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Abstract

Motivation: The accurate prediction of a protein’s secondary structure plays an increasingly critical role in

predicting its function and tertiary structure, as it is utilized by many of the current state-of-the-art methods

for remote homology, fold recognition, and ab initio structure prediction.

Methods: We developed a new secondary structure prediction algorithm called YASSPP that uses a pair of

cascadedmodels constructed from two sets of binary SVM-based models. YASSPP uses an input coding scheme

that combines both position-specific and non-position specific information, utilizes a kernel function designed

to capture the sequence conservation signals around the local window of each residue, and constructs a second-

level model by incorporating both the three-state predictions produced by the first-level model and information

about the original sequence.

Results: Experiments on three standard datasets (RS126, CB513, and EVA common subset 4) show that

YASSPP is capable of producing the highest Q 3 and SOV scores than that achieved by existing widely used

schemes such as PSIPRED, SSPro 4.0, SAM-T99sec, as well as previously developed SVM-based schemes. On

the EVA dataset it achieves a Q3 and SOV score of 79.34% and 78.65%, which are considerably higher than

the best reported scores of 77.64% and 76.05%, respectively.

Availability: The YASSPP prediction server is available at http://yasspp.cs.umn.edu.

Contact: karypis@cs.umn.edu.

1 Introduction

Breakthroughs in large-scale sequencing have led to a surge in the available protein sequence information that has far

out-stripped our ability to experimentally characterize their functions and tertiary structures. As a result, researchers

are increasingly relying on computational techniques to classify these sequences into functional and structural families

and to predict their three dimensional structure. Algorithms for protein secondary structure prediction play an essential
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role in many of these techniques [16]. This was evident in the most recent CASP6 competition, in which predicted

secondary structure information was an integral part of the best performing schemes for the comparative modeling,

fold-recognition, and new fold prediction tasks.

A large number of secondary structure prediction algorithms have been developed, and over the years, their pre-

diction accuracy has been continuously improved. Many algorithms can nowadays achieve a sustained three-state

prediction accuracy in the range of 77%–78%, and combinations of them can sometimes further improve the accuracy

by one to two percentage points. These improvements have been well-documented [27], and are attributed to an ever-

expanding set of experimentally determined tertiary structures, the use of evolutionary information, and to algorithmic

advances.

The secondary structure prediction approaches in use today, can be broadly categorized into three groups: neighbor-

based, model-based, and meta-predictor-based. The neighbor-based approaches [28, 5, 11] predict the secondary

structure by identifying a set of similar sequence-fragments with known secondary structure; the model-based ap-

proaches [25, 10, 21, 19], employ sophisticated machine learning techniques to learn a predictive model trained on

sequences of known structure; whereas the meta-predictor-based approaches [4, 18] predict the structure by combin-

ing the predictions produced by different neighbor and/or model-based techniques. The near real-time evaluation of

many of these methods performed by the EVA server [24] shows that the model-based approaches tend to produce

statistically better results than the neighbor-based schemes, which is further improved by some of the more recently

developed meta-predictor-based approaches [18].

Historically, the most successful model-based approaches such as PHD [25], PSIPRED [10], and SSPro [19], were

based on neural network (NN) learning techniques. However, in recent years, a number of researchers have also

developed secondary structure prediction algorithms based on support vector machines (SVM) [32]. Even though the

initial performance of these schemes was not competitive with that achieved by the best NN-based schemes [9], recent

advances have lead to the development of algorithms [14, 33, 6, 8] whose performance is comparable and sometimes

better than that achieved by NN-based schemes.

In this paper we present a secondary structure prediction algorithm called YASSPP that further improves the perfor-

mance achieved by SVM-based methods. YASSPP employs the common framework for secondary structure prediction

that is based on a pair of cascaded models. The first-level model, often referred to as sequence-to-structure model,

computes a three-state prediction for each position by taking into account the sequence information around that posi-

tion, whereas the second-level model, often referred to as structure-to-structure model, computes the final secondary

structure assignment by taking into account the predictions computed by the first model. Each of these models is

constructed using three sets of binary SVM classifiers employing a one-vs-rest learning approach.

YASSPP improves prediction performance through the incorporation of a number of new ideas. It uses an exponen-

tial kernel function derived by combining a normalized second order kernel in which the contribution of each position

is inversely proportional to its distance from the central residue. It constructs the second-level model by incorporating

both the predicted secondary structure as well as information from the original input sequence; thus, using what can

be considered as a sequence+structure-to-structure model. It uses a coding scheme for the input sequence that in

addition to position specific information obtained using PSI-BLAST [1], also incorporates non-position specific infor-

mation obtained using the BLOSUM62 [7] scoring matrix. Finally, YASSPP uses a loss function that assigns different

misclassification costs to each secondary structure state based on its relative size in the training set, which accounts

for the unbalanced class-size distribution.

