
Wavefront Diffusion and LMSR:
Algorithms for Dynamic Repartitioning of

Adaptive Meshes
Kirk Schloegel, Member, IEEE, Computer Society,

George Karypis, Member, IEEE, Computer Society, and

Vipin Kumar, Fellow, IEEE

AbstractÐCurrent multilevel repartitioning schemes tend to perform well on certain types of problems while obtaining worse results for

other types of problems. We present two new multilevel algorithms for repartitioning adaptive meshes that improve the performance of

multilevel schemes for the types of problems that current schemes perform poorly while maintaining similar or better results for those

problems that current schemes perform well. Specifically, we present a new scratch-remap scheme called Locally-matched Multilevel

Scratch-remap (or simply LMSR) for repartitioning of adaptive meshes. LMSR tries to compute a high-quality partitioning that has a

large amount of overlap with the original partitioning. We show that LMSR generally decreases the data redistribution costs required to

balance the load compared to current scratch-remap schemes. We present a new diffusion-based scheme that we refer to as

Wavefront Diffusion. In Wavefront Diffusion, the flow of vertices moves in a wavefront from overweight to underweight subdomains.

We show that Wavefront Diffusion obtains significantly lower data redistribution costs while maintaining similar or better edge-cut

results compared to existing diffusion algorithms. We also compare Wavefront Diffusion with LMSR and show that these provide a

trade-off between edge-cut and data redistribution costs for a wide range of problems. Our experimental results on a Cray T3E, an IBM

SP2, and a cluster of Pentium Pro workstations show that both schemes are fast and scalable. For example, both are capable of

repartitioning a seven million vertex graph in under three seconds on 128 processors of a Cray T3E. Our schemes obtained relative

speedups of between nine and 12 when the number of processors was increased by a factor of 16 on a Cray T3E.

Index TermsÐDynamic graph partitioning, multilevel diffusion, scratch-remap, wavefront diffusion, LMSR, adaptive mesh

computations.

æ

1 INTRODUCTION

FOR large-scale scientific simulations, the computational
requirements of techniques relying on globally refined

meshes become very high, especially as the complexity and
size of the problems increase. By locally refining and
derefining the mesh either to capture flow-field phenomena
of interest [1] or to account for variations in errors [32],
adaptive methods make standard computational methods
more cost effective. One such example is numerical
simulations for improving the design of helicopter blades
[1]. (See Fig. 1.) Here, the finite-element mesh must be
extremely fine around both the helicopter blade and in the
vicinity of the sound vortex that is created by the rotation of
the blade in order to accurately capture flow-field phenom-
ena of interest. It should be coarser in other regions of the
mesh for maximum efficiency. As the simulation pro-
gresses, neither the blade nor the sound vortex remain
stationary. Therefore, the new regions of the mesh that
these enter need to be refined, while those regions that are

no longer of key interest should be derefined. The efficient
execution of these simulations on high-performance parallel
computers requires redistribution of the mesh elements
across the processors because these dynamic adjustments to
the mesh result in some processors having significantly
more (or less) work than others. Similar issues also exist for
problems in which the amount of computation associated
with each mesh element changes over time [9]. For example,
in particles-in-cells methods that advect particles through a
mesh, large temporal and spatial variations in particle
density can introduce substantial load imbalance.

Mapping of mesh-based computations onto parallel
computers is usually computed by using a graph
partitioning algorithm. In the case of adaptive finite-
element methods, the graph either corresponds to the
mesh obtained after adaptation or to the original mesh
with the vertex weights adjusted to reflect error estimates.
In the case of particles-in-cells simulations, the graph
corresponds to the original mesh with the vertex weights
adjusted to reflect the particle density. We will refer to
this as the adaptive graph partitioning problem to differ-
entiate it from the static graph partitioning problem that
arises when the computation remains fixed. Adaptive
graph partitioning shares most of the requirements and
characteristics of static partitioning (i.e., compute a
partitioning such that each subdomain contains a roughly
equal amount of vertex weight and such that the edge-cut

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 5, MAY 2001 451

. The authors are with the Department of Computer Science and
Engineering, University of Minnesota, Army HPC Research Center, 4-
192 EE/CS Building, 200 Union St., S.E., Minneapolis, MN 55455.
E-mail: kirk, karypis, kumar@cs.umn.edu.

Manuscript received 4 Nov. 1998; revised 30 Aug. 2000; accepted 6 Nov.
2000.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 108172.

1045-9219/01/$10.00 ß 2001 IEEE

is minimized), but has an additional minimization
objective. That is, the amount of data that needs to be
redistributed among the processors in order to balance
the load should also be minimized [38].

Recently, scratch-remap [29], [42] and diffusion-based
[36], [48] adaptive partitioning techniques have been
developed that are able to quickly compute high-quality
repartitionings while minimizing the data redistribution
costs for large classes of problems. However, there exist
classes of problems for which each of these types of
schemes perform poorly. Scratch-remap schemes tend to
perform poorly when mesh adaptation is slight to moderate
or when mesh adaptation is distributed throughout the
mesh. Diffusion-based schemes tend to produce poor
results when a high degree of adaptation occurs in localized
areas of the mesh.

1.1 Our Contributions

This paper focuses on areas of improvement for scratch-
remap and diffusion-based repartitioning schemes. We
present a new scratch-remap scheme called Locally-matched
Multilevel Scratch-remap (or simply LMSR). The LMSR
scheme tries to compute a repartitioning that has a high
overlap with the original partitioning. We show that LMSR
decreases the data redistribution costs required to balance
the load compared to current scratch-remap schemes for a
wide range of problems. We present a new diffusion-based
scheme that we refer to as Wavefront Diffusion. In Wavefront
Diffusion, the flow of vertices moves in a wavefront from
overweight to underweight subdomains. We show that
Wavefront Diffusion obtains significantly lower data redis-
tribution costs while maintaining similar or better edge-cut
results compared to existing diffusion algorithms. We also
compare Wavefront Diffusion with LMSR and show that
these schemes provide a trade-off between edge-cut and
data redistribution costs for a wide range of problems.
Finally, we show that both schemes are extremely fast and
scalable. For example, both are capable of repartitioning a
seven million vertex graph in under three seconds on 128
processors of a Cray T3E. Furthermore, our experimental
results show that, for between eight and 128 processors of a
Cray T3E and for the range of problems presented, our
algorithms exhibit good scaled speedups. That is, they

require similar run times as the number of processors is
increased by the same factor as the problem size.

The rest of this paper is organized as follows: Section 2
gives definitions and describes previous work in load
balancing scientific simulations. Section 3 describes our
LMSR algorithm. Section 4 describes our Wavefront
Diffusion algorithm. Section 5 gives edge-cut, data redis-
tribution and run time results for our LMSR and Wavefront
Diffusion algorithms on a number of synthetic and real test
sets. Section 6 gives conclusions.

2 DEFINITIONS AND BACKGROUND

This section gives definitions that will be used in the
remainder of the paper and describes the multilevel graph
partitioning paradigm as well as a number of load-
balancing schemes for scientific simulations.

2.1 Definitions

When the vertices of a graph are used to represent the
computational requirements of a scientific simulation, it is
useful to assign them both weight and size [29], [41]. The
weight of a vertex is its computational cost, while its size
reflects its redistribution cost. Therefore, a repartitioner
should attempt to balance the partitioning with respect to
vertex weight while minimizing data redistribution with
respect to vertex size. Depending on the representation of
the data, the size and weight of a vertex may or may not be
the same.

In our discussions, we refer to a kÿ way partitioning as
being composed of k disjoint subdomains. Each of these
subdomains is composed of a number of vertices. The
weight of a subdomain is the sum of the weights of its
vertices. A subdomain is considered overweight if its weight
is greater than the average subdomain weight times 1� �,
where � is a user specified constant (and assumed to be 0.05
in this paper). Likewise, a subdomain is underweight if its
weight is less than the average subdomain weight divided
by 1� �. A partitioning is balanced when none of its
subdomains are overweight (although some may be under-
weight). Two subdomains are neighbors if there is at least
one edge with incident vertices in each of the two
subdomains. The subdomain in which a vertex is located
originally is the home subdomain of that vertex.

