WebACE: A Web Agent for Document Categorization and Exploration

Eui-Hong (Sam) Han, Daniel Boley, Maria Gini,
Robert Gross, Kyle Hastings, George Karypis,
Vipin Kumar, Bamshad Mobasher, and Jerome Moore

Department of Computer Science and Engineering
University of Minnesota

Abstract

We propose an agent for exploring and categorizing docu-
ments on the World Wide Web. The heart of the agent is an
automatic categorization of a set of documents, combined
with a process for generating new queries used to search
for new related documents and filtering the resulting docu-
ments to extract the set of documents most closely related
to the starting set. The document categories are not given
a-priori. We present the overall architecture and describe
two novel algorithms which provide significant improvement
over traditional clustering algorithms and form the basis for
the query generation and search component of the agent.

1 Introduction

The World Wide Web is a vast resource of information and
services that continues to grow rapidly. Powerful search en-
gines have been developed to aid in locating unfamiliar doc-
uments by category, contents, or subject. Relying on large
indexes to documents located on the Web, search engines
determine the URLs of those documents satisfying a user’s
query. Often queries return inconsistent search results, with
document referrals that meet the search criteria but are of
no interest to the user.

While it may not be currently feasible to extract in full
the meaning of an HTML document, intelligent software
agents have been developed which extract semantic features
from the words or structure of an HTML document. These
extracted features are then employed to classify and cate-
gorize the documents. Clustering offers the advantage that
a priori knowledge of categories is not needed, so the cate-
gorization process is unsupervised. The results of clustering
could then be used to automatically formulate queries and
search for other similar documents on the Web, or to orga-
nize bookmark files, or to construct a user profile.

In this paper, we present WebACE, an agent for docu-
ment categorization and exploration that operates on Web
documents. A novel part of the paper is the description
of two new clustering algorithms based on graph partition-
ing, that provide a significant improvement in performance

Permission 1o make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage. the copy-
right notice. the title of the publication and its date appear, and notice is
given that copying is by permission of ACM. Ine. To copy otherwise,

to republish. to post on servers or (o redistribute 1o Tists, requires prior
spectlic permission and/or fee.

Autonomous Agents 98 Minncapolis MN USA

Copyright 1998 0-89791-983-1/9%/ 5...$5.00

408

over traditional clustering algorithms used in information
retrieval. Many traditional algorithms break down as the
size of the document space, and thus the dimensionality of
the corresponding feature space, increases. High dimension-
ality is characteristic of the type of information retrieval
applications which are used to filter and categorize hyper-
text documents on the World Wide Web. In contrast, our
partitioning-based algorithms do not rely on a specific choice
of a distance function and do scale up effectively in a high
dimensional space.

After a short description of the architecture of WebACE
in Section 3, we describe the clustering algorithms in Sec-
tion 4. The results obtained on a number of experiments
using different methods to select sets of features from the
documents show that partitioning clustering methods per-
form better than traditional distance based clustering. In
Section 5 we show how to use words obtained from clusters
of documents to generate queries for related documents.

2 Related Work

The heterogeneity and the lack of structure that permeates
much of the information sources on the World Wide Web
makes automated discovery, organization, and management
of Web-based information difficult. Traditional search and
indexing tools of the Internet and the World Wide Web such
as Lycos, Alta Vista, WebCrawler, MetaCrawler, and oth-
ers provide some comfort to users, but they do not generally
provide structural information nor categorize, filter, or in-
terpret documents.

In recent years these factors have prompted researchers
to develop more intelligent tools for information retrieval,
such as intelligent Web agents. The agent-based approach
to Web mining involves the development of sophisticated Al
systems that can act autonomously or semi-autonomously
oun behalf of a particular user, to discover and organize Web-
based information. Generally, the agent-based Web mining
systems can be placed into the following categories:

Intelligent Search Agents Several intelligent Web agents
have been developed that search for relevant informa-
tion using characteristics of a particular domain (and
possibly a user profile) to organize and interpret the
discovered information. For example, agents such as
FAQ-Finder [14], Information Manifold {18], and OC-
CAM [19] rely either on pre-specified and domain spe-
cific information about particular types of documents,
or on hard coded models of the information sources
to retrieve and interpret documents. Other agents,



User option

P

document vectors

Figure 1: WebACE Architecture

such as ShopBot [9] and ILA [23], attempt to interact
with and learn the structure of unfamiliar information
sources.