Experiments on the widely used RS126 and CB513 benchmark datasets and on a dataset obtained from the EVA

server (common subset #4) show that YASSPP is consistently more accurate than existing state-of-the-art SVM- and
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NN-based secondary structure prediction algorithms. On CB513 YASSPP achieves Q3 and SOV scores of 77.83%

and 75.05%, respectively, whereas on the EVA dataset its Q3 and SOV scores are 79.34% and 78.65%, respectively.

These latter results represent an absolute improvement of 1.7% and 2.6%, respectively, over that achieved by the next

best performing algorithm.

2 Methods and Algorithms

2.1 Secondary Structure Definition

The secondary structure information for each residue was obtained using the DSSP [12], which assigns each residue

to one of eight structural classes: H (α-helix), G (310-helix), I (π-helix), E (β-strand), B (isolated β-bridge), T (turn),

S (bend), and – (other). We use a reduction scheme that converts this eight-state assignment down to three states by

assigning H and G to the helix state (H), E and B to a the strand state (E), and the rest (I, T, S, and –) to a coil state

(C). This eight-to-three state reduction scheme is used by most secondary structure prediction methods [10, 24] and

allows us to compare YASSPP’s results with those produced by other schemes.

2.2 PSSM Representation & Generation

The position specific score matrix of a sequence X of length n is represented by a n × 20 matrix. The rows of

this matrix correspond to the various positions in X and the columns correspond to the 20 distinct amino acids.

The position specific score matrices used by YASSPP were generated using the latest version of the PSI-BLAST

algorithm [1] (available in NCBI’s blast release 2.2.10), and were derived from the multiple sequence alignment

constructed after five iterations using an e value of 10−2 for initial and subsequent sequence inclusions (i.e., we used

blastpgp -j 5 -e 0.01 -h 0.01). The PSI-BLAST was performed against NCBI’s nr database that was

downloaded in November of 2004 and contained 2,171,938 sequences.

2.3 Algorithm

The overall structure of YASSPP is similar to that used by many existing secondary structure prediction algorithms

like PHD and PSIPRED. It consists of two models, referred to as L1 and L2, that are connected together in a cascaded

fashion. The L1 model assigns to each position a weight for each of the three secondary structure elements {C, E, H},

which are provided as input to the L2 model to predict the actual secondary structure class of each position. The L1

model treats each position of the sequence as an independent prediction problem, and the purpose of the L2 model is

to determine the structure of a position by taking into account the predicted structure of adjacent positions. YASSPP

splits the training set equally between the L1 and L2 models.

Both the L1 and L2 models consist of three binary SVM classifiers ({M C/C̄
1 , M

E/Ē
1 , M

H/H̄
1 } and {MC/C̄

2 ,

M
E/Ē
2 , M

H/H̄
2 }, respectively) trained to predict whether or not a position belongs to a particular secondary structure

state or not (i.e., one-vs-rest models). The output values of the L1 model are the raw functional outputs of these binary

classifiers (i.e., M
C/C̄
1 , M

E/Ē
1 , and M

H/H̄
1 ), whereas the predicted secondary state of the L2 model corresponds to

the state whose corresponding binary classifier achieves the maximum value. That is,

Predicted state = argmax
x∈{C,E,H}

(Mx/x̄
2 ). (1)

During training, for each position i that belongs to one of the three secondary structure states (i.e., classes) of a
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sequence X, the input to the SVM is a (2w + 1)-length subsequence of X centered at position i. The parameter w

determines the length of the local environment around the ith sequence position to be used while building the model,

and its proper value is determined experimentally. YASSPP uses the same value of w for all binary classifiers used by

the L1 and L2 models. We will refer to these subsequences as wmers. During secondary structure prediction, a similar

approach is used to construct a wmer around each position i of a sequence X with unknown secondary structure (we

will refer to such sequence as a query sequence).

2.4 Input Sequence Coding

We used two different schemes to code the wmers for the L1 model and two different schemes for the L2 model.

L1’s first coding scheme represents each wmer x as a (2w + 1) × 20 matrix Px, whose rows are obtained directly

from the rows of the PSSM for each position. The second coding scheme augments this PSSM-based representation

by adding another (2w + 1) × 20 matrix Bx, whose rows are the rows of the BLOSUM62 matrix corresponding to

each position’s amino acid. We will refer to these as the P and the PB coding schemes, respectively.

