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Abstract

Motivation: Protein sequence alignment plays a criti cal role
in computational biology as it is an integral part in many analysis
tasksdesigned to solveproblemsin comparativegenomics, structure
andfunction prediction, and homology modeling.

Method s: We havedeveloped novel sequencealignment algo-
rithms that compute the alignment between a pair of sequences
based onshort fixed- or variable-length high-scoringsubsequences.
Our algorithms build the alignments by repeatedly selecting the
highest scoring pairs of subsequences and using them to construct
small portions of the final alignment. We utili ze PSI-BLAST gen-
erated sequence profiles and employ a profile-to-profile scoring
scheme derived fromPICASSO.

Results: We evaluated theperformanceof the computed align-
ments on two recently published benchmark datasets andcompared
them against the alignments computed by existing state-of-the-art
dynamic programming-based profile-to-profile local and global se-
quencealignment algorithms. Our results show that the new algo-
rithms achievealignments that are comparable or better to those
achieved by existing algorithms. Moreover, our results also showed
that thesealgorithmscan beused to providebetter information asto
which of thealigned positionsare more reliable—a criti cal pieceof
information for comparativemodeling applications.
Suppl. Data http://bioinfo.cs.umn.edu/supplements/win-aln/

1 Introdu ction

Alignment algorithms serve as the most basic sequence anal-
ysismethodsin computational biologyand have awiderange
of applications dealing with sequence database searching,
comparativemodeling, protein structure and function predic-
tion.

The current state-of-the-art sequence alignment algo-
rithms have a well defined optimal dynamic programming
based solution, introduced decades ago. These optimal algo-
rithms, Smith-Waterman [35] and Needleman-Wunsch [27]
solve the local and global sequence alignment problems re-
spectively. Over theyears, alignment methodshave advanced
with several variations of the optimal alignment method, use
of gap modeling techniques [13], heuristics [1, 29], andmore
recently the use of profile [12, 7, 2] and structure informa-
tion [18].

In recent years, there has been a considerable research

effort in developing kernel-based methods for building dis-
criminatory models for remote homology detection and fold
recognition. This research has led to the development of a
number of protein string kernels that determine the similar-
ity between a pair of proteins as a function of the number of
sufficiently similar short subsequences that they share. These
string kernels have proven to be extremely effective in build-
ing very accurate models, and these methods are among the
best performingschemesfor remotehomology predictionand
fold recognition [22, 21, 30] .

Motivated by these developments in string kernels, the
work in this paper is designed to addressthe question as to
the extent to which, ideas motivated by these string kernels
can be used to build alignments between a pair of sequences.
Toward thisgoal, wedeveloped aset of window-based align-
ment algorithms that are heuristic in nature. Our methods
incrementally constructed the alignment by using the highest
scoring pairs of residues between the two sequences at each
step. The residue pair scoring was borrowed from string ker-
nel theory where to score the residue pairs in consideration,
we examined short subsequences, referred to a � mers cen-
tered aroundeach of the two residues. We introduced several
heuristics to identify aligned residue pairs using the � mers
coupled with profile information.

We determined the quality of our alignment methods
by evaluation on a template-based [7, 31] and a model-
based dataset [8, 5]. Our empirical results on the two
datasets showed the competitive performance of our intro-
duced schemesto state-of-the-art methods. We also evaluated
our methods by determining the reliabilit y of the aligned po-
sitions[17, 4, 32, 25, 36]. Thepositiveresultsfor someof our
alignment algorithms on such a reliabilit y metric is very en-
couraging due to far reaching applications, like comparative
modeling.

2 Method s

2.1 Sequence Profi les and Profi le Scoring

The alignment algorithms that we developed take advantage
of evolutionary information by utili zingPSI-BLAST [2] gen-
erated sequenceprofiles.

Theprofileof asequence � of length � is represented by
two � � � �

matrices. Thefirst is itsposition-specific scoring
matrix PSSM � that is computed directly by PSI-BLAST us-
ing the scheme described in [2]. The rows of this matrix cor-
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respondto the various positions in � and the columns corre-
spondto the20 distinct aminoacids. Thesecondmatrix is its
position-specific frequency matrix PSFM � that contains the
frequencies used by PSI-BLAST to derive PSSM � . These
frequencies (also referred to as target frequencies [26]) con-
tain both the sequence-weighted observed frequencies (also
referred to aseffectivefrequencies [26]) and theBLOSUM62
[15] derived-pseudocounts [2].