Oliker and Biswas [29] studied various metrics for
measuring data redistribution costs. They presented the
metrics TOTALV and MAXV. TOTALV is defined as the sum
of the sizes of the vertices that change subdomains as the
result of repartitioning. TOTALV reflects the overall volume
of communications needed to balance the load. MAXV is
defined as the maximum of the sums of the sizes of those
vertices that migrate into or out of any one subdomain as a
result of repartitioning. MAXV reflects the maximum time
needed by any one processor to send or receive data.

2.2 Multilevel Graph Partitioning

A class of partitioning algorithms has been developed
[3], [5], [13], [15], [18], [22], [24], [27], [45] that is based
on the multilevel paradigm. The multilevel paradigm
consists of three phases: graph coarsening, initial
partitioning, and uncoarsening/multilevel refinement. In

452 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 5, MAY 2001

Fig. 1. A helicopter blade rotating through a mesh. As the blade spins,
the mesh is adapted by refining it in the regions that the blade has
entered and derefining it in the regions that are no longer of interest.
(Figure provided by Rupak Biswas, NASA Ames Research Center.)

the graph coarsening phase, a series of graphs is
constructed by collapsing together selected vertices of
the input graph in order to form a related coarser graph.
A commonly used method for graph coarsening is to
collapse together the pairs of vertices that form a
matching. Vertex matchings can be computed by a
number methods, such as heavy-edge matching [22],
maximum weighted matching [12], and approximated
maximum weighted matching [27]. The coarsened graph
can then act as the input graph for another round of
graph coarsening, and so on, until a sufficiently small
graph is obtained. Computation of the initial partitioning
is performed on the coarsest (and, hence, smallest) of
these graphs and so is very fast. Finally, partition
refinement is performed on each level graph, from the
coarsest to the finest (i.e., original graph) using a KL/
FM-type refinement algorithm [10], [26]. Fig. 2 illustrates
the multilevel paradigm. A number of adaptive parti-
tioning algorithms, including the ones presented in this
paper, are also built upon the multilevel paradigm.

2.3 Previous Research

One approach that has been used for load-balancing of
scientific simulations is to simply use a static partitioning
scheme to compute a new partitioning from scratch each
time that load balancing is required. We refer to this as
simply partitioning from scratch. An alternate approach is
to perturb the original partitioning just enough so as to
balance it. In the context of graph partitioning, vertices
are incrementally moved from subdomain to subdomain
so as to balance the partitioning. Allowing this movement
of vertices to occur only between neighboring subdo-
mains helps to ensure that the edge-cut of the repartition-
ing is minimized and that the subdomains remain
connected. Such schemes were initially motivated by

diffusion algorithms used for load balancing independent
tasks that are unevenly distributed among processors [2],
[6], [8], [19], [20], [21], [49], [50] and so, we will refer to
them as diffusion-based repartitioners.

2.3.1 Partitioning from Scratch

In principal, any partitioning scheme can be used to
compute a repartitioning of an adapted graph from scratch.
Geometric schemes [9], [31], [32], [33], [40], [44] have been
extensively studied for this purpose. The advantage of these
schemes is that they often produce repartitionings that are
only minor perturbations of original partitionings (so long
as the original partitioning was computed using the same
method), especially if the degree of adaptation is not very
high. The reason is because these schemes are deterministic
and, hence, performing multiple trials on the same input
graph result in identical partitionings. Note that a high
overlap between subdomains of the original and the new
partitionings leads to low data redistribution. The dis-
advantage of these schemes is that they tend to compute
partitionings that are of worse quality than those produced
by other methods [37], such as multilevel [3], [5], [13], [15],
[18], [22], [24], [27], [45] and spectral [17], [34], [35] methods.

One notable exception is the algorithm described by
Simon et al. [39] (and parallelized by Sohn [40]). This
scheme uses a spectral method as a preprocessing step to
embed the graph into a k-dimensional space based on the
connectivity of the graph [14]. The graph is then
partitioned (and repartitioned) by a geometric method
[28]. This scheme produces partitionings of similar quality
to spectral partitioners while also having the advantage of
low data redistribution costs described above. The
disadvantage of this scheme is that mesh adaptation can
only be represented by modifying the weights of the
vertices of the graph. It cannot be represented by
changing either the number of vertices or the connectivity
of the graph. Otherwise, a new geometric embeding of
the graph must be computed. This computation can be
several orders of magnitude more costly than the time
required for most dynamic repartitioning schemes.

Another way to compute a new partitioning from scratch
is with a multilevel graph partitioner [3], [5], [13], [15], [18],
[22], [24], [27], [45]. Such schemes produce high quality
repartitionings (much higher than geometric schemes and
slightly higher than spectral methods), but also tend to
require large amounts of data redistribution even when
very little (or no) adaptation takes place. This is because of
two reasons. 1) Unlike geometric schemes, multiple trials
from multilevel partitioners generally do not result in
partitionings that are similar to each other. (Multiple trials
from multilevel schemes do tend to result in partitionings of
similar quality, however.) 2) Even when it is the case that
the two partitionings are similar to each other, the labels of
the corresponding subdomains on each partitioning might
be different.

When the partitionings are similar to each other, but the
subdomains are not labeled consistently, the data redis-
tribution costs can be substantially reduced by intelligently
remapping the subdomain labels of the new partitionings to
those of the original partitionings [29], [42]. We use the term

SCHLOEGEL ET AL.: WAVEFRONT DIFFUSION AND LMSR: ALGORITHMS FOR DYNAMIC REPARTITIONING OF ADAPTIVE MESHES 453

Fig. 2. The three phases of multilevel k-way graph partitioning. During
the coarsening phase, the size of the graph is successively decreased.
During the initial partitioning phase, a k-way partitioning is computed.
During the multilevel refinement (or uncoarsening) phase, the partition-
ing is successively refined as it is projected to the larger graphs. G0 is
the input graph, which is the finest graph. Gi�1 is the next level coarser
graph of Gi:G4, is the coarsest graph.

scratch-remap for repartitioners that compute a new parti-
tioning from scratch and then remap the new subdomain
labels back to the original partitioning in order to reduce the
data redistribution costs. The following method to compute
a partition remapping is based on the scheme presented by
Sohn and Simon.

1. Construct a similarity matrix, S, of size k� k. A
similarity matrix is one in which the rows
represent the subdomains of the original partition-
ing, the columns represent the subdomains of the
new partitioning, and each element, Sqr, represents
the sum of the sizes of the vertices that are in
subdomain q of the original partitioning and in
subdomain r of the new partitioning.

2. Select k elements such that every row and column
contains exactly one selected element and such that
some objective is optimized. For example, Oliker and
Biswas [29] describe remapping algorithms that
attempt to minimize the TOTALV or the MAXV.
(They showed that a fast greedy scheme for
minimizing TOTALV generally results in good
remappings for various application graphs.)

3. For each element Sqr selected, rename subdomain r
to subdomain q on the remapped partitioning.

Such remapping is particularly interesting in the context of
multilevel graph partitioners because these schemes already
provide very good edge-cuts while requiring large amounts
of data redistribution. We focus on such schemes in
Section 3.

2.3.2 Diffusion-Based Repartitioners

Diffusion-based repartitioners attempt to minimize data
redistribution even further than scratch-remap schemes by
using the original partitioning as an input and perturbing it
minimally so as to balance it. Any diffusion-based
repartitioning scheme needs to address two questions:
1) How much work should be transferred between subdomains?
and 2) Which specific vertices should be transferred? The
answer to the first question tells us how to balance the
partitioning, while the answer to the second tells us how to
minimize the edge-cut as we do this. Schemes for
determining how much work to transfer between subdo-
mains can be grouped into two categories. We refer to
diffusion schemes in which the exchange of work among
the subdomains is based only upon their respective work
loads (and not upon the loads of distant subdomains) as
local diffusion algorithms [4], [36]. In other schemes [11],
[30], [36], [46], [47], [48], global views of the subdomain
loads are used to balance the partitioning. We call these
global diffusion schemes.

Most global diffusion schemes compute flow solutions
[30], [36], [46], [48] that prescribe the amount of work to be
moved between pairs of subdomains. Flow solutions are
usually computed in order to optimize some objective. Ou
and Ranka [30] present a global diffusion scheme that
optimally minimizes the one-norm of the flow using linear
programming. Hu et al. [21] present a method that
optimally minimizes the two-norm of the flow.