The primary motivation behind the second coding scheme is to improve the classification accuracy (in conjunction

with the kernel function described later) in cases in which the query sequence does not have a sufficiently large number

of homologous sequences in nr, and/or PSI-BLAST failed to compute a correct alignment for some segments of the

sequence. By augmenting the wmer coding scheme to contain both PSSM- as well as BLOSUM62-based information,

the SVM can learn a model that is also partially based on the non-position specific information. This information will

remain valid even in cases in which PSI-BLAST could not or failed to generate correct alignments.

The two coding schemes for the L2 model are derived from the corresponding coding schemes of L1 by including

the predictions computed by L1’s three binary classifiers. This is done by adding another (2w + 1) × 3 matrix Sx ,

whose columns store the raw functional predictions of the M
C/C̄
1 , M

E/Ē
1 , and M

H/H̄
1 models, respectively. Thus, the

first coding scheme consists of matrices Px and Sx, and the second coding scheme consists of matrices Px, Bx, and

Sx. We will refer to these as the PS and the PBS coding schemes, respectively. Note that the information captured

by these two coding schemes are different from those used by existing secondary structure prediction algorithms, as

the latter consist only of Sx and ignore any information about the original sequence.

For each coding scheme the rows of the matrices that correspond to wmer positions extending past the beginning

and end of the input sequence are set to zero.

Even though each coding scheme of L1 can be combined with either of the two coding schemes for L2, in YASSPP

we investigated only two combinations: P with PS, and PB with PBS, which will be denoted as P + PS and

PB + PBS, respectively.

2.5 Kernel Functions

In developing YASSPP, a considerable effort was spent in designing and evaluating various kernel functions for use

by the binary SVM classifiers of the L1 and L2 models. This effort led us to construct kernel functions that are derived

by combining a normalized second-order kernel, in which the contribution of each position decreases based on how

far away it is from the central residue, along with an exponential function.

The general structure of the kernel functions that we used is given by

K(x, y) = exp

(
1.0 + K1(x, y)√

K1(x, x)K1(y, y)

)
, (2)
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where x and y are two wmers, K1(x, y) is given by

K1(x, y) = Kcs
2 (x, y) + (Kcs

2 (x, y))2, (3)

and Kcs
2 (x, y) is a kernel function that depends on the choice of the particular input coding scheme cs, and for each

one of the P , PB, PS, and PBS coding schemes is defined as follows:

KP
2 (x, y) =

j=w∑
j=−w

Px(j, :)P t
y(j, :)

1 + |j| , (4)

KPB
2 (x, y) = KP

2 (x, y) +

j=w∑
j=−w

Bx(j, :)Bt
y(j, :)

1 + |j| , (5)

KPS
2 (x, y) = KP

2 (x, y) + γ

j=w∑
j=−w

Sx(j, :)St
y(j, :)

1 + |j| , (6)

KPBS
2 (x, y) = KPB

2 (x, y) + γ

j=w∑
j=−w

Sx(j, :)St
y(j, :)

1 + |j| . (7)

The various terms involving the rows of the P , B, and S matrices (e.g., Px(j, :)P t
y(j, :)) correspond to the dot-products

of the rows corresponding to the jth positions of the wmers (indexed from −w to +w).

A number of observations can be made by analyzing the various kernel functions involved in the above definitions.

First, by linearizing matrices P , B, and S, we can see that Kcs
2 (x, y) is a linear function corresponding to the dot-

product of the linearized representation of x and y. Depending on the choice of the coding scheme, these dot-products

involve 20(2w + 1), 40(2w + 1), 23(2w + 1), or 43(2w + 1) dimension vectors. Second, the contribution of each

wmer position in Kcs
2 (x, y) decreases linearly with respect to its distance from the central residue (i.e., the residue that

defines the class or whose class needs to be predicted). This was motivated by the fact that the secondary structure state

of a residue is in general more dependent on the nearby sequence positions than the positions that are further away [3].