Many different schemes have been developed for deter-
mining the similarity between profiles that combine infor-
mation from the original sequence, position-specific scoring
matrix, or position-specific target and/or effective frequen-
cies [26, 37, 24]. In our work weuse aschemethat isderived
from PICASSO [14, 26] that wasrecently used in developing
effective remote homology detection and fold recognition al-
gorithms [30]. Specifically, the similarity score between the�
th position of protein’s � profile, andthe � th position of pro-

tein’s � profile isgiven by

� � � � � � � � � 	 
 ��
 � � PSFM � � � � � �

PSSM � � � � � � �


 ��
 � � PSFM � � � � � �

PSSM � � � � � � �
(1)

where PSFM � � � � � �
and PSSM � � � � � �

are the values cor-
responding to the

�
th amino acid at the

�
th position

of � ’s position-specific scoring and frequency matrices.
PSFM � � � � � �

and PSSM � � � � � �
are defined in a similar fash-

ion.

2.2 Windo w-based Alignments

The overall methodology of the alignment algorithms devel-
oped in this work is to incrementally construct the alignment
by using various heuristics to identify the pairs of aligned
residues. Thekey ideashared by these algorithms is that they
determinewhether or not apair of residues should be aligned
together by examining the (short) subsequences, referred to
as � mers, that are centered aroundeach of the two residues.

Given a sequence � of length � and a user-supplied pa-
rameter � , the � � � � at position

�
of � ( � � � � � � � )

is defined to be the
� � � � � �

-length subsequenceof � cen-
tered at position

�
. That is, the � � � � contains � � , the �

amino acids before, and the � amino acids after � � . A pair
of � mers are compared by computing their ungapped align-
ment scores. Given two sequences � and � , the ungapped
alignment score, � � � � � � � � � � � � �

, between a pair of � mers at
positions

�
and � of � and � , respectively is given by

� � � � � � � � � � � � � 	  !
" � #  

� � � � � � � $ � � � $ � � (2)

where
� � � � � � � $ � � � $ �

is the alignment scorebetween � � % "
and � � % " and iscomputed using Equation 1.

2.2.1 Central Alignment Scheme (CA). This is the
simplest alignment algorithm that we developed and com-
putes the alignment by progressively aligning the pairs of
residues that have the highest positive � � � � � � values subject
to the constraint that they do not conflict with the portion of
the alignment that hasbeen constructed thus far.

Specifically, given two sequences � and � of length �
and & , respectively and a value for � , it starts by computing
theset '  of residue-pairs that are candidatesfor inclusion in
the alignment by considering only thepairs that havepositive
� � � � � � values. That is,

( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 , - . / 0 1 2 : ; < / (3)

where � � � � � � � and � � � � & � � . Then it per-
formsaseriesof iterations in which it performs thefollowing
threesteps: First, it extractsfrom '  theresidue-pair with the
highest � � � � � � value

� � � = � � � = �
: Second, it aligns � � = against� � = : Third, it removes from '  all residue-pairs that cannot

be part of a valid alignment given that � � = and � � = have been
aligned with each other. This process terminates when '  becomes empty. Positions that do not belong to any of the
selected residue pairs are left unaligned (i.e., aligned against
spaces).

Theresiduepairs that need to beremoved are: (i)
� � � = � �  �

> �
, (ii )

� � " � � � = � > $
, (iii )

� � " � �  � > � $ ? � @ A � � � @ �
, and

(iv)
� � " � �  � > � $ � � @ A � ? � @ �

. The first two conditions re-
move from '  all residue-pairs involving � � = or � � = , as these
positionshavenow been aligned, whereas the last two condi-
tions remove the residue-pairs that if aligned, will i ntroduce
inversions in the alignment.

2.2.2 Subset Alignment Scheme (SA). A limitation
of the central alignment scheme is that it may leave alarge
number of residues unaligned because (i) it only considers
the residue-pairs with positive � scores, and (ii ) it will not
align the first and last � positions of the two sequences ( '  containsonly pairs involving interior residues).

