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Abstract

Text categorization is the task of deciding whether a document belongs to a set of prespecified classes of doc-
uments. Automatic classification schemes can greatly facilitate the process of categorization. Categorization of
documents is challenging, as the number of discriminating words can be very large. Many existing algorithms simply
would not work with these many number of featur&snearest neighbok¢(NN) classification is an instance-based
learning algorithm that has shown to be very effective for a variety of problem domains including documents. The
key element of this scheme is the availability of a similarity measure that is capable of identifying neighbors of a par-
ticular document. A major drawback of the similarity measure usédNiN is that it uses all features in computing
distances. In many document data sets, only smaller number of the total vocabulary may be useful in categorizing
documents. A possible approach to overcome this problem is to learn weights for different features (or words in
document data sets). In this paper, we propose the Weight Adjkgtehrest Neighbor (WKNN) classification
algorithm that is based on tkeNN classification paradigm. In WAKNN, the weights of features are learned using
an iterative algorithm. In the weight adjustment step, the weight of each feature is perturbed in small steps to see if
the change improves the classification objective function. The feature with the most improvement in the objective
function is identified and the corresponding weight is updated. The feature weights are used in the similarity measure
computation such that important features contribute more in the similarity measure. Experiments on several real life
document data sets show the promise of WAKNN, as it outperforms the state of the art classification algorithms such
as C4.5, RIPPER, Rainbow, PEBLS, and VSM.
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1 Introduction

Text categorization is the task of deciding whether a document belongs to a set of prespecified classes of documents.
Automatic classification schemes can greatly facilitate the process of categorization. For instance, Yahoo! [Yah99]
currently uses human experts to categorize the documents. However, given the fast growth in online document data,
this would become more difficult with time. At legal publishing houses such as the West Group, human indexers read
legal documents and index them manually [CT97]. This step can become a bottleneck in publishing legal documents.
Web browser users keep bookmarks to remember sites they are interested in. Often times, they categorize these sites
according to their interests such as business, sports, travel, books, and movies. It will be a great help to the users
if the automatic text categorization could classify all the searched documents from the web based on the existing
bookmarked documents of different user categories.

Text categorization is essentially a classification problem. The words occurring in the document sets become
variables or features for the classification problem. A relatively moderate size of document sets could easily have a
vocabulary of tens of thousands of distinct words. Many existing algorithms simply would not work with these many
number of attributes. Feature selection methods based on document frequency, mutual information, or information
gain could be used to reduce the number of words [YP97, Joa97, McC96]. However, if we become too aggressive in
reducing the number of words, then we might lose critical information for categorization tasks. Normally, the number
of words after feature selection could be still in thousands.

There are several classification schemes that can be potentially used for text categorization. However, many of
these existing schemes do not work well in the text categorization task due to the problems mentioned above. For
example, widely used classification decision tree induction algorithm like C4.5 [Qui93] or rule induction algorithms
such as C4.5rules [Qui93] and RIPPER [Coh95] do not work well when the number of distinguishing features is
large. Even though Naive-Bayes classification techniques, such as Rainbow [McC96], are commonly used in text
categorization [LG94, LR94, Lew98, MN98], the independence assumption severely limits their applicability.

k-nearest neighbok¢(NN) classification is an instance-based learning algorithm that has shown to be very effective
for a variety of problem domains [DH73]. This algorithm has also been used in text classification [Yan94, CH98].
The key element of this scheme is the availability of a similarity measure that is capable of identifying neighbors
of a particular document. A major drawback of the similarity measure us&eNN is that it uses all features in
computing distances. In many document data sets, only smaller number of the total vocabulary may be useful in
categorizing documents.

A possible approach to overcome this problem is to learn weights for different features (or words in document data
sets). In this approach, each feature has a weight associated with it. A higher weight for a feature implies that this
feature is more importantin the classification task. Note that when the weights are either 0 or 1, this approach becomes
the same as the feature selection.

PEBLS [CS93] is &-NN classification algorithm that uses the Modified Value Difference Metric (MVDM) [CS93]
to determine the importance of categorical features. The distance between data points is determined by the MVDM.
PEBLS builds distance measure between every possible values of a feature. The distance betweérandNies a
feature is measured according to the class distribution of these values. According to MVDM, the distance Between
andY is small if they occur with the similar relative frequency in many different classes. The distance is large if they
occur with the different relative frequency in many different classes. The distance between two data points is calculated
by the squared sum of individual feature value distances determined by the MVDM. PEBLS can be used in document
data sets by considering each word to be either present or absent in a document. A major problem with PEBLS is that it
computes the importance of a feature independent of all the other features. Hence, like the Naive-Bayes classification
technigues, it is unable to take into account the interactions among different features.

