrates.

5.2 Analysis of the £ and G; Criterion Functions

The £1 and G, criterion functions both measure the quality of the overall clustering solution by taking into account
both the separation between clusters and the tightness of each cluster. However, as the experiments presented in
Section 4 show &1 leadsto better clustering solutionsthat G4 for all three sets of experiments. Furthermore, the highest
performance difference between these two criterion functions occurs during the direct k-way clustering. Table 9 shows
the 10-way clustering solutionsfor the sports data set produced by £1 and G1 that illustrate this differencein the overall
clustering quality. As we can see from these results the £ criterion function leads to clustering solutions that are
considerably more balanced than those produced by the G 1 criterion function. In fact, the solution obtained by the G 1
criterion function exhibits similar characteristics (but to alesser extend) with the corresponding solutions obtained by

the 7 criterion function described in the previous section. It tends to produce a mixture of large and small clusters,

with the smaller clusters being quite tight and the larger clusters being quite loose.

In order to compare the £1 and G criterion functions it is important to rewrite them in a way that makes their
similarities and dissimilarities apparent. Tothisend, let i, be the average similarity between the documentsof ther th
cluster S, and let & be the average similarity between the documentsin S; to the entire set of documents S. Using
these definitions, the £1 criterion function (Equation 12) can be rewritten as

k
&1 = Z ne
r=1

DD &K nen K
DI S e (20)
r
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&1 Criterion

cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing
1 1330 | 0.076 1327 2 1
2 975 | 0.080 3 5 966 1
3 742 | 0.072 15 703 24
4 922 | 0.079 84 8 32 797 1
5 768 | 0.078 760 1 6 1
6 897 | 0.054 6 2 889
7 861 | 0.091 845 0 15 1
8 565 | 0.079 24 525 13 1 2
9 878 | 0.034 93 128 114 4 97 121 321
10 642 | 0.068 255 36 286 7 24 24 10
Entropy=0.203, Purity=0.865
G4 Criterion
cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing
1 519 | 0.146 516 3
2 597 | 0.118 1 595 1
3 | 1436 | 0.033 53 580 357 13 100 20 313
4 720 | 0.105 718 1 1
5 1664 | 0.032 1387 73 7 49 7 63 8
6 871 | 0.101 871
7 1178 | 0.049 6 5 1167
8 728 | 0.111 1 727
9 499 | 0.133 498 1
10 368 | 0.122 80 33 145 19 15 62 14
Entropy=0.239, Purity=0.840

Table 9: The cluster-class distribution of the clustering solutions for the £1 and G criterion functions for the sports dataset.

and the G, criterion function (Equation 16) can be rewritten as

k t k k
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Comparing Equations 20 and 21 we can see that they differ in two ways. Thefirst difference hasto do with the way
they measure the quality of a particular cluster, and the second has to do with the way they combine the individua
cluster quality measures to derive the overall quality of the clustering solution.

Inthe case of £1, the quality of therth cluster isgiven by & /. /iy whereasin the case of G; the quality is measured
as & /ur. Sincefor both &3 and G1, the quality of each cluster isinversely related to either ur or ./pur, both of them
will prefer clustering solutionsin which there are no clusters that are extremely loose (i.e., they have small 1 values).
Now, because large clusters tend to have small ., values, both of the cluster quality measures will tend to produce
solutions that contain reasonably balanced clusters. Furthermore, because iy < 1, we have that o < ,/zr, which
in turn implies that the sensitivity of G1's cluster quality measure on clusters with small 1, vauesis higher than the
corresponding sensitivity of £1. Consequently, due to the way G1 measures the quality of a cluster, we would have
expected it to lead to more balanced clustering solutions than £1, which as the results in Table 9 show it does not
happen. For this reason, the unbalanced clusters produced by G 1 cannot be attributed to this difference.

This suggest that the second difference between £1 and G, that is, the way they combine the individual cluster
quality measures to derive the overall quality of the clustering solution, is the reason for the unbalanced clusters. The
&1 criterion function sumstheindividual cluster qualities weighting them proportionally to the size of each cluster. G 1
performsasimilar summation but each cluster quality isweighted proportionally to theinverse of the size of the cluster.
This weighting scheme is similar in nature to that used in the ratio-cut objective—used widely in graph partitioning.
This difference on how the individual cluster qualities are weighted is the reason why G 1 leads to significantly more
unbalanced clustering solutionsthan £1.