Third, the contribution of the S matrix in the kernels used for the L 2 model (i.e., PS and PBS coding schemes) over

the corresponding contributions of the P and B matrices is controlled by the parameter γ. This parameter provides

the kernel functions a mechanism by which the information in S can be weighted higher (or at least not lower) than

the information provided in the P and B matrices. This was motivated by the facts that (i) since both matrices P

and B have 20 columns each, their contribution to the kernel function will in general be higher than that provided

by the three columns of matrix S, and (ii) we wanted the kernels for the L2 models to more heavily rely on the

information provided by the S matrix as these models are used to smooth out the predictions computed by the L 1

models. To determine a suitable value for γ we performed a parameter study in which we let γ take the values in

the set {1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100}. We found that the best results were achieved when γ took

values from the set {40, 50, 60} whereas the results for either small or large values of γ were usually 0.5% worse in

terms of Q3 score. In all of our experiments we used γ = 50. Note that a similar optimization can be performed

for assigning different weights to the contributions of the P and B matrices. However, we did not perform such an

optimization. Fourth, since Kcs
2 (x, y) is a linear function, the K1(x, y) is a kernel corresponding to a second-order

polynomial. This allows the kernel function to capture pairwise dependencies among the residues used at various

positions within each wmer, and we found that this leads to better results over the linear function. This observation

is also supported by other research as well [33]. Fifth, the exponential structure of K(x, y) allow us to capture highly

non-linear relations.
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2.6 Unbalanced Classes

In the absence of well-separable classes, SVM learns a model that minimizes a cost function that depends on the

number of examples that get misclassified and the width of the margin. In cases in which there is a large difference in

the sizes of the positive and negative classes, this minimization can potentially be achieved by learning a model that

is biased towards the largest class. When the outputs of such binary SVM classifiers are used to build a multi-class

classifier, as it is the case for the three-state secondary structure prediction problem, such biases may decrease the

overall classification performance. Unfortunately, in the context of secondary structure prediction, due to the higher

frequency of the coil state over the strand and helix states, such unbalanced class scenarios do occur.

One way of overcoming this problem is to convert the raw functional outputs of the binary SVM classifiers into

probability values. A popular method used for achieving this is to fit the output of the SVM to a sigmoid function, and

use this fit to compute probabilities [31]. Our experimentation with this approach did not improve the overall results

and for this reason we adapted an alternate scheme that associates different misclassification costs to the examples of

the three classes; thus, trying to prevent the SVM from introducing a class-size bias in the first place.

The misclassification cost assigned to each class is computed as follows. Let no
i , be the (observed) number of

residues at state i in the training set, where i ∈ {C, E, H}, and let N be the total number of resides over the three

states. The effective number of residues ne
i at state i is defined to be

ne
i = no

i +
N

3
. (8)

This definition includes both the observed number of residues as well as the expected number of residues N/3, under

the assumption that all three states occur with the same probability. Then the misclassification cost mc i associated

with state i is given by solving

ne
i mci =

∑
j �=i

ne
j ⇒ mci =

1
ne

i

∑
j �=i

ne
j . (9)

This ensures that the overall cost of the positive class (i.e., number of instances multiplied by the misclassification cost

for that class) is equal to the overall cost of the negative class.

3 Experimental Design

3.1 Dataset Description

The performance of YASSPP was evaluated on three different datasets. The first is the RS126 dataset, originally

developed by Rost and Sander [25], which contains 126 sequences. The second is the CB513 dataset, originally

developed by Cuff and Borton [4], which contains 513 non-homologous sequences 1. The third is a dataset obtained

from the EVA server [24], which compares a number of prediction servers using the sequences deposited in the PDB

every week. In particular, we used the set labeled “common4” (http://cubic.bioc.columbia.edu/eva/sec/set com4.html),

which contains 165 sequences, most of which have been tested against a number of different secondary structure

prediction methods. We will refer to this dataset as EVAc4.

These three datasets were used to experimentally evaluate the secondary structure prediction performance of

YASSPP as follows. First, the RS126 and CB513 datasets were used to study the impact of its various input cod-

ing schemes, kernel/learning choices, and optimize its parameters. Second, the EVAc4 dataset was used to assess

1Both the RS126 and CB513 datasets can be obtained from http://www.compbio.dundee.ac.uk/˜www-jpred/data/pred res/.
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YASSPP’s performance on an independent dataset and compare it against that achieved by other popular algorithms.

3.2 Prediction Accuracy Assessment

The prediction accuracy is assessed using four widely used performance measures. These are the three-state per-

residue accuracy (Q3), the segment overlap measure (SOV), the per-state Matthews correlation coefficients (CC, CE, CH),

and the information index (Info). These measures are among the most widely used performance assessment measures

for secondary structure prediction, and because they are also reported by the EVA server we can make direct compar-

isons with existing schemes.