To address this problem we developed the subset align-
ment scheme (SA), which can be considered an extension to
the CA scheme. Specifically, the SA scheme modifies the
secondand third steps of the CA algorithm as follows. Dur-
ing the second step, in addition to including the

� � � = � � � = �
pair in the alignment, it also includes in the alignment all pre-
viously unaligned residue-pairs of the form

� � � = % " � � � = % " �
for � � � $ � � � . That is, it can potentially include all
residue-pairs involved in

� � � = � � � = �
’s � � � � . Note that due

to the incremental nature of the algorithm, the second step
essentially extends the alignment aroundthe

� � � = % " � � � = % " �
residue-pair until it encounters a residue (from either � or

� ) that has already been aligned. We will refer to this as the
alignment extension operation. During the third step the SA
algorithm removes from '  all residue-pairs that are now in
conflict with all aligned residue-pairs that were selected in
secondstep.
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2.2.3 Central and Subset Alignment Scheme
(CSA). A potential problem with the SA scheme, is that it
may align a pair of residues

� � � = % " � � � = % " �
with each other,

even when '  containsresidue-pairswith higher � � � � � � val-
ues for either or both of the two residues. This happens, be-
cause SA’s alignment extension operation extends the align-
ment as soon as it extracts the highest scoring residue pair
from '  and there may be some higher-scoring � mers for
thesepositions in '  .

For this reason, we developed a hybrid scheme that com-
bines the CA and SA approaches. Specifically, the new
scheme first computes a CA alignment and then augments it
by applying the alignment extensionapproach used by SA to
each pair of its aligned residues.

2.2.4 Variable � � � � Alignment Scheme. The align-
ment schemes, CA, SA, and CSA were discussed in the con-
text of a fixed length � � � � . The potential drawback of this
schemeis that if � is set to arelatively largevalue, it may fail
to identify positive scoring subsequences; whereas if it is set
toolow, it may fail to reward residue-pairsthat haverelatively
longsimilar subsequences.

For this reasonwe extended the algorithms to also operate
with variable length � mers. The key differencefrom the use
of fixed length � mers centered aroundresidue pairs � � and� � is the fact that we define length � @

in the range of
�

to � ,
such that

4 � * )� 8 � � � �� � �
� 5 6 7 8 9 , - . / 0 1 2 / (4)

where 	 � � � � � is the
� � 	 � � � � subsequencescore asdefined

in Equation 2.
Our alignment schemes start by computing the set ' 


 of
residuepairsthat are candidatesfor inclusionin the alignment
by considering only pairs that have positive � @ � � � � � values.
With thischange all stepsof our alignment algorithmsremain
same. Note that the SA scheme using the variable length
� mers will have its alignment extension operation extended
till amaximum length of � @

.
As a notation reference we denote the variable � � � �

alignment algorithmsby � � 
, � � 

, and � � � 
to distinguish

them from the fixed � � � � alignment algorithms denoted in
this study by � � �

, � � �
, and � � � �

.

3 Materials

3.1 Evaluation Methodo log ies and Metrics

We evaluated theperformanceof theproposed window-based
alignment algorithms by considering (i) the quality of the
alignment itself and (ii ) the extent to which the inherent or-
dering of the aligned pairsof residuescan beused to identify
portions of the alignment that are more reliable than others.
In order to assessalignment quality weused two widely used
methodologies, often referred to as template-based [7] and
model-based [8], whereas the reliabilit y was assessed by fol-
lowingamethodology that was recently proposed in the con-
text of comparativemodeling [36].

3.1.1 Template-based Approach. The first method
for evaluatingalignment quality comparesthedifferencesbe-
tween the alignment generated to template alignments [7, 31,
8]. Thesetemplate alignmentsaregenerally derived from var-
ious structural alignment programs and are considered to be
thegold standard.

We use threequality scores, namely the developer’s score
( � � ) [31], the modeler’s score ( � � ) [31] and the Cline score
(CS) [4] to compare the template alignments with the gen-
erated alignments. The developer’s score is the number of
correctly aligned residue pairs in the generated alignment di-
vided by the length of the template alignment. (The length
of an alignment is defined as the number of aligned residue
pairs.) The modeler’s score computes the ratio of correctly
aligned residue pairs with the length of the generated align-
ment. The Cline score was developed to address the issues
with � � and � � by penalizing both under-alignment and
over-alignment, and also crediting regions in the generated
alignment that may be shifted by a few positions relative to
the reference alignment [7, 4]. The steps for computation of
theCline score can be foundin the study [4].