Information Filtering/Categorization A number of Web

agents use various information retrieval techniques [12]
and characteristics of open hypertext Web documents
to automatically retrieve, filter, and categorize. For
example, HyPursuit [27] uses semantic information em-
bedded in link structures as well as document content
to create cluster hierarchies of hypertext documents.
BO (Bookmark Organizer) [21] combines hierarchical
clustering techniques and user interaction to organize
a collection of Web documents based on conceptual
information. Pattern recognition methods and word
clustering using the Hartigan’s K-means partitional
clustering algorithm are used in {28] to discover salient
HTML document features (words) that can be used in
finding similar HTML documents on the Web.

Personalized Web Agents Anocther group of Web agents
includes those that obtain or learn user preferences
and discover Web information sources that correspond
to these preferences, and possibly those of other indi-
viduals with similar interests (using collaborative fil-
tering). A few recent examples of such agents include
WebWatcher [3], Syskill & Webert, and others. Syskill
& Webert [1] utilizes a user profile and learns to rate
Web pages of interest using a Bayesian classifier. Bal-
abanovic [4] uses a single well-defined profile to find
similar web documents. Candidate web pages are lo-
cated using best-first search. The system needs to keep
a large dictionary and is limited to a single user.

3 WebACE Architecture

WebACE?’s architecture is shown in Figure 1.

As the user browses the Web, the profile creation module
builds a custom profile by recording documents of interest
to the user. The number of times a user visits a document
and the total amount of time a user spends viewing a doc-
ument are just a few methods for determining user interest
[1, 3, 4. Once WebACE has recorded a sufficient number
of interesting documents, each document is reduced to a
document vector and the document vectors are passed to

409

the clustering modules. WebACE uses two novel algorithms
for clustering which can provide significant improvement in
both run-time performance and cluster quality over tradi-
tional algorithms. These are described in Section 4.

After WebACE has found document clusters, it uses the
clusters to generate queries and search for similar docu-
ments. WebACE submits the queries to the search mech-
anism and gathers the documents returned by the searches,
which are in turn reduced to document vectors. These new
documents can be used in a variety of ways. One option is
for WebACE to cluster the new documents, filtering out the
less relevant ones. Another is to update the existing clusters
by having WebACE insert the new documents into the clus-
ters. Yet another is to completely re-cluster both the new
and old documents. Finally, the user can decide to add any
or all of the new documents to his profile. The query genera-
tion methods and the algorithms for incrementally updating
existing clusters are discussed in Section 5.

WebACE is implemented as a browser independent Java
application. Monitoring the user’s browsing behavior is ac-
complished via a proxy server. The proxy server allows
WebACE to inspect the browser’s HTTP requests and the
resulting responses. Upon execution, WebACE spawns a
browser and starts a thread to listen for HTTP requests
from the browser. As the browser makes requests, WebACE
creates request threads to handle them. This allows multi-
threaded browsers the capability of having multiple requests
pending at one time. The lifespan of these request threads
is short, i.e. the duration of one HTTP request, Conversely,
the browser listener thread persists for the duration of the
application.

4 Clustering Methods

Existing approaches to document clustering are generally
based on either probabilistic methods, or distance and sim-
ilarity measures (see [12]). Distance-based methods such as
k-means analysis, hierarchical clustering [16] and nearest-
neighbor clustering {20] use a selected set of words (features)
appearing in different documents as the dimensions. Each
such feature vector, representing a document, can be viewed
as a point in this multi-dimensional space.

There are a number of problems with clustering in a
multi-dimensional space using traditional distance or prob-



ability based methods. First, it is not trivial to define a
distance measure in this space. Some words are more fre-
quent in a document than other words. Simple frequency
of the occurrence of words is not adequate, as some doc-
uments are larger than others. Furthermore, some words
may occur frequently across documents. Techniques such as
TFIDF {25] have been proposed precisely to deal with some
of these problems.