The flow solution indicates how much vertex weight
needs to be transferred between each pair of adjacent

subdomains. The second problem is to determine exactly
which vertices to move so as to minimize the edge-cut of the
resulting partitioning. One possibility is to repeatedly
transfer layers of vertices along the subdomain boundary
until the desired amount of vertex weight has been
transferred [11], [30], [44]. A more precise scheme is to
move one vertex at a time across the subdomain boundary
[46]. Another possibility is to perform diffusion in the
multilevel context [36], [48]. Such schemes, called multilevel
diffusion algorithms, perform both diffusion (for load
balancing) and refinement (for improving the edge-cut) in
the uncoarsening phase. Often, diffusion takes precedence
on the coarse level graphs. Then, once the graph is balanced
to a reasonable degree, the focus shifts to refinement in
order to improve the edge-cut.

2.4 Which Approach Is Better?

Having two basic approaches for adaptive partitioning (i.e.,
either compute a new partitioning or balance the original
partitioning) leads to the question of which is preferred.
Unfortunately, neither type of scheme performs best in all
cases. A diffusion scheme that attempts to minimally
perturb the original partitioning will naturally perform
well when the final solution is close to the original solution.
However, when this is not the case, the diffusion process
can result in globally nonoptimal partitionings. On the
other hand, a scheme that constructs a new solution from
scratch will tend to perform better when the original and
final solutions are far apart. However, it will often result in
excessive data redistribution when this is not the case.
Results in [29], [38] support these observations. They have
shown that diffusion-based schemes outperform scratch-
remap schemes when diffusion is not required to propagate
far in order to balance the graph. (This situation occurs for
slightly imbalanced partitionings and for those in which
imbalance occurs globally throughout the graph.) When
diffusion is required to propagate over longer distances,
scratch-remap schemes outperform diffusion-based reparti-
tioners. (This occurs when partitionings are highly imbal-
anced in localized areas of the graph.)

Fig. 3 and Fig. 4 illustrate relatively simple examples
for which either scheme performs poorly. In both of these
figures, the size and weight of each vertex is one. The
weight of each edge is also one. In Fig. 3a, there are
12 vertices and three subdomains. Therefore, every
subdomain should contain four vertices in order for the
partitioning to be balanced. However, the partitioning is
imbalanced because subdomain 1 has seven vertices,
while subdomain 2 has two and subdomain 3 has three.
In Fig. 3b, the graph has been partitioned from scratch.
None of the 12 vertices have been assigned to their home
subdomains. Therefore, TOTALV is 12 and MAXV is
seven. (Note, the shading of a vertex indicates its home
subdomain.) In Fig. 3c, the subdomain labels from Fig. 3b
have been remapped with respect to those in Fig. 3a. This
has reduced the TOTALV from 12 to five and the MAXV

from seven to three without affecting the edge-cut. In Fig.
3d, a diffusive process has been applied to balance the
partitioning. That is, two boundary vertices have moved
from the overweight subdomain 1 to the neighboring
subdomain 2 and one vertex has moved from subdomain

454 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 5, MAY 2001

1 to subdomain 3. The result is that both TOTALV and
MAXV are three.

In Fig. 4, each of the four subdomains should contain five
vertices in order for the partitioning to be balanced. The
partitioning in Fig. 4a is imbalanced (because subdomain 1
has 12 vertices, while subdomain 2 has five, subdomain 3
has two, and subdomain 4 has one). In Fig. 4b, 19 out of 20
vertices have changed subdomains after the graph is
partitioned from scratch. The MAXV here is 12. Fig. 4c
shows a remapping in which TOTALV is 10 and MAXV is
seven. Again, both the TOTALV and MAXV are reduced by
remapping. In Fig. 4d, a diffusive process has been applied.
Here, subdomain 1 was forced to export seven vertices to
subdomain 2. This is because subdomain 2 is the only
neighbor to subdomain 1 in Fig. 4a. Thus, even though
subdomains 3 and 4 require additional vertex weight in
order to balance the partitioning, they cannot receive
vertices immediately from subdomain 1. Instead, a second
iteration was required. In this iteration, subdomain 2 (which
had temporarily become overweight) moved three vertices
to subdomain 3 and four vertices to subdomain 4. The result
is shown in Fig. 4d. In this case, TOTALV is 12 and MAXV is
seven.

In Fig. 3, diffusion does a good job of balancing the
partitioning while keeping both the edge-cut and data
redistribution costs low. However, the scratch-remap
scheme obtains a low edge-cut, but results in higher data
redistribution costs. The reason is that the optimal
repartitioning for the graph in Fig. 3a is quite similar to
the original partitioning. Therefore, the diffusive reparti-
tioner is able to balance the partitioning by moving only a
few vertices. On the other hand, the repartitioning

computed by the scratch-remap scheme is of high quality,
but is somewhat structurally different from the original
partitioning. Therefore, this scheme obtained a low edge-
cut, but higher data redistribution costs, even after
remapping.

In Fig. 4, the diffusive repartitioner results in both edge-
cut and data redistribution costs that are higher than those
of the scratch-remap repartitioner. Here, the diffusion of
vertices is required to propagate to the underweight
subdomains (3 and 4) by way of a transient subdomain
(2). In general, as diffusion is required to propagate over
longer distances to balance the partitioning, 1) well-shaped
subdomains can become disturbed, increasing the edge-cut,
and 2) many subdomains can be forced to export most or all
of their original vertices, increasing data redistribution.
Both of these effects can be seen in Fig. 4d. The scratch-
remap repartitioner, on the other hand, performs well by
computing a high-quality partitioning and then mapping it
back to the original partitioning.

3 LOCALLY MATCHED MULTILEVEL

SCRATCH-REMAP

In this section, we present a number of enhancements to the
scratch-remap scheme. We describe how restricting the
coarsening phase of a multilevel graph partitioner to purely
local matching can decrease the data redistribution costs by
increasing the amount of overlap between subdomains of
the original and new partitionings. Next, we describe a
scheme that performs partition remapping in a multilevel
context and explain how this scheme can be used to
explicitly reduce the data redistribution costs while also
improving the edge-cut during multilevel refinement.

3.1 Limitations of Scratch-Remap Schemes

Although partition remapping can reduce data redistribu-
tion costs (without affecting edge-cuts), scratch-remap
schemes still tend to result in higher redistribution costs
than schemes that attempt to balance the input partition-
ing by minimal perturbation. For example, if the newly
adapted mesh is only slightly different from the original
mesh, partitioning from scratch could produce a new
partitioning that is still substantially different from the
original, thus requiring a lot of data redistribution even
after remapping. Fig. 5 illustrates an example of this. The
partitioning in Fig. 5a is slightly unbalanced as the upper-
right subdomain has five vertices, while the average
subdomain weight is four. In Fig. 5b, the partitioning is
balanced by moving only a single vertex from the upper-
right subdomain to the lower-right subdomain. Therefore,
both TOTALV and MAXV are one. Fig. 5c shows a new
partitioning that has been computed from scratch and
then optimally remapped to the partitioning in Fig. 5a.
Despite optimal remapping, this repartitioning has a
TOTALV of seven and a MAXV of two. Note that all
three of the partitionings have similar edge-cuts.

The reason that the scratch-remap scheme does so poorly
here with respect to data redistribution is because the
information that is provided by the original partitioning is
not utilized until the final remapping process. At this point,
it is too late to avoid high data redistribution costs even if

SCHLOEGEL ET AL.: WAVEFRONT DIFFUSION AND LMSR: ALGORITHMS FOR DYNAMIC REPARTITIONING OF ADAPTIVE MESHES 455

Fig. 3. An example of an imbalanced partitioning and various

repartitioning schemes. The partitioning is imbalanced in (a). The graph

is partitioned from scratch in (b) and this partitioning is remapped in (c).

The partitioning from (a) is balanced by diffusion in (d).

we compute an optimal remapping. Essentially, the
problem in this example is that the partitioning in Fig. 5a
is shaped like a ª+º while the partitioning in Fig. 5c forms
an ªx.º Both of these are of equal quality and, so, a static
partitioning algorithm is equally likely to compute either
one of these. However, we would like the partitioning
algorithm used in a scratch-remap repartitioner to drive the
computation of the partitioning toward that of the original
partitioning whenever possible without affecting the qual-
ity. A scratch-remap algorithm can potentially do this if it is

able to extract and use the information implicit in the
original partitioning during the computation of the
new partitioning.