Note that the � � and � � scoresare equivalent to themore
traditional measures of recall and precision [9], respectively
that are used extensively to measure prediction performance.
In the rest of the discussion we will primarily refer to � �
and � � by the more intuitive names of recall and precision,
respectively.

3.1.2 Model-based Approach. An alternative to us-
ing a template-based approach is to build a structural model
from the alignment and evaluate the similarity between the
model and the template structure [8, 28]. Starting from the
alignment between a pair of proteins (one protein considered
to be the query protein, the secondconsidered to be the tar-
get protein whose 3D structure is known), a model protein
is created which consists of the carbon alpha, � � atoms of
the query protein. The atomic coordinates of this model pro-
tein are the atomic coordinates of the target protein i.e., for
every aligned pair of residues, the query protein has its � �
atomic coordinates replaced by the correspondingatomic co-
ordinates of the target protein. The similarity between the
two structures (the model protein and target protein) after a
structural super-imposition [23], is used as an assessment of
sequence alignment quality.

In our study, we computed this similarity using the
LGscore [5] that takes into account the common segments
between the pair of proteins. LGscore computes the sim-
ilarity between two protein structures (model and template
structure) based on the common segments between them. It
is desirable to have longcommon segments with high struc-
tural similarity. The LGscore measure was used to evalu-
ate the structures obtained by threading methods [28] in the
CAFASP2 [10] and LiveBench [3] experiments as well as a
sequence alignment quality measure [8].

Note that instead of LGscore other structural similarity
methods or protein modeling assessment measures can be
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used for evaluating the quality of the model (e.g rmsd mea-
sure [19], global distance test score (GDT) [38] and Max-
Sub [34]). However, for this study we show only the re-
sults using the LGscore method due to similarity in results
obtained when tested with the other measures.

3.1.3 Reliabili ty of Aligned Regions. In compara-
tivemodelingandseveral other applications, it isessential not
only to align residue pairs but also to provide some reliabil -
ity index or confidence measure associated with the aligned
residue pairs. While building protein structure models us-
ingcomparativemodelingstrategies it is important to include
only those regions where the alignment is considered to be
good or reliable [17, 4, 32, 25, 36].

One of the reliabilit y assessment measures calculated a
smoothed profile-derived alignment score. Thescorefor each
of the aligned residue in the template alignment was com-
puted using a triangular smoothing window of size � . The
reliabilit y wasassessed bysetting upathreshold valuefor the
smoothed profile-derived score [36]. Our approach for relia-
bilit y assessment wasvery similar to this method.

Usingthetemplate-based benchmarkswe evaluated there-
liabilit y of the aligned residue pairs by ranking the aligned
pairs in the query alignment. We score the aligned positions
using fixed length � scores. The reliabilit y measure is com-
puted as the recall at different percent levels of incorrectly
aligned residue pairs (up to 5� ). The notion of a hit is de-
fined as having the same aligned residue pairs in both the
query and template alignments. The difference in our relia-
bilit y schemewas theuseof aprofile-to-profile scoring func-
tionsequally weightedat all positionsof the � � � � rather than
usinga smoothing � � � � [36].

3.2 Datasets

For the template-based assessment scheme we used a dataset
created to evaluatethevariousprofile-to-profilescoringfunc-
tionsfor protein sequence alignment [7]. Thedataset consists
of 588reference alignment pairs having high structural sim-
ilarity but low sequence identity (

� � � � ). This dataset was
selected to have ahigh pairwisestructural similarity usingthe
consensusof FSSP[16] andCE [33].

For themodel-based evaluationscheme, weused abench-
mark created from SCOP 1.39 filtered to only contain do-
mainswith lessthan � � � pairwisesequenceidentity [8]. This
dataset containsof 9983 protein domain pairs, such that 1903
belongto the same famili es, 3101shareonly the samesuper-
family, and 4979share only the same fold. Due to the non-
symmetrical nature of models built from alignments, each
pair of sequences were evaluated twice—leading to a bench-
mark of 19966 domain pairs.