Thisis because of the following reason. Recall from our previous discussion that since the quality measure of each
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cluster is inversely related on .y, the quality measure of large clusters will have large values, as these clusters will
tend to beloose (i.e., ur will be small). Now, in the case of £1, by multiplying the quality measure of a cluster by its
size, it ensuresthat these large loose clusters contribute alot to the overall value of £1's criterion function. Asaresult,
&1 will tend to be optimized when there are no large loose clusters. On the other hand, in the case of G 1, by dividing
the quality measure of alargeloose cluster by its size, it hasthe net effect of decreasing the contribution of this cluster
to the overall value of G1’s criterion function. As aresult, G1 can be optimized at a point in which there exist some
large and loose clusters.

Toillustrate this, we created a new criterion function that is derived from G 1’s cluster quality measure but uses£1's
combining mechanism. That is, this new criterion function G/ is defined as follows:

k
minimize G; = nan Z n2 D |D ”2 (22)
r

r=1

We used G to find a 10-way clustering solution of the sports dataset which is shown in Table 10. Comparing the
clustering solution produced by G to that produced by G1 (Table 9) we can see that G/ ’s solution is more balanced
and it achieves substantially lower entropy.

g1 Criterion

cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing
1 972 | 0.081 948 24
2 948 | 0.075 81 13 61 792 1
3 528 | 0.051 3 107 11 2 86 1 318
4 898 | 0.079 19 861 17 1
5 806 | 0.076 795 1 9 1
6 988 | 0.077 5 2 980 1
7 793 | 0.058 2 791
8 713 | 0.053 46 388 272 2 5
9 586 | 0.061 167 37 180 12 35 144 11
10 | 1348 | 0.075 1346 1 1

Entropy=0.189, Purity=0.862

Table 10: The cluster-class distribution of the clustering solutions for the G criterion function for the sports dataset.

5.3 Analysis of the G, Criterion Function

The various experiments presented in Section 4 showed that the G criterion function consistently led to clustering
solutionsthat were among the worst over the solutions produced by the various criterion functionsthat were considered
in this study. To illustrate how the G2 criterion function fails, Table 11 shows the 10-way clustering solution produced
viadirect k-way clustering on the sports dataset.

Looking at this solution we can see that G» produces solutions that are highly unbalanced. For example, the sixth
cluster contains over 2500 documents from many difference categories, whereas the third cluster contains only 42
documentsthat are primarily from a single category. Note that, the clustering solution produced by G > is very similar
to that produced by the 7 criterion function (Table 8). In fact, for most of the clusters we can find a good one-to-one
mapping between the two schemes.

The nature of G>'s criterion function makesit extremely hard to analyzeit. However, one reason that can potentially
explain the unbalanced clusters produced by G» isthe fact that it uses a normalized-cut inspired approach to trade-off
separation between the clusters (as measured by the cut) versus the size of the respective clusters. It has been shownin
[11] that when the normalized cut approachis used in the context of traditional graph partitioning, it leadsto asolution
that is considerably more unbalanced than that obtained by the G 1 criterion function. However, as our discussion in
Section 5.2 showed, even G1's balancing mechanism often leads to quite unbalanced clustering solutions.
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Go Criterion

cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing
1 491 | 0.096 1 5 485
2 1267 | 0.056 8 5 1244 10
3 42 | 0.293 2 1 3 1 35
4 630 | 0.113 0 627 2 1
5 463 | 0.126 462 1
6 | 2596 | 0.027 1407 283 486 184 42 107 87
7 998 | 0.040 49 486 124 8 79 3 249
8 602 | 0.120 1 601
9 1202 | 0.081 1194 2 1 5
10 289 | 0.198 289
Entropy=0.315, Purity=0.796

Table 11: The cluster-class distribution of the clustering solutions for the G criterion function for the sports dataset.