VSM [Low95] is anotherk-NN classification algorithm that learns the feature weight using conjugate gradient
optimization [She94]. Unlike PEBLS, VSM improves the weight in each iteration according to an optimization func-
tion. This algorithm is specifically developed for data with Euclidean distance measure. A potential problem of this
approach comes from the fact that tka@earest neighbor classification problem is not linear (i.e., its optimization
function is not a quadratic function). Hence, few of the convergence guarantees of linear conjugate gradient optimiza-
tion hold for this approach [She94]. Furthermore, the conjugate gradient optimization in this type of problem is not
guaranteed to converge to the global minimum when the optimization function has multiple local minima [She94].

In this paper, we propose the Weight AdjuskeNearest Neighbor (WKNN) classification algorithm that is based
on thek-NN classification paradigm. In WAKNN, the weights of features are learned using an iterative algorithm.

In the weight adjustment step, the weight of each feature is perturbed in small steps to see if the change improves



the classification objective function. The feature with the most improvement in the objective function is identified
and the corresponding weight is updated. The feature weights are used in the similarity measure computation such
that important features contribute more in the similarity measure. Experiments on several real life document data sets
show the promise of WAKNN, as it outperforms the state of the art classification algorithms such as C4.5, RIPPER,
Rainbow, PEBLS, and VSM.

2 Weight Adjusted k-Nearest Neighbor Classification Algorithm (W AKNN)

In this section, we present the details of WAKNN. For the data representation, we have followed the vector space
model commonly used in Information Retrieval systems [Sal89]. In this vector model, each document is a vector
and its element corresponds to words in the whole document set. The whole training set can be viewed as a matrix
where each row is a document and its columns are words. The values in the matrix can be binary, 1 for presence
of the word and 0 for absence of the word. They can also be the within-document word frequency (TF), Inverse
Document Frequency (IDF), or TFIDF which is the combination of TF and IDF [Sal89]. Most popularly used schemes
in Information Retrieval is TFIDF. However, previous studies in text classification [YC94] and clustering'[BgG
indicate that TFIDF is not very effective. In WAKNN, we havdapted TF as the entry in the matrix and normalized
per row such that each row adds up to 1.0. This step eliminates problems due to the differences in the document size.
For the similarity between documents, several measures are available including 1-norm, 2-norm, and cosine mea-
sure [Sal89]. The cosine similarity measure is commonly used in Information Retrieval [Sal89] and hence is adopted
as the basic similarity measure in WAKNN. The weighted cosine measure between do¢UamahY with weight
vectorW and set of terms (or word3) as

orer (Xt x Wo) < (Yy x Wh)
VZer X WoZ 5 |3 (Y x W2

whereX; andY; are normalized TF of wortfor X andY, respectively, andl; is the weight of word.

In the weight adjustment step, we are trying to find the optimal weight vector for the classification task at hand.
Starting with the initial weight vector, we try to make a small change to the weight vector to see if we improve the
objective function related to the classification.

There are two importantissues in this step. The first issue is how to evaluate the weight change. In the paradigm of
k nearest neighbor classification, the objective function is closely related to class labels of neighbors of each training
document. The best case would be when all the neighbors of each training document have the same class labels as
the training document. A simple objective function can add up the number of training documents that are correctly
classified using thek-nearest neighbors and can be formally defined as:

cos(X,Y, W) =

)

Objsimple(D, W) = |{d|d € D and Corregmpie(d, D, W)}| (2

whereD is the training document matri¥y is the weight vector, and predicate Coreagfie(d, D, W) is true if the

sum of similarities ofd’s true neighbors is greater than the sum of similarities of neighbors of any other single class.
Thetrue neighbors ofl are the neighbors with the same classla3 his objective function tends to regard a training
document to becorrectly classified even if it has only one neighbor with the same class label. For example, when
k = 5, the number of classes is 5, amdhas one neighbor from each of these clasdas,considered to be correctly
classified if the similarity tal’s true neighbor is the highest among all the similarities.

In WAKNN, we use an objective function that considers a docurddntbe correctly classified only if the sum of
similarities ofd’s true neighbors is at leagi percentage of the total similarity sum. This objective function is formally
defined as:

ODbjmaj (D, W, p) = |[{d|d € D and Correc#aj(d, D, W, p)}| 3)

where the predicate Corragj (d, D, W) is true if Correciimplie(d, D, W) is true and the sum of similarities dfs
true neighbors is at leagh percentage of the total similarity sum. We cplas the majority percentage. In the same
example discussed earlier, when the objective function of Equation 2pnths0 is used, the training sample will be
considered to be correctly classified only if the similarityd& true neighbor is at lest 50% of the total similarity sum.