3.3 Profi le Generation

The position specific score and frequency matrices used by
the profile-based scoring method of Equation 1 were gen-
erated using the latest version of the PSI-BLAST algorithm
(available in NCBI’s blast release 2.2.10), and were derived

from the multiple sequence alignment constructed after five
iterations using an � value of

� � # �
. The PSI-BLAST was

performed against NCBI’s nr database that was downloaded
in November of 2004andcontained 2,171,938sequences.

In the casein which PSI-BLAST could not producemean-
ingful alignments for certain positionsof thequery sequence,
the corresponding rows of the two matrices are derived from
thescoresand frequenciesof BLOSUM62.

4 Results

In this section, we evaluate the performance of the incre-
mental window based alignment schemes using the various
benchmark datasets and evaluation metrics discusses in Sec-
tion 3.

4.1 Assess ment of Incremental Windo w-
based Alignments

Table 1 provides an extensive set of results ill ustrating the
performance of the CA, SA, and CSA schemes on the
template-based dataset for different valuesof � andfor fixed-
and variable-length � mers. Note that the column labeled
“ � � � � � � ” shows the CS results for the subset of sequence-
pairs that have lessthan

� � � sequenceidentity (i.e., a subset
that is inherently harder to align well ).

4.1.1 Central vs Subset vs Combined. The results
of Table1 show that with respect to theCSscores, SA tendsto
perform better than either CA or CSA, whereasCA performs
consistently the worst. The only exception is for variable-
length � mers, in which SA’s performance is comparable to
that of CSA. The relative advantage of SA is more evident if
we consider the subset of sequence-pairs with lessthat 15%
sequence identity, for which its CS scores are consistently
higher than those achieved bytheother schemes(SA achieves
a score of 0.649 whereas CA and CSA achieves scores of
0.614and 0.628, respectively).

By looking at the performance of the various schemes in
termsof recall , we can seethat SA’shigher CS-based perfor-
manceisdueto thefact that it achieves significantly better re-
call values than the other schemes. This was to be expected,
as it was one of the motivation behind the development of
SA. Also, the precision-based results show that CA achieves
somewhat better precisions than CSA, whereas SA’s preci-
sion is comparableor better to that of the other schemes.

4.1.2 Fixed vs Variable Length Alignments. Ana-
lyzing the performance of alignment methods that use fixed
length � mers compared to the methods that use variable
length � mers, we notice that for the CA and CSA schemes,
for the same � � � � length the recall as well as the precision
scores have higher values. Note that the higher recall i s ex-
pected, becausethemethodsusingavariable � � � � sizewin-
dow will have ahigher flexibilit y in allowinglarger number of
� mers (with a positive score) to be picked for the candidate
set ' 


 .
Another key observation is that � � �

performs better in
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terms of recall than � � 
. This is because for the same value

of � , the � @
value selected by � � 

may be smaller than �
(i.e., the value used by � � �

). As a result, � � �
’s alignment

extension operationswill i nvolve longer windows, which can
produce longer alignments than � � 

, and thus higher recall
values.

Table 1: Alignment Accuracy Results on a Template-based
Dataset.

� � � � CS � � � � � �
(precision) (recall )

fixed
central

� � � � = 2 0.805 0.791 0.803 0.600
� � � � = 3 0.799 0.776 0.794 0.596
� � � � = 4 0.791 0.756 0.782 0.587
� � � � = 5 0.776 0.732 0.764 0.572

subset
� � � � = 2 0.802 0.835 0.826 0.626
� � � � = 3 0.805 0.842 0.831 0.642
� � � � = 4 0.805 0.842 0.832 0.644
� � � � = 5 0.802 0.838 0.828 0.649

combined
� � � � = 2 0.791 0.822 0.816 0.619
� � � � = 3 0.785 0.819 0.814 0.623
� � � � = 4 0.779 0.811 0.808 0.624
� � � � = 5 0.767 0.798 0.798 0.624

variable
central

� � � � = 2 0.799 0.804 0.809 0.595
� � � � = 3 0.802 0.807 0.812 0.605
� � � � = 4 0.805 0.797 0.810 0.611
� � � � = 5 0.805 0.797 0.807 0.614

subset
� � � � = 2 0.798 0.827 0.820 0.615
� � � � = 3 0.798 0.834 0.825 0.629
� � � � = 4 0.798 0.836 0.827 0.634
� � � � = 5 0.794 0.832 0.823 0.636

combined
� � � � = 2 0.795 0.822 0.813 0.600
� � � � = 3 0.797 0.827 0.820 0.614
� � � � = 4 0.800 0.831 0.824 0.621
� � � � = 5 0.800 0.832 0.825 0.628