5.4 Analysis of the H1 and H; Criterion Functions

Thelast set of criterion function that we will focus on are the hybrid criterion functions # 1 and # that were derived
by combining the Z1 and &1 and the Z, and &; criterion functions, respectively. The 10-way clustering solutions
produced by these criterion functions on the sports dataset are shown in Table 12. Looking at the resultsin this table
and comparing them against the results produced by the 7 1, Z», and £1, criterion functions we can see that 1 and 2
lead to clustering solutions that combine the characteristics of their respective pairs of individual criterion functions.

In particular, the H1 criterion function leads to a solution that is considerably more balanced than that of 71 and
somewhat more unbalanced than that of £1. Similarly, #2's solution is also more balanced than Z, and somewhat less

balanced than £1.
71 Criterion

cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing
1 | 1220 | 0.049 60 20 1131 5 2 2
2 724 | 0.106 722 1 1

3 696 | 0.111 1 694 1
4 | 1469 | 0.070 1468 1

5 562 | 0.138 560 2

6 576 | 0.118 574 1 1

7 764 | 0.108 1 1 762

8 | 1000 | 0.045 63 554 370 5 1 7
9 | 1261 | 0.023 397 109 130 36 118 145 326
10 308 | 0.116 289 1 17 1

Entropy=0.221, Purity=0.833
Ho Criterion

cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing
1 | 1462 | 0.997 1457 2 3

2 908 | 0.994 2 2 903 1
3 707 | 0.960 11 679 17

4 831 | 0.957 23 4 8 795 1
5 701 | 0.989 693 1 6 1

6 999 | 0.978 15 7 977

7 830 | 0.986 818 11 1
8 526 | 0.949 17 499 7 1 2
9 997 | 0.321 128 181 149 5 101 113 320
10 619 | 0.428 248 35 265 8 20 32 11

Entropy=0.196, Purity=0.863

Table 12: The cluster-class distribution of the clustering solutions for the 7 1 and > criterion functions for the sports dataset.

Overadl, from the experiments in Section 4 we can see that the quality of the solutions (as measured by entropy)
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produced by 71 tends to be between that of 71 and £1—but closer to that of £1’s; and the solution produced by # 2
tends to be between that of 7, and £1—but closer to that of Z,'s. If the quality is measured in terms of purity, the
performance of 71 relativeto 71 and £1 remains the same, whereas H > tends to outperform both Z, and £;.

To understand how these criterion functions consider the conditions under which a particular document d will move
from its current cluster § to another cluster S;. This document will always be moved (or stay where it is), if each
one of the two criterion functions used to define either # 1 or H, would improve (or degrade) by performing such a
move. The interesting case happens when according to one criterion function d should be moved and according to
the other one d should remain where it is. In that case, the overall decision will depend at how much a particular
criterion function improvesrelative to the degradation of the other function. In general, if such amove leadsto alarge
improvement and a small degradation, it is performed. In order to make such trade-offs possibleit is important for the
pair of criterion functionsinvolved to take roughly the same range of values (i.e., be of the same order). If that is not
true, then improvementsin one criterion function will not be comparable to degradationsin the other.

In the case of the {1 and 2 criterion functions, our studies showed that aslong as k is sufficiently large, both the
71 and Z» criterion functions are of the same order than £1. However, in most cases 77 is closer to £1 that 7;. This
better match between the 7, and £ criterion functions may explain why H > seems to perform better than # 1 relative
to their respective pairs of criterion functions, and why H 1’s solutions are much closer to those of £1 instead of Z;.

5.5 Analysis of Direct k-way Clustering versus Repeated Bisections

As discussed in the beginning of this section, the experiments presented in Section 4 show that for most criterion
functions, for sufficiently large values of k, the clustering solutions produced by repeated bisections are better than the
solutions obtained via direct k-way clustering. We believe thisis because of the following reason.

From our analysis of the 71, 7o, and G1 criterion functions we know that based on the difference between the
tightness (i.e., the average pairwise similarity between the documents in the cluster) of the two clusters, documents
that are naturally part of thetighter cluster will end up moving to thelooser cluster. In other words, the variouscriterion
functionswill tend to produceincorrect clustering results when clusters have different degrees of tightness. Of course,
the degree to which a particular criterion function is sensitive to tightness differences will be different for the various
criterion functions.