Secondly, the number of all the words in all the docu-
ments can be very large. Distance-based schemes generally
require the calculation of the mean of document clusters. If
the dimensionality is high, then the calculated mean values
do not differ significantly from one cluster to the next. Hence
the clustering based on these mean values does not always
produce very good clusters. Similarly, probabilistic methods
such as Bayesian classification used in AutoClass [8], do not
perform well when the size of the feature space is much larger
than the size of the sample set. This type of data distribu-
tion seems to be characteristic of document categorization
applications on the Web, such as categorizing a bookmark
file. Furthermore, the underlying probability models usu-
ally assume independence of attributes (features). In many
domains, this assumption may be too restrictive. It is pos-
sible to reduce the dimensionality by selecting only frequent
words from each document, or to use some other method to
extract the salient features of each document. However, the
number of features collected using these methods still tends
to be very large, and due to the loss of some of the relevant
features, the quality of clusters tends not to be as good.

Our proposed clustering algorithms which are described
in this section are designed to efficiently handle very high di-
mensional spaces, and furthermore, they do not require the
definition of ad hoc distance or similarity metrics. In con-
trast to traditional clustering methods, our proposed meth-
ods are linearly scalable, an advantage which makes these
methods particularly suitable for use in Web retrieval and
categorization agents.

For our evaluation, we compare these algorithms to two
well-known methods: Bayesian classification as used by Au-
toClass [8] and hierarchical agglomeration clustering (HAC)
based on the use of a distance function {10].

AutoClass is based on the probabilistic mixture model-
ing [26], and given a data set it finds maximum parameter
values for a specific probability distribution functions of the
clusters. The clustering results provide the full description
of each cluster in terms of probability distribution of each
attributes.

The HAC method starts with trivial clusters, each con-
taining one document and iteratively combines smaller clus-
ters that are sufficiently “close” based on a distance metric.
In HAC, the features in each document vector is usually
weighted using the TFIDF function, which is an increas-
ing function of the feature’s text frequency and its inverse
document frequency in the document space.

4.1 Association Rule Hypergraph Partitioning Algorithm

In [15], a new method was proposed for clustering related
items in transaction-based databases, such as supermarket
bar code data, using association rules and hypergraph par-
titioning. This method first finds set of items that occur
frequently together in transactions using association rule
discovery methods [2]. These frequent item sets are then
used to group items into hypergraph edges, and a hyper-
graph partitioning algorithm [17] is used to find the item
clusters. The similarity among items is captured implicitly

410

by the frequent item sets.

In document clustering, each document corresponds to
an item and each possible feature corresponds to a trans-
action. A frequent item sets found using the association
rule discovery algorithm corresponds to a set of documents
that have a sufficiently large number of features in common.
These frequent item sets are mapped into hyperedges in a
hypergraph. A hypergraph [5] H = (V, E) consists of a set
of vertices V' and a set of hyperedges E. A hypergraph is an
extension of a graph in the sense that each hyperedge can
connect more than two vertices. In this model, the set of
vertices V' corresponds to the documents, and each hyper-
edge e € F corresponds to a set of related documents found.
For example, if {d1,d2,ds} is a frequent item set, then the
hypergraph contains a hyperedge that connects d;, d2 and
d3. The weight of a hyperedge is calculated as the aver-
age confidence (2] of all the association rules involving the
related documents of the hyperedge. The confidence of an
association rule involving documents like {d;,d2} => {ds}
is the conditional probability that a feature occurs in docu-
ment dz whenever it occurs in d; and ds.

Next, a hypergraph partitioning algorithm is used to par-
tition the hypergraph such that the weight of the hyperedges
that are cut by the partitioning is minimized. Note that by
minimizing the hyperedge-cut we essentially minimize the
relations that are violated by partitioning the documents
into different clusters. Similarly, this method can be applied
to word clustering. In this setting, each word corresponds
to an item and each document corresponds to a transaction.

This method uses the Apriori algorithm [2] which has
been shown to be very efficient in finding frequent item
sets and HMETIS [17] which can partition very large hy-
pergraphs (of size > 100K nodes) in minutes on personal
computers.

An additional advantage of ARHP is that it can be used
to filter out non-relevant documents while clustering a docu-
ment space, and thus improving the quality of the document
clusters. This filtering capability is mainly due to support
criteria in the association rule discovery components of the
algorithm. Depending on the support threshold. documents
that do not meet support (i.e., documents that do not share
large enough subsets of words with other documents) will
be pruned. This feature is particularly useful for clustering
large document sets which are returned by standard search
engines using keyword queries.