3.2 Local Matching

The effectiveness of the greedy remapping scheme de-
scribed in [29] is dependent on the nature of the similarity
matrix. An ideal similarity matrix is one in which there is
exactly one nonzero element in each row and column. This
corresponds to the situation in which the new partitioning

456 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 5, MAY 2001

Fig. 5. An unbalanced partitioning and two repartitioning techniques. The partitioning in (a) is imbalanced. It is balanced by an incremental method in

(b) and by a scratch-remap method in (c).

Fig. 4. An example of an imbalanced partitioning and various repartitioning schemes. The partitioning is imbalanced in (a). The graph is partitioned

from scratch in (b) and this partitioning is remapped in (c). The partitioning from (a) is balanced by diffusion in (d).

is identical to the original partitioning except with regard to
the subdomain labels. This is infeasible since the original
partitioning is imbalanced and the new partitioning is
balanced. A good similarity matrix is one in which most of
the rows contain a small number of large values. The worst
case similarity matrix is one in which all of the elements of a
given row have identical values. This corresponds to the
situation in which every subdomain of the new partitioning
consists of an equal share of every subdomain of the
original partitioning.

Fig. 6 illustrates different types of matrices. Fig. 6a is an
example of an ideal similarity matrix. This is uninteresting
because the new partitioning is not balanced. Fig. 6b is shows
a similarity matrix constructed from two partitionings in
which there are large amounts of overlap between the
subdomains of the original and new partitionings. Fig. 6c
shows an opposite case. Here, each of the subdomains of the
newly computed partitioning share a roughly equal amount
of vertex weight of each of the subdomains of the original
partitioning. The underlined entries indicate the selected
elements. While both of these remappings were computed
using the greedy method described in [29], the TOTALV and
MAXV are significantly lower for the case in Fig. 6b than for in
Fig. 6c.

One way to increase the effectiveness of remapping is to
bias the process of graph partitioning such that the situation
illustrated in Fig. 6b will occur more frequently. Essentially,
we would like to drive the computation of the new
partitioning towards the original partitioning. This will
result in large regions of overlap between a majority of
subdomains of the original and new partitionings. Existing
multilevel graph partitioners such as METIS [23] and Chaco
[16] do not provide this bias.

It is possible to bias a multilevel graph partitioner
toward the original partitioning during the graph coarsen-
ing phase. This can be done by restricting the matching of
vertices to those that have the same home subdomain. The
result is that vertices of each successively coarser graph
correspond to regions within the same subdomain of the
original partitioning. By the time the coarsest graph is
constructed, every subdomain here consists of a relatively
small number of well-shaped regions, each of which is a
subregion of a single home subdomain. Therefore, when the
new initial partitioning is computed on the coarsest graph,
it will have a high degree of overlap with the original

partitioning. Fig. 7 illustrates this point. It shows a single
subdomain coarsened locally.

Another advantage of purely local matching is that the
boundaries of the original partitioning remain visible on
every level graph down to the coarsest graph. When two
matched vertices are collapsed together, it is necessary to
assign the new coarse vertex a home subdomain. If
matching is purely local, then both of the matched vertices
will always have the same home subdomain and, so, this
assignment is straightforward. However, when global
matching is performed, the home subdomains of the
matched vertices may be different. If this is the case, the
coarsened vertex can be assigned to only one of the matched
vertices' home subdomains. Regardless of which subdo-
main is selected, the original partitioning becomes obscured
on the coarse graph. Essentially, a portion of the subdomain
boundary becomes hidden within a single vertex in these
cases. Since local matching ensures that the original
partitioning remains visible, even on the coarsest graph,
in those portions of the graph that are relatively undis-
turbed by adaptation, the initial partitioning algorithm
often has a tendency to select the same subdomain
boundaries. This can have a positive effect on both edge-
cut and data redistribution results.

3.3 Multilevel Scratch-Remap

A second potential improvement to the scratch-remap
algorithm is to apply remapping on the coarsest graph
after the new initial partitioning is computed, but before
multilevel refinement is begun. This allows the partition
refinement algorithm to explicitly minimize both edge-cuts
and data redistribution costs during the uncoarsening
phase. If partition remapping is performed only after
multilevel refinement, the data redistribution cost cannot
be minimized in this way as there is no way to accurately
determine it. The reason is that the destination processors
for the subdomains are finalized only after remapping.

SCHLOEGEL ET AL.: WAVEFRONT DIFFUSION AND LMSR: ALGORITHMS FOR DYNAMIC REPARTITIONING OF ADAPTIVE MESHES 457

Fig. 6. Examples of ideal (a), good (b), and bad (c) overlap matrices.

Fig. 7. A single subdomain from a series of successively coarser graphs

constructed utilizing local matching.

3.4 TOTALV-Aware Refinement

In order to realize the benefit obtained by Multilevel
Scratch-remap, the partition refinement algorithm must be
modified in order to minimize not only the edge-cut, but
also the data redistribution cost associated with load-
balancing. Typically, refinement algorithms move vertices
among the subdomains in order to either: 1) decrease the
edge-cut while maintaining the balance constraint or
2) improve the balance while maintaining the edge-cut.

We have developed a refinement scheme that has a third
objective: 3) decrease the TOTALV while maintaining the
edge-cut and the balance constraint. In addition, the second
objective above is changed to: 2) improve the balance while
maintaining both the edge-cut and the TOTALV [36].

The second objective (of both schemes) will result in
vertices being moved out of subdomains whose weights are
above the average subdomain weight (even though these
are not overweight with respect to the imbalance tolerance)
if doing so does not increase the edge-cut. (Note that our
scheme must not increase the TOTALV either in order to
make these moves.) Such refinement moves have two
effects. Not only will the partition balance be improved, but
the edge-cut of the final partitioning will also tend to be
improved. This is because, by moving a vertex out of a
subdomain while maintaining the edge-cut, that subdomain
becomes free to later accept another vertex from a
neighboring subdomain that can improve the edge-cut.

If TOTALV is not considered (as is the case in current
scratch-remap schemes), the refinement scheme is not
restricted as to when it can make such moves. Our
refinement algorithm, however, will only make these moves
if they do not increase the TOTALV (i.e., the selected vertex
is not moving out of its home subdomain). The result is that,
as the TOTALV is further minimized, our refinement
algorithm becomes more constrained as to the balance-
improving moves that can be made. This can result in
slightly worse edge-cuts for the final partitioning by a few
percent. Essentially, the problem is that the two objectives
of minimizing both the edge-cut and the data redistribution
cost are in conflict here. On the positive side, our refinement
algorithm can be easily modified to accept a user-supplied
parameter that controls whether or not such moves should
be made. This modification provides the user with control
over the trade-off between the edge-cut and the data
redistribution cost.

Our LMSR algorithm is a modification of the scratch-
remap (SR) algorithm [29] that incorporates all three of
these techniques (i.e., local matching, Multilevel Scratch-
remap, and TOTALV-aware refinement).

4 WAVEFRONT DIFFUSION

Diffusion-based repartitioning schemes determine how
much work should be moved between subdomains and
which specific tasks to move in order to minimize
interprocessor communications. A third question is: When
is the best time to move each task? Existing diffusion
schemes determine the order in which vertices are
selected to be moved either by a greedy or a random
scheme. Greedy schemes select the next vertex to move

according to which will result in the lowest edge-cut.
(We refer to this as greedy global diffusion (GGD).)
Random schemes compute a random ordering of the
vertices and examine them in this order. (We refer to
this as random-order global diffusion (RO).) Both schemes
often produce partitionings of similar quality. However,
random schemes are more amenable to parallelization.
The disadvantage of either of these schemes is that
subdomains may simultaneously be both recipients and
donors of vertices during diffusion. This means that
subdomains are often forced to move out vertices before
they have received all of the vertices that they are
supposed to receive from their neighbors. Hence, these
will have a limited choice for selecting good vertices to
move out in order to minimize the edge-cut and data
redistribution costs.