In the table � � denotes the Modeler’s score, � � denotes
the Developer’s score, CS denotes the Cline score, and

� � � � � � denotes the Cline score for a subset of sequence
pairs sharing lessthan

� � � sequenceidentity.

4.1.3 Sensitivity of Schemes with respect to vary-
ing � � � � size Looking at the performance achieved by
the various schemes in Table 1 as � ranges from two to five,
we see that in general, SA’s and CSA’s performance does

not significantly change (e.g., CS scores stay within a tight
range), whereas � � �

’s performance tend to deteriorate with
increasing � . This latter behavior is due to the fact that as
we increase the � � � � size, fewer � mers will have a posi-
tive score and hence will not be included as part of the set
'  . We see adirect effect of this leading to a decrease in
the recall scores. Also increase in the � � � � size does lead
to a decrease in precision score as well . This is because for a
larger � � � � window the positive scoring � mers may not be
due to the more “central” positions. Evidenceof this can be
seen bycomparing thebehavior of the � � 

schemein which
both theprecisionand recall scores stay the same.

Another key observation is that the schemes that utili ze
variable length � merstendto perform better for larger values
of � . This is because of the flexibilit y associated with using
avariable length � � � � .

4.1.4 Alternative Performance Assess ment For
this dataset too, we performed a thorough parameter study
by varying � � � � lengths for our alignment schemes. Weob-
served similar results as seen in T:B1 for the template-based
dataset. In Table 2 we report only the best results achieved
rather than showingresults for varying � � � � sizesasdonein
Table1.

Firstly, we noticethe differencein the LGscore values for
thefamily, superfamily andfold pairsclearly showingthedif-
ficulty natureof thethreesetsof problems, with thefold-pairs
being the hardest to model followed by the superfamily and
family level pairs.

Similar to the template-based results, the
� �

scheme has
thebest LGscore at thefamily, superfamily andfold levelsfor
both the variable and fixed � � � � setting. A surprising fact
was that theperformanceresultsasmeasured by theLGscore
did not decrease with increasing � � � � lengths. In fact, we
observed that theuseof ahigher � � � � sizeof 5 for thefixed
length scheme achieved the best results of 1.53 and 4.29 for
the fold and superfamily level problems. We also observe
slightly better performance for the variable � � � � schemes
compared to thefixed � � � � schemes.

The performanceof the � � � 
alignment methodwas the

lowest for both the family and superfamily level pairs which
contrasts the results seen previously on the template-based
dataset in Table 1.

4.2 Comparison with Earlier Results

4.2.1 Template-based Benchmark. Table 3 shows
the comparative performance of our window based schemes
against some of the best profile-to-profile scoring techniques
studied previously [7]. In the table we show results for the
schemes pdotp, correlp and coach. pdotp uses dot product
to compute the similarity between two profiles, correlp com-
putes the Pearson correlation between the profile columns,
whereascoach [6] usesan asymmetrical complex dot product
between theHMM profile andaposition frequency matrix.

We show results of these schemes as published previ-
ously [7] using SAM T99 profiles (The performanceof these
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Table 2: Alignment Accuracy Results on a Model-
based Dataset.

Alignment Scheme Family Superfamily Fold
� � �

(2) 14.86 1.66 0.04
� � �

(5) 16.44 4.29 1.53
� � � �

(2) 15.47 2.53 0.203
� � 

(5) 15.10 2.43 0.12
� � 

(5) 16.48 4.05 1.05
� � � 

(5) 14.05 2.32 0.14

Thenumbers in theparameter indicate the � � � �
length for thevariousalignment schemes.

alignment methods using SAM T99 profiles is 3-4% better
than the PSI-BLAST based profiles [7]) Our methods show
comparable performance to these alignment methods using
SAM T99 templates.