4.2 Principal Component Divisive Partitioning

The method of Principal Component Divisive Partitioning
[7] is a top down clustering method. Starting with a “root”
cluster encompassing the entire document set, each unsplit
cluster is split into two “child” clusters until a desired num-
ber of clusters is reached. The clusters formed in this way
are in a hierarchy which has the form of a binary tree whose
root is the initial “root” cluster. The leaf nodes of this tree
are the unsplit clusters. At termination, these unsplit clus-
ters are the final set of clusters returned by this algorithm.
The algorithm proceeds by repeatedly selecting a leaf node
in the binary tree and splitting that node, generating two
subclusters which become the two children to the node just
split.

The behavior of the algorithm is controlled by the method
used to select the next node to split, as well as how that clus-
ter is split. We discuss the latter process first, since this is
the key to the computational efficiency of this method. Each
document is represented by a vector d of word frequencies,



We select all non-stop words (stemmed).
We prune the words selected for E11 to exclude those occurring only

We select the 20 most frequently occurring words and include all
words from the partition that contributes the 20th word.
We prune the words selected for E3 to exclude those occurring only

We select the top 54 words augmented by any word that
was emphasized in the html document, i.e., words appearing in
<TITLE>, <H1>, <H2>, <H3>, <I>, <BIG>, <STRONG>, or
<EMPHASIZE> tags.

Quantile filtering selects the most frequently occurring words until
the accumulated frequencies exceed a threshold of 0.25, including all
words from the partition that contributes the word that exceeds the

Word Selection Dataset
Set Criteria Size Comments
El All words 185x10536
E2 All words with text fre-  188x5106
quency > 1 once.
E3 Top 20+ words 185x1763
E4 Top 204+ with text fre- 185x1328
quency > 1 once.
E5 Top 154 with text fre-  185x1105
quency > 1
E6 Top 10+ with text fre- 185x805
quency > 1
E7 Top 5+ with text fre- 185x474
quency > 1
E8 Top 5+ plus empha-  185x2951
sized words
E9 Quantile filtering 185x946
threshold.
E10 Frequent item sets 185x499

We select words from the document word lists that appear in a-
priori word clusters. That is, we use an object measure to identify

important groups of words.

Table 1: Setup of experiments.

scaled to have unit length to make the results independent
of document length. A cluster is represented by a set of
documents, D = {di, ..., di}. We define a linear discrimi-
nant function g(d) = u”(d — w), where u, w are vectors to
be determined. The linear discriminant function is used to
define the splitting of the cluster: if g(d) < 0, the document
d is placed in the new left child, otherwise d is placed in
the new right child. Thus the behavior of each node in the
binary tree is determined entirely by the two vectors u, w.

Space does not permit a complete description of how
u, w are computed, but we can briefly describe what those
vectors are mathematically. The vector w is defined to be
the mean or centroid vector for the cluster. The vector u is
the direction of maximal variance. This direction is defined
to be the eigenvector corresponding to the largest eigenvalue
of the covariance matrix of the documents in the cluster.
The computation of u is the most expensive step in this
whole process. We have used a fast Lanczos-based solver for
the singular values of the matrix of documents in the cluster
{13]. This algorithm is able to take full advantage of the fact
that less than 4% of all the entries in the document vectors
are nonzero. We remark that we did not use TFIDF scaling
[25] because (a) the quality of the PDDP algorithm results
was not noticeably different, and (b) TFIDF fills in all the
zero entries with nonzero values, substantially increasing the
costs.

The method as a whole allows the user to choose any
convenient method for deciding which cluster to split next
at each stage. In our experiments we have adopted a scatter
value, defined to be the sum of squares of the distances from
each document in the cluster to the cluster centroid. The
cluster with the largest such scatter value is selected next.

This method differs from that of Latent Semantic Index-
ing (LSI) [6] in many ways. First of all, LSI was originally
formulated for a different purpose, namely as a method to
reduce the dimensionality of the search space for the pur-
pose of handling queries: retrieving some documents given

411

a set of search terms. Secondly, it operates on the unscaled
vectors, whereas we scale the document vectors to have unit
length. Thirdly, in LS, the singular value decomposition of
the matrix of document vectors itself are computed, whereas
we shift the documents so that their mean is at the origin in
order to compute the covariance matrix. Fourthly, the LSI
method must compute many singular vectors of the entire
matrix of document vectors, perhaps on the order of 100
such singular vectors, but it must do so only once at the
beginning of the processing. In our method, we must com-
pute only the single leading singular vector (the vector u),
which is considerably easier to obtain. Of course we must
repeat this computation on each cluster found during the
course of the algorithm, but all the later clusters are much
smaller than the initial “root” cluster, and hence the later
computations are much faster.