Q3 is a measure of the overall three-state prediction accuracy and is defined as the percentage of residues whose

structural class is predicted correctly [25]. The SOV is a segment-level measure of the overall prediction accuracy.

This measure is initially introduced in [26] and subsequently refined in [30]. The SOV values produced by these

two definitions are different and cannot be directly compared. For our assessment purposes, we use the most recent

definition of the SOV measure (also referred to as SOV99), as it allows us to perform comparisons with recent schemes

and with the results reported by the EVA server. Matthews correlation coefficients [15] provide a per-state measure of

prediction performance and for a particular state i ∈ {C, E, H} it is given by

Ci =
pini − uioi√

(p + i + ui)(pi + oi)(ni + ui)(ni + oi)
, (10)

where pi is the number of correctly predicted residues in state i, ni is the number of residues that were correctly

rejected (true negatives), ui is the number of residues that were incorrectly rejected (false negatives), and oi is the

number of residues that were incorrectly predicted to be in state i (false positives). Finally, the information index [25]

is an entropy-related measure that merges the observed and the predicted state-specific accuracy measures into a single

number with all these elements contributing equally.

3.3 SVM Training & Testing

We used three different approaches to predict these three datasets. In the case of RS126 and CB513, we followed a

seven-fold cross-validation framework, in which each one of the seven folds was predicted using a model that was

built on the remaining six folds. This approach allowed us to directly compare our results against those obtained by

earlier methods [9, 14] that used a similar seven-fold cross-validation approach. In the case of the EVAc4, we used a

model that was trained on a set of proteins derived from SCOP 1.67 [17] as follows. We used Astral [2] to obtain a

set of protein domains whose pairwise sequence identity was less than 25% (Astral25 subset). This resulted in a set of

4,993 domains that belong to 3,971 proteins. This set was further pruned by removing all proteins that were identified

to have greater than a 25% identity with at least one of the sequences in EVAc4. This pruning step left 3,223 proteins,

which was used to train YASSPP. Finally, to evaluate the performance of YASSPP’s production server, we used it to

predict the RS126 and CB513 datasets and compare its performance against the results reported in a recently published

study evaluating the performance of a number of prominent secondary structure prediction servers [22]. The model

used to train YASSPP’s server was obtained for the Astral25 subset of SCOP 1.67 and was derived by first eliminating

all the membrane and cell surface proteins (SCOP class “f”) and then including a single protein from each one of the

remaining SCOP families. The resulting training set contained 2,391 SCOP domains. All datasets used in evaluating

YASSPP’s performance are available at http://www.cs.umn.edu/˜karypis/servers/yasspp/supplement.

We use the publicly available support vector machine tool SVM light [29] which implements an efficient soft margin
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Table I: Effect of the window length on the performance of YASSPP for the
RS126 dataset.

YASSPP YASSPP−pw

w Q3 SOV CC CE CH Q3 SOV CC CE CH

4 76.67 70.79 0.54 0.62 0.70 76.65 70.56 0.54 0.63 0.70
5 76.94 70.97 0.55 0.63 0.71 76.76 70.78 0.54 0.63 0.70
6 77.08 71.20 0.55 0.62 0.71 76.70 70.66 0.54 0.63 0.70
7 77.08 71.27 0.55 0.62 0.71 76.54 70.47 0.54 0.63 0.70
8 76.98 71.14 0.55 0.63 0.71 76.29 70.15 0.53 0.62 0.70
9 76.89 71.01 0.54 0.63 0.71 76.07 69.73 0.53 0.62 0.70

The results labeled YASSPP are obtained using the kernel functions as
described in Section 2.5, whereas the YASSPP−pw were obtained by
weighting each position of the wmer equally in Equations 4–7 (i.e.,
no distance-sensitive decrease of each position’s contribution). The re-
ported values correspond to the averages over the 126 sequences ob-
tained using both the P + PS and PB + PBS input coding schemes.

optimization algorithm. In all of our experiments, we use the default parameters for solving the quadratic programming

problem, and we use a regularization parameter of C = 1/e2 = 0.1353, which is the default value used by SVMlight

and computed as the average of 1/(||x||2). In addition, for the RS126 and CB513 dataset we also report results in

which the value of the regularization parameter was optimized to maximize the Q3 measure. This optimization was

performed using various values for C ranging from 0.001 to 1000. Due to the large range of possible C values,

the optimization was performed as follows: for C ≤ 10, we tested different values of C at 0.005 intervals and for

10 < C ≤ 1000 we tested different values of C at 1.0 intervals. In all of our experiments, the best value of C was less

than one.