We also compare the results of the window based align-
ment methods to a local Smith-Waterman [35] alignment al-
gorithm implementation (SW-PSSM) using the same profile-
to-profile scoring function as used for the window based
alignments (Equation 1). Within this local alignment frame-
work we use an affine gap model alongwith a zero-shift pa-
rameter [37] to maintain certain necessary requirements of a
good optimal alignment. We optimize the gap modeling pa-
rameters (gap opening (go), gap extension (ge)) and the zero
shift value (zs) to obtain highly optimal alignments for com-
parativepurposes.

We observe in Table 3 that the incremental window-
based alignment schemes perform very competitively when
compared to our fully optimized SW-PSSM implementation.
Also notice the superiority of our optimized SW-PSSM im-
plementation to the alignment methods using pdotp, correlp
and coach as their profile-profile scoring functions. The dif-
ferencein theSW-PSSM resultswith theother standardalign-
ment techniques may be due to the use of a more sensitive
PICASSO based profile-to-profile scoring function. Further,
these results verify that we are comparing our novel win-
dow basedalignment methodsto afully optimized SW-PSSM
alignment algorithm.

The performance of the window-based scheme is actu-
ally very promising. We select one of the better performing
schemes ( � � �

) and compare it to the optimized SW-PSSM
algorithm using the CS score. Figure 1 shows that the com-
parative performance of the two methods across the 588
alignment pairs in thedataset.

4.2.2 Model-based Benchmark. Our results in Ta-
ble 4 reiterate the closenessin performanceof the incremen-
tal window based alignment method to the highly optimized
SW-PSSM alignment algorithm for the family, superfamily
and fold level subsets.

Table 4 also shows results for the optimized local (local
sequence alignment using a global scoring matrix), global
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Figure 1: Cline Score Comparison of SW-PSSM scheme
against � � �

scheme for the 588 alignment pairs in the
template-based dataset

Table 3: Comparative Performancewith Earlier Results
onTemplate-based Dataset.

Alignment Scheme � � � � CS � � � � � �

� � �
(3) 0.805 0.842 0.831 0.642

� � 
(4) 0.798 0.836 0.827 0.634

SW-PSSM 0.803 0.852 0.841 0.689

pdotp (T99) 0.806 0.829 0.832 0.697
correlp (T99) 0.794 0.835 0.829 0.702
coach (T99) 0.797 0.830 0.829 0.697

The optimized SW-PSSM results are achieved us-
ing go

	 �
�

�
, ge

	 �
�

� � , zs
	 �

�
�
. In the table

pdotp, correlp, coach use adot product, correlation
function, and a HMM based profile-profile scoring
function. T99 denotes the use of SAM T99 based
profiles respectively.

(global sequence alignment using a global scoring matrix),
PSI (3D-PSSM [20] based global sequence alignment against
a profile [11] obtained from PSI-BLAST), SSPSI [8](3D-
PSSM based global sequence alignment against a profile
obtained from PSI-BLAST using secondary structure in-
formation) and structural (alignment using structural super-
imposition by lgscore2) alignment methods published previ-
ously [8]. Thestructural alignment setsupahigher reference
quality score for the benchmark. Using sequence alignment
techniqueswewould liketo achievethesehighlevelsof accu-
racy. The results shown in Table 4 for the various previously
published schemes, as well as for our methods are the best
achieved after optimization of thevariousparameters.

Wefurther analyzethedataby annotatingamodel asbeing
correct based onthe LGscore value. As done in the study [8]
weusetheless strict LGscore cutoff (

� � # �
) to define a correct

model and a more stringent cutoff (
� � # �

) to identify models
of higher quality. The percentage of models correct based
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on these cutoffs are shown in Table 5. Both the incremental
window-based alignment methods, as well as the SW-PSSM
alignment method, are able to pick the correct models with
similar degrees of accuracy. Our techniques also seem to
identify a higher percentage of correct models when com-
pared to the previously studied schemes, especially PSI and
SSPSI, both of which also incorporate some profile informa-
tion. As seen from Table 5 our methods are able to pick a
larger fraction of higher quality models for the family and
superfamily levels.