4.3 Experimental Evaluation of Clustering

To compare our clustering methods with the more tradi-
tional algorithms, we selected 185 web pages in 10 broad
categories: business capital (BC), intellectual property (IP),
electronic commerce (EC), information systems (IS), affir-
mative action (AA), employee rights (ER), personnel man-
agement (PM), industrial partnership (IPT), manufacturing
systems integration (MSI), and materials processing (MP).
The pages in each category were obtained by doing a key-
word search using a standard search engine. These pages
were then downloaded, labeled, and archived. The labeling
facilitates an entropy calculation and subsequent references
to any page were directed to the archive. This ensures a
stable data sample since some pages are fairly dynamic in
content.

The word lists from all documents were filtered with a
stop-list and “stemmed” using Porter’s suffix-stripping al-
gorithm [24] as implemented by [11]. We derived 10 exper-
iments (according to the method used for feature selection)



BPM
uMS)
oMp
mis
IPT
mP
DER
oEc
mBC
BAA

Clusters

20 20

10
Doecument Count

Figure 2: Class distribution of AutoClass clusters.

and clustered the documents using the four algorithms de-
scribed earlier. The objective of feature selection was to
reduce the dimensionality of the clustering problem while
retain the important features of the documents. Table 1
shows the feature selection methods that characterize vari-
ous experiments.

Validating clustering algorithms and comparing perfor-
mance of different algorithms is complex because it 1s diffi-
cult to find an objective measure of quality of clusters. We
decided to use entropy as a measure of goodness of the clus-
ters (with the caveat that the best entropy is obtained when
each cluster contains exactly one document). For each clus-
ter of documents, the class distribution of documents is cal-
culated first. Then using this class distribution, the entropy
of each cluster is calculated. When a cluster contains doc-
uments from one class only, the entropy value is 0.0 for the
cluster and when a cluster contains documents from many
different classes, then entropy of the cluster is higher. The
total entropy is calculated as the weighted sum of entropies
of the clusters. We compare the results of the various ex-
periments by comparing their entropy across algorithms and
across feature selection methods (Fig. 5). Figure 2 shows the
class distribution of documents in each cluster of the best
AutoClass result with the entropy value 2.05. Comparing
this result to one of PDDP result with entropy value of 0.69
in Figure 3 and one of ARHP result with entropy value of
0.79 in Figure 4, we can see the big differences in the quality
of the clusters obtained from these experiments.

Our experiments suggest that clustering methods based
on partitioning seem to work best for this type of informa-
tion retrieval applications, because (1) they do not depend
in a choice of a distance function; (2) they do not require
calculation of the mean of the clusters, and so the issue of

412

BPM
mMSI
oMmpP
=S
@ PT
NP
OER
DEC
®BC
BAA

Clusters

N s O 0w O

-

S 10 15
Document Count

20

Figure 3: Class distribution of PDDP clusters.

having cluster means very close in space does not apply; (3)
they are not sensitive to the dimensionality of the data sets;
and (4) they are linearly scalable w.r.t. the cardinalities of
the document and feature spaces (in contrast to HAC and
AutoClass which are quadratic). In particular, both the hy-
pergraph partitioning method and the principal component
methods perforined much better than the traditional meth-
ods regardless of the feature selection criteria used.

There were also dramatic differences in run times of the
four methods. For example, when no feature selection cri-
teria was used (dataset size of 185 x 10538), ARHP and
PDDP took less than 2 minutes, whereas HAC took 1 hour
and 40 minutes and AutoClass took 38 minutes.

Aside from overall performance and the quality of clus-
ters, the experiments point to a few other notable conclu-
sions. As might be expected, in general clustering algo-
rithms yield better quality clusters when the full set of fea-
ture is used (experiment E;). Of course, as the above dis-
cussion shows, for large datasets the computational costs
may be prohibitive, especially in the case of HAC and Auto-
Class methods. It is therefore important to select a smaller
set of representative features to improve the performance of
clustering algorithms without losing too much quality. Our
experiments with various feature selection methods repre-
sented in E) through FEig, clearly show that restricting the
feature set to those only appearing in the frequent item sets
(discovered as part of the association rule algorithm), has
succeeded in identifying a small set of features that are rele-
vant to the clustering task. In fact, in the case of AutoClass
and HAC, the experiment Ei¢ produced results that were
better than those obtained by using the full set.