Now, when the clustering solution is obtained via repeated bisections, the difference in tightness between each pair
of clusters in successive bisections will tend to be relatively small. Thisis because, each cluster to be bisected, will
tend to be relatively homogeneous (due to the way it was discovered), resulting in a pair of subclusters with small
tightness differences. On the other hand, when the clustering is computed directly or when the final k-way clustering
obtained via a sequence of repeated bisections is refined, there can exist clusters that have significant differencesin
tightness. Whenever there exist such pairs of clusters, most of the criterion functionswill end up moving some of their
documents of the tighter cluster (that are weakly connected to the rest of the documentsin that cluster) to the looser
cluster. Consequently, the final clustering solution can potentially be worse than that obtained via repeated bisections.

To illustrate this behavior we used the Z» criterion function and computed a 15-way clustering solution using
repeated bisections, and then refined this solution by performing a 15-way refinement. These results are shown in
Table 13. The repeated-bisections solution contains some clusters that are quite loose as well as some clusters that are
quite tight. Comparing this solution against the one obtained after performing k-way refinement we can see that the
size of cluster 6 and 8 (which are among the looser clusters) increased substantially, whereas the size of some of the
tighter clusters decreased (e.g., cluster 5, 10, and 14).

Finally, in the case of £1, the reason that the clusters produced by direct k-way clustering are worse than the
corresponding clusters produced via repeated bisections has to do with the tendency of £ 1 to produce solutions that
are balanced. As aresult, the degree of cluster size imbalance is greater when the clusters are obtained via repeated
bisections, than the corresponding imbalance of direct k-way clustering. We believe that this additional constraint of
the k-way clustering is the reason for the somewhat worse performance observed for direct k-way clustering.
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T Criterion - Repeated Bisections

cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing
1 245 | 0.121 243 0 2
2 596 | 0.067 2 1 593
3 485 | 0.097 1 480 3 1
4 333 | 0.080 3 6 3 2 1 318
5 643 | 0.104 642 1
6 674 | 0.047 669 2 1 1 1
7 762 | 0.099 1 760 1
8 826 | 0.045 42 525 247 6 6
9 833 | 0.105 832 1
10 795 | 0.102 1 1 1 791 1
11 579 | 0.061 6 573
12 647 | 0.034 174 34 156 10 119 144 10
13 191 | 0.110 189 2
14 611 | 0.125 608 3
15 360 | 0.168 359 1

Entropy=0.125, Purity=0.904

7o Criterion — After k-way Refinement

cid | Size Sim | baseball | basketbal | football | hockey | boxing | bicycling | golfing

1 292 | 0.120 280 11 1

2 471 | 0.080 1 2 468

3 468 | 0.100 1 464 2 1

4 363 | 0.072 3 7 5 1 6 20 321
5 545 | 0.123 542 1 2

6 1030 | 0.033 832 36 73 18 4 65 2
7 661 | 0.110 1 0 660

8 914 | 0.046 52 514 334 8 1 5
9 822 | 0.105 822

10 771 | 0.105 1 1 769

11 641 | 0.052 2 639

12 447 | 0.091 89 30 139 11 110 60 8
13 250 | 0.105 244 5 1

14 545 | 0.138 540 5

15 360 | 0.168 2 355 3

Entropy=0.168, Purity=0.884

Table 13: The cluster-class distribution of the clustering solutions for the Z» criterion function for the sports dataset, for the
repeated-bisections solution and the repeated-bisections followed by k-way refinement.