4.2.3 Reliabili ty Performance. Table 6 shows the
reliabilit y performance for the window based alignment
schemes in comparison to the optimized SW-PSSM based
alignment scheme. These results correspondto the average
recall scores obtained for all the alignment pairs at different
error ratesusing the proceduredescribed in Section 3.1.3.

Thoughthe SW-PSSM algorithm showed slightly better
performance in terms of the overall alignment quality (Ta-
ble 3 and Table 4), it is interesting to note the window-based
schemes using variable length � mers showed far better per-
formance at the lower error rates. In particular before see-
ing any incorrect predictions in the ranked aligned positions,
the alignment methods using variable length � mers have a
recall around 0.260 compared to the recall of 0.205 for the
SW-PSSM algorithm. Note that the recall performance of
the CSA scheme is slightly better than the CA scheme and
slightly worse compared to the SA alignment scheme. These
results can be explained by the fact that the high scoring
residue pairs aligned by CA are also aligned by the CSA
scheme.

Table4: ComparativePerformancewith Earlier Re-
sultsona Model-based Dataset.

Alignment Scheme Family Superfamily Fold
� � �

(5) 16.44 4.29 1.53
� � 

(5) 16.48 4.05 1.05
SW-PSSM 16.66 4.38 2.02
local 14.1 2.0 0.7
global 15.1 2.9 1.4
PSI 15.8 3.3 1.4
SSPSI 16.0 4.1 2.6
structural 19.4 9.1 8.0

The optimized SW-PSSM results are achieved
using go

	 �
�

�
, ge

	 �
�

� � , zs
	 �

�
�
. All the

results are optimized for their relevant parame-
ters

5 Conclusion

In this study we developed algorithms that identify the
aligned pairs of residues using an incremental approach.
These algorithms capture the most similar pairs of subse-
quences as part of the final alignment. The concepts from

Table 5: Fraction of Correct Models based on the
LGscore.

LGscore � � � # � � � � # �

Alignment Scheme Fm Sf Fd Fm Sf Fd
� � �

(3) 74 27 5 55 8 0
� � 

(3) 74 28 4 55 8 0
SW-PSSM 74 27 6 56 8 0
local 66 10 1 46 2 0
global 70 12 1 49 3 0
PSI 72 18 4 50 4 0
SSPSI 73 21 6 53 5 0
structural 86 60 51 66 21 21

The optimized SW-PSSM results are achieved using
go

	 �
�

�
, ge

	 �
�

� � , zs
	 �

�
�
. All the results are op-

timized for their relevant parameters. Fm, Sf and Fd
denote the family-level, superfamily-level and fold-
level performanceresults respectively.

Table 6: Reliabilit y Assessment: Recall for the first
$ � er-

rors.

Method 0% 1% 2% 3% 4% 5%

� � �
(3) 0.176 0.281 0.365 0.434 0.494 0.541

� � �
(3) 0.186 0.297 0.384 0.459 0.519 0.563

� � � �
(3) 0.180 0.286 0.370 0.438 0.498 0.545

� � 
(3) 0.254 0.364 0.450 0.515 0.566 0.603

� � 
(3) 0.260 0.368 0.454 0.521 0.572 0.612

� � � 
(3) 0.260 0.367 0.454 0.520 0.571 0.610

SW-PSSM 0.205 0.320 0.405 0.480 0.541 0.586

The optimized SW-PSSM results are achieved using
go

	 �
�

�
, ge

	 �
�

� � , zs
	 �

�
�
. The numbers in the

parenthesisrepresent the � � � � width used for theresults
shown.

string-kernel theory (use of ungapped subsequences, scored
using profiles) played an integral role in the design of these
alignment algorithms.

Our comprehensive experimental study on the template-
based and model-based benchmark datasets showed com-
parable performance to a fully optimized Smith-Waterman
profile-based implementation. In terms of the reliabilit y per-
formanceof the aligned residue-pairswenoticethat the align-
ment schemes using variable length � mers had very promis-
ing results. Amongst the window-based schemes we no-
ticed that the subset alignment, SA using both the fixed and
variable � mers showed the best performance. The sensitiv-
ity analysis done by varying the � � � � size showed the SA
schemes to have arobust performance.

The simplicity of our methods and competitive alignment
quality as well as aligned region reliabilit y will l ead to the
application of our algorithms in key bioinformatic problems,

7



especially comparativemodeling.
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