A better method to determine when to move vertices in
order to satisfy the flow solution is to begin the diffusion of
vertices at those subdomains that have no required flow of
vertices into them. Then, the next iteration is begun on the
set of subdomains whose required flow of vertices into
them was satisfied during the previous iteration, and so on,
until all of the subdomains are balanced. This method
guarantees that all subdomains will contain the largest
selection of vertices possible when it is their turn to export
vertices. Thus, subdomains are able to select those vertices
for migration that will best minimize the edge-cut and data
redistribution cost.

A disadvantage of this scheme is that it requires more
iterations to balance the graph than the RO and GGD
schemes, and hence, is less scalable. We have implemen-
ted a modification that retains the spirit of this scheme
while requiring fewer iterations to balance the partition-
ing. We maintain two arrays, inflow and outflow, with
one element per subdomain. inflow �i� contains the sum
of the vertex weight that subdomain i is required to
receive in from other subdomains and outflow i� � contains
the sum of the vertex weight that subdomain i is required
to send out to other subdomains. In each iteration, only
those subdomains are allowed to move vertices out of
their home subdomains for which the ratio of
outflow i� �=inflow i� � is above a threshold. All subdomains
are allowed to move vertices that are not currently in
their home subdomains. By setting the threshold to
infinity, we obtain the algorithm described above. By
setting the threshold to zero, we obtain random-order
global diffusion. In our experiments, we set this threshold
to be equal to the third highest outflow i� �=inflow i� � ratio
for i � 0; 1; 2; . . . ; kÿ 1. This heuristic seems to strike a
good balance between scalability and improved effective-
ness for a moderate number of processors (e.g., up to 128
processors of a Cray T3E).

When the threshold is set to a suitably high number (as
such), this scheme achieves an important effect. That is,
vertices tend to hop across multiple subdomains to balance
the partitioning. This reduces TOTALV and often MAXV as
well. The reason is because any vertices that have moved
from their overweight home subdomains in the first
iterations can move in all subsequent iterations without
increasing the TOTALV. Our experimental results indicate

458 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 5, MAY 2001

that the potential for this effect increases as diffusion is
required to propagate over further distances. In fact, we
have obtained results (not presented in this paper) in which
as much as 85 percent of all balancing moves are made by
vertices outside of their home subdomains. This is
tremendously beneficial in obtaining low data redistribu-
tion results.

We refer to this algorithm as Wavefront Diffusion (or
simply WF), as the flow of vertices move in a wavefront
from overweight to underweight subdomains. Essentially, it
differs from existing global diffusion schemes (i.e., random-
order and greedy) only in the order in which it selects
vertices for movement. Note that, in order to increase the
effectiveness of the WF algorithm, it can be performed in
the multilevel context (i.e., after graph coarsening), simi-
larly to other global diffusion schemes. In this paper, we
focus on the case in which WF is performed only on the
coarsest graph.

5 EXPERIMENTAL RESULTS

In this section, we present experimental results comparing
the edge-cuts, data redistribution costs, and run time results
from the SR, LMSR, RO, and WF algorithms on syntheti-
cally generated test sets, as well as test sets derived from the
simulations of a diesel engine and helicopter blade.
Experimental results were performed on a Cray T3E, an
IBM SP, and a cluster of Pentium Pro workstations
connected via a Myrinet switch. Table 1 summarizes the
algorithms compared in this section.

5.1 Test Sets Used for Experimental Evaluations

In this section, we describe the setup for the experi-
ments that were performed in order to evaluate the
repartitioning schemes.

5.1.1 Synthetic Test Sets

A set of synthetic experiments were constructed using five
graphs derived from finite-element meshes. These graphs
are described in Table 2. The synthetic test sets were
constructed as follows: The sizes and weights of all of the
vertices and the weights of all of the edges of the graphs
from Table 2 were set to one. Next, two partitionings were
computed for each graph, a 256-way partitioning and a
k-way partitioning (where k is the number of processors
used in the experiment). Three subdomains were selected
from the 256-way partitioning. The weights of all of the
vertices in these subdomains were set to � (where � was
set to 2, 5, 10, 20, 30, and 60). This results in localized
increases in vertex weight. Finally, each local edge was
multiplied by the average weight of its two incident
vertices raised to the 2=3 power. For example, if � � 10,
then each vertex in the selected subdomains will be of
weight 10. All of the other vertices will have weight one.
The weight of the local edges inside of the selected
subdomains will be 10:667 � 4:65 (truncated down to four).
The weight of a local edge with one incident vertex in a
selected subdomain and one vertex outside of the
subdomain will be 5:5:667 � 3:12 (truncated down to
three). Finally, the k-way partitioning was used as the
original partitioning for the repartitioning algorithms.
These experiments were designed to simulate adaptive
mesh applications in which changes in the mesh are
localized in nature. By modifying �, we can simulate
slight to extreme levels of localized adaptation. If we set �
low (e.g., two or five), then this results in experimental
test sets in which the degree of adaptation is low. These
are the type of problems for which scratch-remap schemes
perform poorly. If we set � high (e.g., 20 through 60), this
results in experimental test sets in which the degree of
adaptation is high in localized regions of the graph. These

SCHLOEGEL ET AL.: WAVEFRONT DIFFUSION AND LMSR: ALGORITHMS FOR DYNAMIC REPARTITIONING OF ADAPTIVE MESHES 459

TABLE 1
A Summary of the Parallel Implementations of the Four Repartitioning Schemes

Compared in the Experimental Results Section

TABLE 2
Characteristics of the Graphs Used to Create the Synthetic Test Sets

are the type of problems for which diffusion-based
schemes perform poorly. Finally, we set k (and the
number of processors) equal to 32, 64, and 128. However,
we present only the 128-processor results here as the
trends are similar.

5.1.2 Repartitioning for a Particles-in-Cells Simulation

Further experiments were performed on a problem set
originating in a simulation of a diesel internal combustion
engine.1 This is a particles-in-cells computation. The mesh
consists of 175,000 mesh elements. At first, no fuel particles
are present in the combustion chamber. As the computation
progresses, fuel particles are injected into the chamber at a
single point and begin to spread out. Thus, they may enter
regions of the mesh belonging to different processors. Load
imbalance occurs as processors are required to track
different numbers of particles.

5.1.3 Repartitioning for a Helicopter Blade Simulation

Finally, experiments were performed on a test set derived
from three-dimensional mesh models of a rotating
helicopter blade. These meshes are examples of applica-
tions in which high levels of adaptation occurs in
localized areas of the mesh and so are quite difficult
problems for diffusion-based repartitioners. They were
provided by the authors of [29].

Here, the first of a series of six graphs, G1; G2; . . . ; G6 was
originally partitioned into eight subdomains with the
multilevel graph partitioner implemented in PARMETIS
[25]. The partitioning of graph G1 acted as the original
partitioning for graph G2. Repartitioning the imbalanced
graph, G2, resulted in the experiment named first and the
original partitioning for graph G3. Similarly, the reparti-
tioning of graph G3 resulted in experiment second, the
original partitioning for G4, and so on, through
experiment fifth.

The last set of results is marked SUM. This is the sum of
the raw scores of all five experiments and was included
because these experiments consist of a series of repartition-
ing problems. That is, all of the repartitioning schemes used

their own results from the previous experiments as inputs

for the next experiment. Hence, only the first experiment in

which all repartitioning schemes used the same input is

directly comparable. However, by focusing on the sum of

the results, we can obtain the average difference in

repartitioning schemes across the five experiments.

5.2 Experimental Results for SR and LMSR

Fig. 8 compares the edge-cut and TOTALV results of the SR
and LMSR algorithms on a number of test synthetic
problems with varying degrees of adaptation. Six test
problems were constructed for every graph by setting the
value of � to 2, 5, 10, 20, 30, and 60. Fig. 8 gives the results
on a 128-processor Cray T3E. For every experiment, the
figure contains two bars. The first bar indicates the edge-cut
obtained by LMSR normalized by the edge-cut obtained by
SR. The second bar indicates the TOTALV obtained by
LMSR normalized by the TOTALV obtained by SR. There-
fore, a result below the 1.0 index line indicates that LMSR
obtained better results than SR. All of the experiments
resulted in partitionings that are balanced to within an
imbalance tolerance of 5 percent.