The second issue is how to propose possible changes to the weight. For the proposal of the possible changes,
we adopted to change one word weight at a time. For each word weight, we multiply the current word weight with



different multiplication factors{0.2, 0.8, 1.5, 2.0, 4}0 For each of these changes, we evaluate if this change improves
the objective function. We remember the best change for each word. We pick the best word and its weight that gives
the best value according to the objective function. We update the weight vector with this value and continue to the
next round.

The major steps of WAKNN can be summarized as follows:

1. Construct training matrix, where each row correspond to a training document, each column represent a word, and value
in the matrixD(i, j) corresponds to the number of occurrences of woid document .

2. Normalize word frequencies in each document such that they add up to 1.0.
3. Initialize weight vectoiV.

4. Determinek nearest neighbors for each training document using the weighted cosine similarity measure of Equation 1 with
this initial weight vector and calculate the goodness of this initial weight vector using an objective fu@itigg, (D, W, p)
of Equation 3.

5. While there is an improvement Dbjmaj (D, W, p), repeat the following steps:

(a) For each word, determine the value o that gives the besDbjmaj (D, W, p). New possible values fon; are
proposed by multiplying the origina\; with different multiplication factors.

(b) Select a word that gives the best overalbjmaj (D, W, p) from the previous step, and updatg with this new
value.

In classifying a test document, we first construct a test vector according to the steps 1 and R NMVe find k
nearest neighbors of the test document from the training documents using the weighted cosine similarity measure with
the weight learned from WAKNN. We then sum up the similas to thek neighbors according to their class labels.
We classify the test document according to the class with the most similarity sum.

3 Experimental Results

In this section, we compare WAKNN toNN, C4.5 [Qui93], RIPPER [Coh95], PEBLS [CS93], Rainbow [McC96],
VSM [Low95] on several synthetic and real data sets. Note that we used publicly available codes of C4.5, RIPPER,
PEBLS, Rainbow, and VSM for these experiments.

There are two parameters of importance in WAKNN. The first is the choice of numbergifbwes k) and the
second is the majority percentag® (n the Equation 3. We have performed experiments of charlgingm 1 to 50
andp from 0% to 90%. The results (not reported here due to the space constraint) show that the classification accuracy
do not vary significantly whek is between 5 and 30, and when the majority percentage is from 30% to 70%. In the
subsequent experiments, we have chdstnbe 10 and the majority percentage to be 50%.

For C4.5 and RIPPER, we have a choice of either regarding each word as a discrete variable or continuous variable.
The results reported here are obtained by regarding each word as a discrete variable. The results from experiments
where each word is regarded as a continuous variable did not differ from the reported results. For PEBLS, there is an
option to weight instances differently. We tried this option, but the result was substantially worse than results reported
here, which are obtained without this option. We also varied the number of neighbors from 1 to 30, and found that
1-nearest neighbor gave the best result. Hence the result shown here is based on 1-nearest neighbor. For VSM, we
have tried number of iteration from 10 to 100 for the conjugate gradient optimization. The results were not stable,
as the results obtained from more number of iterations are sometimes worse than the results obtained from the fewer
iterations. We report the results of VSM when the total number of iterations is 50. The number of neighbors used is
10, which is the same as the one used in WAKNN.

The summary of document data sets used in the experiments is shown in Table 1. In all of the data sets, we have
used stop words and stemming using Porter’s suffix-stripping algorithm [Por80]. First 7 data sets are from the statutory
collections of the legal document publishing division of West Group described in [CT97]. Out of 149,655 collections of
documents, we selected 7 subsets of documents that have single label. We then randomly selected training sets and test
sets. Some of the examples of class labels of these documents include “counties”, “sales”, “worker's compensation”,
and “insurance”.

Data setf bi s is from the Foreign Broadcast Information Service data of TREC-5 [TRE99a]. The class labels were
generated from the relevance judgment provided by TREC-5 routing query relevance “grels.1-243" [TRE99b]. We



Source #train | #test | #class| # words used

west-1 West Group 500 1500 10 977
west-2 West Group 300 900 10 1078
west-3 West Group 488 245 10 1035
west-4 West Group 559 280 10 887
west-5 West Group 621 311 10 1156
west-6 West Group 732 367 10 789
west-7 West Group 885 433 10 779

fbis TREC-5 2463 | 1232 17 2000

trecé TREC-5 1173 587 14 2000
reuters | Reuters-21578| 6552 | 2581 59 2000

Table 1: Summary of data sets used.