E6

E?

futo

ES

E9 g0

Figure 5: Entropy of different algorithms. Note that lower entropy indicates better cohesiveness of clusters.

NPM
mMsi
amP
m[S
8IPT
np
OER
QEC
mBC
B AL

o

Clusters
0

- N N S~ O~ O

S 10
Document Count

15

Figure 4: Class distribution of ARHP clusters.

It should be noted that the conclusions drawn in the
above discussion have been confirmed by another experiment
using a totally independent set of documents {22].

413

5 Search for and Categorization of Similar Documents

One of the main tasks of the agent is to search the Web
for documents that are related to the clusters of documents.
The key question here is how to find a representative set
of words that can be used in a Web search. With a single
document, the words appearing in the document become a
representative set. However, this set of words cannot be used
directly in a search because it excessively restricts the set of
documents to be searched. The logical choice for relaxing
the search criteria is to select words that are very frequent
in the document.

The characteristic words of a cluster of documents are the
ones that have high document frequency and high average
text frequency. Document frequency of a word refers to the
frequency of the word across documents. Text frequency of
a word refers to word frequency within a document. We
define the TF word list as the list of k words that have the
highest average text frequency and the DF word list as the
list of k words that have the highest document frequency.

For each cluster, the word lists TF and DF are con-
structed. TFNDF represents the characteristic set of words
for the cluster, as it has the words that are frequent across
the document and have high average frequency. The query
can be formed as

(ctAhea...Aem) A(f1VE2.. . Via)

where ¢; E TFNDF and t; e TF — DF.

We formed queries from the business capital cluster dis-
cussed in Section 4.3. We found the characteristic words of
the cluster (IF N DF) and issued the following query to
Yahoo web search engine:

+capit* +busi* +financ* +provid* +fund* +develop*
+compani* +financi* +manag*

The search returned 2280 business related documents. We
then added the most frequent words that were not in the
previous list (T'F — DF) to form the following query:

+capit* +busix +financ* +provid* +fund* +develop*



Alta Vista Web Pages (1-20 of 372)
SBA Loans Take A New Direction - SBA Loans Take A New Direction. April, 1993. While the restrictive condi-

i i 1 i 1 1 inog nhtaining
tions in the commercial lending environment show some signs of abating, obtaining..

——hitp://www.ffgroup. com/contractor/sba_8a/504loans.himl

SBA: Small Business Act of 1958 and PL 104-208, Approved 9/30/96 - This compilation includes PL 104-
208, approved 9/30/96. SMALL BUSINESS INVESTMENT ACT OF 1958. (Public Law 85-699, as amended) Sec.
101. SHORT TITLE This..

—hitp://www.sbaonline.sba.gou/INV /sbaact.html

New Haven Enterprise Community Summary - EC Summary Contact EC Summary Maps. STRATEGIC PLAN
SUMMARY. Introduction. The New Haven Enterprise Community Strategic Plan marshals our community’s...
~~http://www.hud.gov/cpd/ezec/ct/ctnewhav.html

ABIOGENESIS SOFTWARE - Business Venture Finance Investment Info - The Abiogenesis Business Fi-
nance Resource Site. Abiogenesis provides software for the creation of computer dictionaries. Setting up and capitaliz-

ing your..
~~http://www.abiogenesis.com/AbioDocs/Finance.html

—hitp://www.unf.edu/students2/jroger2/finance.html

¢ Financial Information - Finance Executives. General Web Resources. CorpFiNet. An Introduction to the WWW
for Executives. SuperCFQOs. Well-written article from Fortune discusses...

e Fairfax County Business Services and Resources (Part 3) - Business Services and Resources. Arts. Associa-

tions. Career Development/Continuing Education. Child Care. Chambers of Commerce and Other Business...
~~http://www.eda.co.fairfar.va.us/feeda/do_bus/b_resrc3.html_..28506-4

¢ Canadian Financial Regulation: A System in Transition - Commentary 78; Financial Regulation March 19,

—hitp://www.cdhowe. org/eng/word/word-5.html

1996. Canadian Financial Regulation: A System in Transition. by Edwin H. Neave. Abstract. Planned revisions..

¢ FBS — Business Page — re:BUSINESS — Summer 1996 - RE: Business.