For all of the experiments presented in Fig. 8, LMSR
resulted in TOTALV results that are lower than those
obtained by SR. The difference is as great as factor of 8 with
� set to 2 on mrng4. Typically, LMSR resulted in less than
half of the TOTALV costs compared to SR. Also, notice that
the LMSR algorithm performed especially well when the
degree of adaptation was low. If we consider the trend in
the other direction, it appears that the TOTALV results of
the LMSR and SR schemes will eventually converge for
extremely high degrees of adaptation.

Fig. 8 shows that the edge-cuts of the two schemes are
similar. However, LMSR results in generally worse edge-
cuts by up to 8 percent compared to SR. This is because

460 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 5, MAY 2001

Fig. 8. A comparison of edge-cut and TOTALV results obtained from the SR and LMSR algorithms using synthetic test sets on a 128 processor of

Cray T3E.

1. These test sets were provided to us by Boris Kaludercic, HPC Product
Coordinator, Computational Dynamics Ltd, London, England.

of two reasons. First, the global matching scheme used by
the SR algorithm is more free than the local matching
scheme to collapse vertices with very heavy edges
between them. Collapsing such vertices, as shown in
[22], can improve the effectiveness of multilevel refine-
ment and, so, can result in lower edge-cuts. The second
reason is because the two objectives of minimizing both
the edge-cut and the data redistribution cost are often in
conflict with one another (as discussed in Section 3).

Here, the LMSR algorithm does so well at minimizing the

TOTALV that the edge-cut suffers somewhat.
Note that MAXV results for the synthetic test sets are not

presented. This is because these were usually within

10 percent of each other. The reason is that, due to the

nature of the test sets (i.e., localized adaptations), the MAXV

was dominated by the amount of vertex weight that was

required to be moved out of the most overweight sub-

domain. Therefore, no scheme was able to improve upon

this while still balancing the partitioning. Selected run time

results for these experiments are reported in Section 5.5.
Table 3 shows the results for each of the repartitioning

schemes on the diesel combustion engine test sets for eight,

16, 32, and 64 processors. Here, we see the same general

trends as in the experiments presented in Fig. 8. Once again,

LMSR outperformed SR with respect to TOTALV, while

obtaining similar edge-cut results. Table 3 shows that LMSR

obtained somewhat better MAXV results than SR. The run

times of the two schemes are similar.
Fig. 9 gives a comparison of the edge-cut, TOTALV, and

MAXV results of the five helicopter blade experiments,

(followed by the sum of these) for SR, LMSR, RO, and WF.

The results obtained by LMSR, RO, and WF are normalized

by those obtained by SR. Hence, a bar below the index line

indicates that the corresponding algorithm obtained better

results than those obtained by the SR algorithm.
Fig. 9 shows trends that are similar to those for the

synthetic and diesel engine results. The two scratch-remap

schemes obtained similar edge-cuts and MAXV results,

while LMSR obtained somewhat better TOTALV results

than SR. The LMSR algorithm obtained TOTALV results that

are on average 20 percent less than of those obtained by SR.

SCHLOEGEL ET AL.: WAVEFRONT DIFFUSION AND LMSR: ALGORITHMS FOR DYNAMIC REPARTITIONING OF ADAPTIVE MESHES 461

Fig. 9. A comparision of edge-cut, TOTALV, and MAXV results obtained by the SR, LMSR, RO, and WF algorithms on a series of application meshes

of a helicopter blade rotating through space.

TABLE 3
Edge-Cut, TOTALV, MAXV, and Runtime Results of the

Adaptive Graph Partitioners for a Particles-in-Cells
Simulation on a Cray T3E.

5.3 Experimental Results for WF and RO Diffusion

In order to test the effectiveness of our Wavefront Diffusion

scheme, we repartitioned the experimental graphs de-

scribed in Section 5.1 with both the RO and WF algorithms.
Fig. 10 presents the edge-cut and TOTALV results for the

synthetic test sets on 128 processors of a Cray T3E. Again,

MAXV results were quite similar for both of these algo-

rithms and so are not presented here. Run time results for

selected experiments are presented in Section 5.5. These

experiments give the results of the multilevel diffusion

phase only. That is, the graphs were coarsened identically

(via local matching) and multilevel refinement was not

conducted. This allows us to focus our attention on the

diffusion algorithm and not on the effects of the multilevel

paradigm. In Fig. 10, the bars indicate the edge-cut and

TOTALV results obtained by the WF algorithm normalized

by those obtained by the RO algorithm. Thus, a bar below

the 1.0 index line indicates that the WF algorithm obtained

better results than the RO algorithm. All of the experiments

resulted in partitionings that are balanced to within a

tolerance of 5 percent.
Fig. 10 shows that the WF algorithm obtained similar or

better results across the board than the RO algorithm for both

edge-cut and TOTALV. Typically, the WF algorithm obtained

TOTALV results that are 40 to 60 percent of those obtained by

RO and edge-cuts that are 60 to 90 percent of those obtained

by the RO algorithm. These results show that the WF

algorithm is more effective at computing high-quality

repartitionings while minimizing the amount of TOTALV

than the RO algorithm. Note that these figures compare the

edge-cut results of the two schemes prior to multilevel

refinement. The edge-cuts of the two schemes after multilevel

refinement are usually comparable. This is because the

effectiveness of multilevel refinement is able to make up the

difference in edge-cut in many cases. The exception is when

the partitioning is extremely imbalanced. In this case, WF

tends to compute higher-quality partitionings than RO even

after multilevel refinement.
Table 3 shows that WF resulted in significantly lower

data redistribution costs (both TOTALV and MAXV) than
RO. However, here, the edge-cuts are similar. This is
because Table 3 (as well as Fig. 9) presents the results
obtained after multilevel refinement. The run times of the
two schemes are similar.

Fig. 9 shows similar trends. WF generally obtained better
edge-cut, TOTALV, and MAXV results than RO. Specifically,
WF obtained edge-cut results that are on average 20 percent
of those obtained by RO and TOTALV and MAXV results
that are on average 40 percent of those obtained by RO.
These results confirm that WF is able to obtain lower edge-
cuts and data redistribution costs than RO when mesh
adaptation occurs to a high degree in localized regions.

5.4 Trade-Offs between LMSR and WF

Fig. 11 presents experimental results comparing the edge-

cut and TOTALV results obtained by the WF and LMSR

algorithms on the same experimental test sets described in

Section 5.1. In these figures, the bars indicate the edge-cut

(and TOTALV) results obtained by WF normalized by those

obtained by LMSR. Thus, a bar below the 1.0 index line

indicates that WF obtained better results than LMSR.
Fig. 11 shows that the Wavefront Diffusion algorithm

obtained edge-cut results similar to or higher than the
LMSR algorithm across the board. Specifically, the edge-
cuts obtained by the WF algorithm are up to 42 percent
higher than those obtained by the LMSR algorithm. Fig. 11
also shows that the WF algorithm was able to obtain
TOTALV results that are significantly better than those
obtained by the LMSR algorithm across the board. In
particular, the WF algorithm obtained TOTALV results that
are as little as 5 percent and generally less than half of those
obtained by the LMSR algorithm.

Fig. 11 shows that, except for the case of very slightly
imbalanced partitionings, there is a clear trade-off between
the edge-cut and the TOTALV with respect to the two new

462 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 5, MAY 2001

Fig. 10. A comparison of edge-cut and TOTALV results obtained from the RO and WF diffusion algorithms on synthetic test sets for a 128-processor

of Cray T3E.

algorithms. That is, the LMSR algorithm minimizes the

edge-cut at the cost of TOTALV, and Wavefront Diffusion

minimizes TOTALV at the cost of edge-cut. For slightly

imbalanced partitionings, WF is strictly better than LMSR,

as it obtains similar edge-cuts and better TOTALV.

Comparing the results in both Table 3 and Fig. 9, we see

a similar trade-off between edge-cut and data redistribution

costs. Table 3 shows that the run times of the schemes are

similar.

SCHLOEGEL ET AL.: WAVEFRONT DIFFUSION AND LMSR: ALGORITHMS FOR DYNAMIC REPARTITIONING OF ADAPTIVE MESHES 463

TABLE 4
Parallel Runtimes of the Adaptive Graph Partitioners on a Cray T3E on the Synthetic Test Set with a � � 10

TABLE 5
Parallel Runtimes of the Adaptive Graph Partitioners on an IMB SP

on the Synthetic Test Sets for Graph mrng3 with � � 10

Fig. 11. A comparison of edge-cut and TOTALV results obtained from the LMSR and WF algorithms on synthetic test sets for a 128-processor of a

Cray T3E.