C4.5 | RIPPER | PEBLS | VSM | Rainbow | k-NN | WAKNN
west-1 | 85.50 84.47 78.50 | 85.20 84.40 76.73 89.60
west-2 | 71.30 68.33 67.80 | 77.44 72.11 68.33 80.44
west-3 | 79.60 75.92 72.70 | 86.53 80.00 70.61 88.16
west-4 | 81.80 77.14 78.60 | 87.86 88.57 73.93 85.00
west-5 | 84.60 89.71 86.80 | 89.71 85.21 84.57 95.18
west-6 | 83.70 83.38 79.80 | 87.19 85.29 73.57 88.92
west-7 | 80.10 80.14 71.80 | 83.52 81.26 74.94 84.42
fbis 57.10 73.94 69.80 | 76.14 76.38 78.49 81.09
trec-6 | 67.50 80.58 84.30 | 87.56 92.16 91.99 92.67
reuters | 84.50 85.59 84.60 | 87.68 91.04 90.62 90.04

Table 2: Classification accuracies of different classifiers. Note that the highest accuracy for each data set is highlighted with bold
font.

collected documents that have relevance judgment and selected documents that have single relevance judgment. Data
settrec6 is from the Foreign Broadcast Information Service and LA Times data of TREC-5. The class labels are
generated similarly to fbis data set using TREC-6 ad hoc query relevance “grels.trec6.adhoc” [TRE9Q9b]. For these
two data sets, we further filtered the words using mutual information [CT91, YP97]. We selected top 2000 words
according to the mutual information of the training set. We then randomly selected training sets and test sets for these
2 data sets.

Data set euter s is from Reuters-21578 text categorization test collection Distribution 1.0 [Lew99]. We split the
documents into training and test set according to the modified Lewis split and selected documents with single label.
We also selected top 2000 words according to the mutual information of the training set.

Table 2 shows the comparison of different classifiers on 10 data sets. C4.5 and RIPPER have significantly lower
classification accuracies compared to VSM, Rainbow, a®tKWN in most of the data sets. This is due to the
large number of features (or words) in these document data sets. Rainbow performed much better than C4.5 and
RIPPER, which conforms to the earlier reports [LG94, LR94, Lew98, MN98] showing that Naive-Bayes classification
techniques are effective in text categorization. Ouk-0fN classification techniques, PEBLS and simiiBIN did
not work very well for these data sets. VSM has much better accuracies compared to PEBL-8Ildndnd has a
comparable result to that of Rainbow. This result shows that weight adjustment improves classification accuracies in
these document data sets. WAKNN has the best result in 8 out of the 10 data sets. Compared to Rainbow, WAKNN
is better in 8 data sets and is significantly better in 5 data sets. Compared to VSM, WAKNN is better in 9 data sets
and significantly better in 5 data sets. This result shows that the weight adjustment in WAKNN performs better than
VSM's weight adjustment based on the conjugate gradient optimization in these data sets.

In traditional Information Retrieval systems, given multiple classes in the document set, binary classification for
individual class is considered. The effectiveness of retrieval is measured in terms of recall, precision, and F-measure
for each class label separately [RL94]. In these experiments (not reported here), we have confirmetkiNat W
outperforms other classifiers in terms of the micro-averaged F-measure [RL94].



4 Conclusions and Directions of Future Research

In this paper, we presentedkanearest neighbor classification algorithm that learns importance of attributes and utilizes
them in the similarity measure. As our experimental results have shown, our algorithm is very effective in the text
categorization task.

However, a number of key issues remain to be addressed. One issue is how to avoid the local minima in the search
for the best weight vector. In addition to the main objective function used AKWN, we might need seandary
objective functions to move out of the local minima. Another possible solution to the local minima problem might be
changing weights of multiple words at a time. A big challenge for this solution is how to identify the set of words for
the weight change.

Another issue is whether the enhanced weight adjustment leads to overfitting. Even though the relatively large
number of neighbors and high majority percentage in the objective function tends to reduce the risk of overfitting, this
problem can be significant in many data sets.

Finally, the computational cost of weight adjustment step of WAKN®{sn?) wherec is the number of iterations
in the weight adjustment step ands the number of data points. Optimization schemes to improve this computational
complexity is needed.
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