SUMMER 1996. THE FIRST

plans for...

AMERICAN 401(K) SOLUTION FOR EMPLOYEES’ RETIREMENT. Today, many businesses are setting up 401(k)

~~http://www.fbs.com/biz_pages/newsletters /96summer.html
e CPB TV Future Fund Business Plans - TV Future Fund. Business Plan Qutline. Updated

Figure 6: First page of search results from Alta Vista (without the graphics).

+compani* +financi* +manag* loan* invest* program*
credit* industri* tax* increas* cost* technologis
sba* project*

AltaVista search using this query returned only 372 busi-
ness related documents which seemed highly related to the
existing documents in the cluster. First page returned by
the query is shown in Figure 6.

The documents returned as the result of queries can be
handled in several ways as shown in Figure 1. ARHP could
be used to filter out non-relevant documents among the set
of documented returned by the query as discussed in Sec-
tion 4.1. The degree of filtering can be increased either by
setting higher support criteria for association rules discovery
or by having a tighter connectivity constraint in the parti-
tion.

Resulting documents can be incrementally added to the
existing clusters using ARHP or PDDP depending on the
method used for clustering. With ARHP, for each new doc-
ument, existing hyperedges are extended to include the new
document and their weights are calculated. For each clus-
ter, the connectivity of this new document to the cluster is
measured by adding the weights of all the extended hyper-
edges within the cluster. The new document is placed into
the cluster with the highest connectivity. The connectivity
ratio between the chosen cluster and the remaining clusters
indicates whether the new document strongly belongs to the
chosen cluster. If the connectivity of the document is below
some threshold for all clusters, then the document can be

414

considered as not belonging to any of the cluster.

With PDDP, the binary tree can also be used to filter
new incoming documents by placing the document on one or
the other side of the root hyperplane, then placing it on one
or the other side the next appropriate hyperplane, letting it
percolate down the tree until it reaches a leaf node. This
identifies the cluster in the original tree most closely related
to the new incoming document. If the combined scatter
value for that cluster with the new document is above a given
threshold, then the new document is only loosely related to
that cluster, which can then be split in two.

6 Conclusion

In this paper we have proposed an agent to explore the Web,
categorizing the results and then using those automatically
generated categories to further explore the Web. We have
presented sample performance results for the categorization
(clustering) component, and given some examples showing
how those categories are used to return to the Web for fur-
ther exploration.

For the categorization component, our experiments have
shown that the ARHP algorithm and the PDDP algorithm
are capable of extracting higher quality clusters while op-
erating much faster compared to classical algorithms such
as HAC or AutoClass. This is consistent with our previous
results {22]. The ARHP algorithm is also capable of filtering
out documents by setting a support threshold.



To search for similar documents queries are formed by
extending the characteristic word sets for each cluster. Our
experiments show that this method is capable of produc-
ing small sets of relevant documents using standard search
engines.

In the future, we will explore the performance of the
entire agent as an integrated and fully automated system,
comparing the relative merits of the various algorithms for
clustering, query generation, and document filtering, when
used as the key components for this agent.

References

(1]
2]

(4]

(6]

[6]

(7}

(8]

[9]

(10]

(11)

[12]

(13]

M. Ackerman et al. Learning probabilistic user profiles.
Al Magazine, 18(2):47-56, 1997.

A. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A1 Verkamo. Fast discovery of association rules. In
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smith, and
R. Uthurusamy, editors, Advances in Knowledge Dis-
covery and Data Mining, pages 307-328. AAAI/MIT
Press, 1996.

R. Armstrong, D. Freitag, T. Joachims, and
T. Mitchell. WebWatcher: A learning apprentice for the
world wide web. In Proc. AAAI Spring Symposium on
Information Gathering from Heterogeneous, Distributed
Environments. AAAI Press, 1995.

Marko Balabanovic, Yoav Shoham, and Yeogirl Yun.
An adaptive agent for automated Web browsing. Jour-
nal of Visual Communication and Image Representa-
tion, 6(4), 1995.

C. Berge. Graphs and Hypergraphs. American Elsevier,
1976.

M. W. Berry, S. T. Dumais, and Gavin W. O'Brien. Us-
ing linear algebra for intelligent information retrieval.
SIAM Review, 37:573-595, 1995.