5.5 Parallel Runtime Results

Table 4, Table 5, and Table 6 give run time results of
selected experiments presented in the previous sections.
Specifically, these tables show the times required for the
SR, LMSR, RO, and WF algorithms to compute reparti-
tionings for the series of synthetic experiments in which �

is set to 10. Table 4 gives the results obtained for all five
synthetic test graphs on up to 128 processors of a Cray
T3E. Table 5 gives the results obtained for mrng3 with �

set to 10 on up to 64 processors of an IBM SP. Table 6
gives the results obtained for auto with � set to 10 on up
to eight processors of a cluster of Pentium Pro work-
stations connected by a Myrinet switch. Table 4, Table 5,
and Table 6 show that the repartitioning algorithms
studied in this paper are very fast. For example, they are
all able to compute a 128-way repartitioning of a
7.5 million vertex graph in under three seconds on
128 processors of a Cray T3E. These results also show
that our parallel algorithms obtain similar run times as
you increase the number of processors by the same factor
as the problem size increases. That is, they exhibit good
scaled speedups. For example, the time required to
repartition mdual2 (with approximately one million
vertices) on eight processors of the Cray T3E is similar
to that of partitioning mrng3 (four million vertices) on
32 processors and mrng4 (seven and one-half million
vertices) on 64 processors of the same machine. Finally,
Table 4 shows that our algorithms obtained speedups of
11.8 (LMSR) and 9.6 (WF) when the number of processors
was increased by a factor of 16 (from eight to 128) for the
largest graph, mrng4. Note that all of the reported
runtimes were obtained on nondedicated machines.
Therefore, these results contain a certain amount of noise.

6 CONCLUSIONS

In this paper, we have presented two new repartitioning
algorithms, LMSR and Wavefront Diffusion. We have
shown that LMSR obtains lower data redistribution results
than current scratch-remap repartitioners and that the
difference between the schemes tends to increase when
the degree of adaptation to the mesh is small. We have also
shown that Wavefront Diffusion obtains lower edge-cut and
data redistribution results than random-order diffusion
repartitioners, especially when adaptation occurs to a high
degree in localized regions of the mesh.

Compared against each other, these two schemes present
a clear trade-off between edge-cut and data redistribution
costs. That is, the Wavefront Diffusion algorithm minimizes

the data redistribution required to balance the load, while

LMSR minimizes the edge-cut of the repartitioning.
We have shown that our LMSR and WF schemes are

extremely fast. (For example, they can compute repartition-
ings for a million-element mesh in about half of a second on
128 processors of a Cray T3E.) Other repartitioning
methods, especially geometric schemes, can be somewhat
faster. However, experimental results [7], [43] have shown
that the time required to compute repartitionings can be
significantly less than the time required to actually perform
the data redistribution. This means that the ability of a
repartitioning scheme to minimize the data redistribution is
more important than the runtime of the scheme in many
cases. None of the simple and fast methods [9], [31], [32],
[33], [40], [44] explicitly minimize data redistribution costs,
while we have shown that our schemes both obtain
extremely low data redistribution costs and compute
high-quality repartitionings.

The parallel repartitioning algorithms described in this

paper are publically available in the PARMETIS [25] graph

partitioning library at http://www.cs.umn.edu/~metis.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy,

contract number LLNL B347881, by the US National Science

Foundation, grant CCR-9972519, by Army Research Office

contracts DA/DAAG55-98-1-0441 and DA/DAAH04-95-1-

0244, by the Army High Performance Computing Research

Center cooperative agreement number DAAH04-95-2-0003/

contract number DAAH04-95-C-0008. The content of this

work does not necessarily reflect the position or the policy

of the government and no official endorsement should be

inferred. Additional support was provided by the IBM

Partnership Award and by the IBM SUR equipment grant.

Access to computing facilities was provided by the

AHPCRC, and the Minnesota Supercomputer Institute.

Related papers are available via WWW: www.cs.umn.edu/

~karypis.

REFERENCES

[1] R. Biswas and R. Strawn, ªA New Procedure for Dynamic
Adaption of Three-Dimensional Unstructured Grids,º Applied
Numerical Math. vol. 13, pp. 437-452, 1994.

[2] J. Boillat, ªLoad Balancing and Poisson Equation in a Graph,º
Concurrency: Practice and Experience, vol. 2, pp. 289-313, 1990.

[3] T. Bui and C. Jones, ªA Heuristic for Reducing Fill in Sparse
Matrix Factorization,º Proc. Sixth SIAM Conf. Parallel Processing for
Scientific Computing, pp. 445-452, 1993.

[4] J. Castanos and J. Savage, ªRepartitioning Unstructured Adaptive
Meshes,º Proc. Int'l. Parallel and Distributed Processing Symp., 2000.

[5] J. Cong and M. Smith, ªA Parallel Bottom-Up Clustering
Algorithm with Applications to Circuit Partitioning in VSLI
Design,º Proc. ACM/IEEE Design Automation Conf., pp. 755-760,
1993.

[6] G. Cybenko, ªDynamic Load Balancing for Distributed Memory
Multiprocessors,º J. Parallel and Distributed Computing, vol. 7, no. 2,
pp. 279-301, 1989.

[7] K. Devine, B. Hendrickson, E. Boman, M. St. John, and C.
Vaughan, ªDesign of Dynamic Load-Balancing Tools for Parallel
Applications,º Proc. Int'l. Conf. Supercomputing, 2000.

[8] R. Diekmann, A. Frommer, and B. Monien, ªEfficient Schemes for
Nearest Neighbor Load Balancing,º Parallel Computing, vol. 25,
pp. 789-812, 1999.

464 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 5, MAY 2001

TABLE 6
Parallel Runtimes of the Adaptive Graph Partitioners on a

Cluster of Pentium Pro Workstations Connected
by a Myrinet Switch for Graph Auto with a � � 10

[9] P. Diniz, S. Plimpton, B. Hendrickson, and R. Leland, ªParallel
Algorithms for Dynamically Partitioning Unstructured Grids,º
Proc. Seventh SIAM Conf. Parallel Procedures, 1995.

[10] C. Fiduccia and R. Mattheyses, ªA Linear Time Heuristic for
Improving Network Partitions,º Proc. 19th IEEE Design Automation
Conf., pp. 175-181, 1982.

[11] J. Flaherty, R. Loy, C. Ozturan, M. Shephard, B. Szymanski, J.
Teresco, and L. Ziantz, ªParallel Structures and Dynamic Load
Balancing for Adaptive Finite Element Computation,º Applied
Numerical Math, vol. 26, pp. 241-263, 1998.

[12] H. Gabow, ªData Structures for Weighted Matching and Nearest
Common Ancestors with Linking,º Proc. First Ann. ACM-SIAM
Symp. Discrete Algorithms, pp. 434-443, 1990.

[13] A. Gupta, ªFast and Effective Algorithms for Graph Partitioning
and Sparse Matrix Reordering,º IBM J. Research and Development,
vol. 41, nos. 1/2, pp. 171-183, 1996.

[14] K. Hall, ªAn rÿDimensional Quadratic Placement Algorithm,º
Management Science, vol. 17, no. 3, pp. 219-229, 1970.

[15] S. Hauck and G. Borriello, ªAn Evaluation of Bipartitioning
Technique,º Proc. Conf. Advanced Research in VLSI, 1995.

[16] B. Hendrickson and R. Leland, ªThe Chaco User's Guide, Version
2.0.,º Technical Report SAND94-2692, Sandia Nat'l Laboratories,
1994.

[17] B. Hendrickson and R. Leland, ªAn Improved Spectral Graph
Partitioning Algorithm for Mapping Parallel Computations,º
SIAM J. Scientific Computing, vol. 16, no. 2, pp. 452-469, 1995.

[18] B. Hendrickson and R. Leland, ªA Multilevel Algorithm for
Partitioning Graphs,º Proc. Supercomputing, 1995.

[19] G. Horton, ªA Multi-Level Diffusion Method for Dynamic Load
Balancing,º Parallel Computing, vol. 9, pp. 209-218, 1993.

[20] Y. Hu and R. Blake, ªAn Improved Diffusion Algorithm for
Dynamic Load Balancing,º Parallel Computing, vol. 25, pp. 417-444,
1999.