6 Concluding Remarks

In this paper we studied eight different global criterion functions for clustering large documents datasets. Four of
these functions (Z1, Z», G1, and G») have been previously proposed for document clustering, whereas the remaining
three (£1, H1, and H2) wereintroduced by us. Our study consisted of a detailed experimental evaluation using fifteen
different datasets and three different approachesto find the desired clusters, followed by a theoretical analysis of the
characteristics of the various criterion functions. Our experiments showed that the criterion functions used by the
traditional K-means algorithm (Z1 & Z3) perform poorly, whereas the criterion function used by the vector-space
variants of the K-means (Z>) lead to reasonably good results that outperform the solutions produced by some recently
proposed criterion functions (G1 and G2). Our three new criterion functions performed reasonably well, with the # »
criterion function achieving the best overall results. Our analysis showed that the performance difference observed by
the various criterion functions can be attributed to the extent to which the criterion functions are sensitive to clusters
of different degrees of tightness, and the extend to which they can lead to reasonably balanced solutions. Moreover,
our analysis was able to identify the deficiencies of the G, criterion function and provide guidance on how to improve
it (G-
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Analysis of Z1’s and Z>’s Document Move Condition

Consider a k-way clustering solution, let § and S; be two of these clusters, and d be a particular document that is
initially part of §, and let Dj, Cj, and Dj, C;j be the composite and centroid vectors of these two clusters, such that
D; and C; contain al the documents of S except d. According to the Z; criterion function (Equation 7) the move of
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dfrom § to Sj will reduce the overall value of the criterion function if and only if

IDi +dlI2 [DjlI? Dil? [Dj+d|?
+ < + .
ni+1 n; nj nj+1

This equation can be rewritten as:

IDi +d|I> |IDi|? IDj +diI> 1IDj 1%

ni +1 ni = nj+1 nj
(Di +d)'(Di+d) DI'Di _ (Dj+d)'(Dj +d) D;'D,
ni +1 ni nj+1 nj
DI'Di +1+2d'D; Di'Di _ D;j'Dj+1+2d'Dj D;'D;
ni +1 N nj+1 nj
2ndtD; +ni — D;'D; 2n;d'Dj +nj — D;'D;
ni(nj +1) = njnj +1)
n: 1 Ni n; 1 n;
2 g9 T e gOG < 2 T O

Now, if we assume that both nj and nj are sufficiently large, then nj /(nj + 1) and nj/(nj + 1) will be close to one,
and 1/(nj + 1), 1/(nj + 1) will be close to zero. Under these assumptions, the variousfactorsinvolving nj and nj can
be eliminated leading to

2d'Ci — Gi'Ci < 2d'Cj - Cj'C;j.

Now, if uj and 1 isthe average similarity between the documentsin §; and Sj, respectively (i.e., uj = G'Ci, and
wj = Cthj), and 8 and §; is the average similarity between d and the documentsin S; and Sj, respectively (i.e.,
8i = d'Cj, and §; = d'C;j), the above equation can be rewritten as

§i —8j < LZMJ (23)

That is, the document d will be moved to the Sj cluster as long as the difference between the average similarities of d
to the documents of each cluster (3 — §;) isless than half of the difference between the average similarity among the
documentsin § and Sj (i — 1j)/2).

On the other hand, the Z> criterion function will moved from §; to S; if and only if

IDi +d[l + IDjll < [IDill + IDj +d]l.
In asimilar fashion with Z;’s condition, the above equation can be rewritten as:

IDi +dll = IDill < IIDj +dll — IIDj

VDi'D; + 1+ 2d'D; — /Di'D; < /Dj'D; +1+2d'D; —/D;'D;. (24)

Now, for sufficiently large clusters, we have that Di'D; + 2d'D; >> 1, and thus

Di'Di + 1+ 2d'D; ~ D;'D; + 2d'D;. (25)
Furthermore, the following holds
do; |\’ (d'Dj)?
VDitDj + =DitDi—|—t7+2dtDi%DitDi—i—ZdtDi, (26)
/DitD; Di" D
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aslong as
d'D? _ 87
= — =0 1 S
Di' D i @
that is, it isnot significantly larger than one. This conditionisfairly mild asit essentially requiresthat w ; issufficiently
largerelativeto 8i2, which is always true for sets of documentsthat form clusters.

Now, using Equations 25 and 26 for both clusters, Equation 24 can be rewritten as

2 2
dtD; dtD;
( Di'Di + ——= ) -VDi'Di < VDi'Dj + —| —/D;'D;
Di" b 1/Dthj

diD; dtDj
< —
\/DitDi ,/Dthj

Finaly, using the uj, uj, and 6, §; notation, from the above equation we get that 7, will move document d aslong as

i i

— < . (27)
Ly I
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