D.L. Boley. Principal Direction Divisive Partitioning.
Technical Report TR-97-056, Department of Computer
Science, University of Minnesota, Minneapolis, 1997.

P. Cheeseman and J. Stutz. Bayesian classification
{Autoclass): Theory and results. In U.M. Fayyad,
G. Piatetsky-Shapiro, P. Smith, and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data

Mining, pages 1563-180. AAAI/MIT Press, 1996.

R. B. Doorenbos, O. Etzioni, and D. S. Weld. A scalable
comparison shopping agent for the World Wide Web.
Technical Report 96-01-03, University of Washington,
Dept. of Computer Science and Engineering, 1996.

Richard O. Duda and Peter E. Hart. Pattern Classifi-
cation and scene analysis. John Wiley & Sons, 1973.

W. B. Frakes. Stemming algorithms. In W. B. Frakes
and R. Baeza-Yates, editors, Information Retrieval
Data Structures and Algorithms, pages 131-160. Pren-
tice Hall, 1992.

W. B. Frakes and R. Baeza-Yates. Information Re-
trieval Data Structures and Algorithms. Prentice Hall,
Englewood Cliffs, NJ, 1992.

G. H. Golub and C. F. Van Loan. Matriz Computations.
Johns Hopkins Univ. Press, 3rd edition, 1996.

415

{14]

(15]

[16]

(17]

18]

(19]

[20]

(21]

(22]

23]

24]
[25]

[26]

[27]

(28]

K. Hammond, R. Burke, C. Martin, and S. Lytinen.
FAQ-Finder: A case-based approach to knowledge nav-
igation. In Working Notes of the AAAI Spring Sympo-
sium: Information Gathering from Heterogeneous, Dis-
tributed Environments. AAAI Press, 1995.

E.H. Han, G. Karypis, V. Kumar, and B. Mobasher.
Clustering based on association rule hypergraphs. In
Workshop on Research Issues on Data Mining and

Knowledge Discovery, pages 9-13, Tucson, Arizona,
1997.

A K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall, 1988.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: Application in
VLSI domain. In Proceedings ACM/IEEE Design Au-
tomation Conference, 1997.

T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava.
The information manifold. In Working Notes of the
AAAI Spring Symposium: Information Gathering from
Heterogeneous, Distributed Environments. AAAT Press,
1995.

C. Kwok and D. Weld. Planning to gather information.
In Proc. 14th National Conference on Al pages 32- 39,
1996.

S.Y. Lu and K.S. Fu. A sentence-to-sentence clustering
procedure for pattern analysis. IEEE Transactions on
Systems, Man and Cybernetics, 8:381-389, 1978.

Y. S. Maarek and 1.Z. Ben Shaul. Automatically orga-
nizing bookmarks per content. In Proc. of 5th Interna-
tional World Wide Web Conference, 1996.

J. Moore, E. Han, D. Boley, M. Gini, R. Gross, K. Hast-
ings, G. Karypis, V. Kumar, and B. Mobasher. Web
page categorization and feature selection using associ-
ation rule and principal component clustering. In 7th
Workshop on Information Technologies and Systems,
Dec 1997.

M. Perkowitz and O. Etzioni. Category translation:
learning to understand information on the internet. In
Proc. 15th International Joint Conference on Al pages
930-936, Montral, Canada, 1995.

M. F. Porter. An algorithm for suffix stripping. Pro-
gram, 14(3):130-137, 1980.

Gerard Salton and Michael J. McGill. Introduction to
Modern Information Retrieval. McGraw-Hill, 1983.

D.M. Titterington, A.F.M. Smith, and U.E. Makov.
Statistical Analysis of Finite Mizture Distributions.
John Wiley & Sons, 1985.

Ron Weiss, Bienvenido Velez, Mark A. Sheldon,
Chanathip Nemprempre, Peter Szilagyi, Andrzej Duda,
and David K. Gifford. Hypursuit: A hierarchical net-
work search engine that exploits content-link hypertext
clustering. In Seventh ACM Conference on Hypertezt,
March 1996.

Marilyn R. Wulfekuhler and William F. Punch. Find-
ing salient features for personal Web page categories.
In Proc. of 6th International World Wide Web Confer-
ence, April 1997.