[21] Y. Hu, R. Blake, and D. Emerson, ªAn Optimal Migration
Algorithm for Dynamic Load Balancing,º Concurrency: Practice
and Experience, vol. 10, pp. 467-483, 1998.

[22] G. Karypis and V. Kumar, ªA Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs,º SIAM J. Scientific
Computing, vol. 20, no. 1, pp. 359-392, 1998.

[23] G. Karypis and V. Kumar, ªMETIS: A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices, Version
4. 0.,º Technical Report, Dept. of Computer Science and Eng.,
Univ. of Minnesota, 1998.

[24] G. Karypis and V. Kumar, ªMultilevel kÿWay Partitioning
Scheme for Irregular Graphs,º J. Parallel and Distributed Computing,
vol. 48, no. 1, 1998.

[25] G. Karypis, K. Schloegel, and V. Kumar, ªPARMETIS: Parallel
Graph Partitioning and Sparse Matrix Ordering Library,º techni-
cal report, Dept. of Computer Science and Eng., Univ. of
Minnesota, 1997.

[26] B. Kernighan and S. Lin, ªAn Efficient Heuristic Partitioning
Graphs,º The Bell System Technical J., vol. 49, no. 2, pp. 291-307,
1970.

[27] B. Monien, R. Preis, and R. Diekmann, ªQuality Matching and
Local Improvement for Multilevel Graph-Partitioning,º technical
report, Univ. of Paderborn, 1999.

[28] B. Nour-Omid, A. Raefsky, and G. Lyzenga, ªSolving Finite
Element Equations on Concurrent Computers,º Am. Soc. Mechan-
cial Eng. A.K. Noor, ed. pp. 291-307, 1986.

[29] L. Oliker and R. Biswas, ªPLUM: Parallel Load Balancing for
Adaptive Unstructured Meshes,º J. Parallel and Distributed
Computing, vol. 52, no. 2, pp. 150-177, 1998.

[30] C. Ou and S. Ranka, ªParallel Incremental Graph Partitioning
Using Linear Programming,º Proc. Supercomputing, pp. 458-467,
1994.

[31] C. Ou, S. Ranka, and G. Fox, ªFast and Parallel Mapping
Algorithms for Irregular and Adaptive Problems,º J. Supercomput-
ing, vol. 10, pp. 119-140, 1996.

[32] A. Patra and D. Kim, ªEfficient Mesh Partitioning for Adaptive hp
Finite Element Meshes,º technical report, Dept. of Mechanical
Eng., State University of New York, Buffalo, 1999.

[33] J. Pilkington and S. Baden, ªDynamic Partitioning of Non-
Uniform Structured Workloads with Spacefilling Curves,º tech-
nical report, Dept. of Computer Science and Eng., Univ. of
California 1995.

[34] A. Pothen, H. Simon, and K. Liou, ªPartitioning Sparse Matrices
with Eigenvectors of Graphs,º SIAM J. Matrix Analysis and
Applications, vol. 11, no. 3, pp. 430-452, 1990.

[35] A. Pothen, H. Simon, L. Wang, and S. Bernard, ªTowards a Fast
Implementation of Spectral Nested Dissection,º Proc. Supercomput-
ing, pp. 42-51, 1992.

[36] K. Schloegel, G. Karypis, and V. Kumar, ªMultilevel Diffusion
Schemes for Repartitioning of Adaptive Meshes,º J. Parallel and
Distributed Computing, vol. 47, no. 2, pp. 109-124, 1997.

[37] K. Schloegel, G. Karypis, and V. Kumar, ªGraph Partitioning for
High Performance Scientific Simulations,º CRPC Parallel Comput-
ing Handbook, Morgan Kaufmann, 2000.

[38] K. Schloegel, G. Karypis, V. Kumar, R. Biswas, and L. Oliker, ªA
Performance Study of Diffusive vs. Remapped Load-Balancing
Schemesº ISCA 11th Int'l Conf. Parallel and Distributed Computing
Systems, pp. 59-66, 1998.

[39] H. Simon, A. Sohn, and R. Biswas, ªHARP: A Fast Spectral
Partitioner,º Proc. Ninth ACM Symp. Parallel Algorithms and
Architectures, pp. 43-52, 1997.

[40] A. Sohn, ªS-HARP: A Parallel Dynamic Spectral Partitioner,º
technical report, Dept. of Computer and Information Science, New
Jersey Institute of Technology, 1997.

[41] A. Sohn, R. Biswas, and H. Simon, ªImpact of Load Balancing on
Unstructured Adaptive Grid Computations for Distributed-
Memory Multiprocessors,º Proc. Eighth IEEE Symp. Parallel and
Distributed Processing, pp. 26-33, 1996.

[42] A. Sohn and H. Simon, ªJOVE: A Dynamic Load Balancing
Framework for Adaptive Computations on an SP-2 Distributed-
Memory Multiprocessor,º Technical Report 94-60, Dept. of
Computer and Information Science, New Jersey Institute of
Technology, 1994.

[43] N. Touheed, P. Selwood, P. Jimack, and M. Berzins, ªA
Comparison of Some Dynamic Load-Balancing Algorithms for a
Parallel Adaptive Flow Solver,º Parallel Computing, vol. 26, no. 1,
pp. 535-554, 2000.

[44] A. Vidwans, Y. Kallinderis, and V. Venkatakrishnan, ªParallel
Dynamic Load-Balancing Algorithm for Three-Dimensional
Adaptive Unnstructured Grids,º AIAA J., vol. 32, pp. 497-505,
1994.

[45] C. Walshaw and M. Cross, ªMesh Partitioning: A Multilevel
Balancing and Refinement Algorithm,º SIAM J. Scientific Comput-
ing, vol. 22, no. 1, pp.63-80, 2000.

[46] C. Walshaw, M. Cross, and M. Everett, ªDynamic Mesh
Partitioning: A Unified Optimisation and Load-Balancing Algo-
rithm,º Technical Report 95/IM/06, Centre for Numerical
Modelling and Process Analysis, Univ. of Greenwich, 1995.

[47] C. Walshaw, M. Cross, and M. Everett, ªMesh Partitioning and
Load-Balancing for Distributed Memory Parallel Systems,º Proc.
Parallel and Distbuted Computing for Computer Mechanics, 1997.

[48] C. Walshaw, M. Cross, and M. Everett, ªParallel Dynamic Graph
Partitioning for Adaptive Unstructured Meshes,º J. Parallel and
Distributed Computing, vol. 47, no. 2, pp. 102-108, 1997.

[49] J. Watts and S. Taylor, ºA Practical Approach to Dynamic
Load Balancing,º Trans. Parallel and Distributed Systems, vol. 9,
pp. 235-248, 1998.

[50] C. Xu and F. Lau, ªThe Generalized Dimension Exchange Method
for Load Balancing in k-Ary ncubes and Variants,º J. Parallel and
Distributed Computing, vol. 24, pp. 72-85, 1995.

SCHLOEGEL ET AL.: WAVEFRONT DIFFUSION AND LMSR: ALGORITHMS FOR DYNAMIC REPARTITIONING OF ADAPTIVE MESHES 465

Kirk Schloegel has a PhD in computer science
from the University of Minnesota. He is a
research associate at the University of Minne-
sota. His research interests include graph
partitioning, load balancing, and parallel comput-
ing. He is a member of the IEEE Computer
Society and SIAM.

George Karypis has a PhD in computer science
from the University of Minnesota. He is an
assistant professor of computer science at the
University of Minnesota. His research interests
include data mining, bio-informatics, parallel
computing, graph partitioning, and scientific
computing. He is a member of the IEEE
Computer Society and the ACM.

Vipin Kumar is the director of the Army High
Performance Computing Research Center and
professor of computer science at the University
of Minnesota. His current research interests
include high performance computing and data
mining. Dr. Kumar serves on the editorial boards
of IEEE Concurrency, Parallel Computing, the
Journal of Parallel and Distributed Computing,
and he has served on the editorial board of the
IEEE Transactions of Data and Knowledge

Engineering during 1993-1997. He is a fellow of the IEEE, a member
of SIAM and ACM, and a fellow of the Minnesota Supercomputer
Institute.

466 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 5, MAY 2001