4 Results

4.1 RS126 and CB513 Datasets

We investigate the impact of YASSPP’s parameters by performing a number of experiments in which we (i) vary

the length of the wmer, (ii) disable certain aspects of the kernel functions, (iii) eliminate the class-size sensitive

misclassification costs, and (iv) use different input coding schemes. The key results of these studies are summarized

in the subsequent sections.

4.1.1 Window Length

Table I shows the performance achieved by YASSPP for different length wmers ranging from nine to nineteen residues

long (w =4–9). These results show that the best performance is achieved for wmers that are 13 or 15 residues long,

which is in agreement with the results reported in previous studies. The results also illustrate that as the length of the

window increases, the performance of YASSPP−pw reduces faster than that of YASSPP, verifying the initial motivation

behind YASSPP’s distance-sensitive position weighting scheme.
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Table II: Effect of various kernel and learning parameters on the perfor-
mance of YASSPP.

RS126 Dataset

Scheme Q3 SOV Info CC CE CH

YASSPP 77.58 72.04 0.370 0.560 0.628 0.713
YASSPP−pw 77.24 71.63 0.360 0.552 0.626 0.710
YASSPP−cw 77.00 70.82 0.362 0.551 0.622 0.706
YASSPP−P/PB 76.64 71.09 0.354 0.539 0.626 0.704

CB513 Dataset

Scheme Q3 SOV Info CC CE CH

YASSPP 77.65 74.62 0.393 0.575 0.638 0.703
YASSPP−pw 77.48 74.35 0.388 0.572 0.630 0.699
YASSPP−cw 77.58 74.54 0.390 0.578 0.631 0.696
YASSPP−P/PB 77.07 73.95 0.385 0.566 0.628 0.694

YASSPP−pw, YASSPP−cw, and YASSPP−P/PB are derived from
YASSPP by disabling some of its features as follows. YASSPP−pw

does not use distance-sensitive position weighting; YASSPP−cw

does not use class-size sensitive misclassification costs (i.e., the
misclassification costs for all binary classifiers was one); and
YASSPP−P/PB uses only the S matrix when constructing the bi-
nary classifiers for the L2 model and does not use either the PSSM-
based coding or the BLOSUM62-based coding. For YASSPP−pw

and YASSPP−cw the reported values correspond to the averages ob-
tained using both the P +PS and PB+PBS input coding schemes
and w ranging from four to nine. For YASSPP−P/PB the reported
values correspond to the averages obtained using both the P +S and
PB + S input coding schemes and w ranging from four to nine.

4.1.2 Kernel & Learning Parameters

Table II shows the impact to YASSPP’s performance by disabling certain elements of its kernel function and by

eliminating the class-size sensitive misclassification costs. These results show that each one of these parameters lead

to an improvement in the overall prediction accuracy across the two datasets. Among them, the gains achieved by

using a coding scheme for the L2 model that incorporates the amino acid composition of each wmer are the highest,

whereas the gains achieved by the distance-sensitive position weighting schemes are the lowest.

To further verify that the improvements achieved by YASSPP over YASSPP−P/PB are due to the extra information

provided to the L2 model by the P and B matrices, we performed a sequence of experiments in which a simple linear

kernel function was used to construct the L2 classifiers. Specifically, we tested three different schemes using the S,

PS, and PBS coding schemes for L2, respectively. These experiments showed that the absolute gains in terms of the

Q3 score of PS over S and PBS over S were 0.63% and 0.52%, respectively, suggesting that matrices P and B do

contribute additional information that can be exploited by different kernel functions.
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Table III: Effect of the feature space on the performance of YASSPP.

RS126 Dataset

Scheme Q3 SOV Info CC CE CH

YASSPPP+PS 77.03 71.32 0.360 0.548 0.632 0.712
YASSPPPB+PBS 76.85 70.81 0.359 0.546 0.617 0.701

CB513 Dataset

Scheme Q3 SOV Info CC CE CH

YASSPPP+PS 77.54 74.32 0.390 0.571 0.642 0.697
YASSPPPB+PBS 77.72 74.98 0.395 0.578 0.633 0.707

YASSPPP+PS uses the P + PS input coding and the
YASSPPPB+PBS uses the PB + PBS input coding. The reported
values correspond to the averages obtained over different values of
w ranging from four to nine.

4.1.3 Input Sequence Coding

Table III shows the effect of the different input coding schemes to YASSPP’s overall performance. In general, by

augmenting the traditional input coding schemes to also include non-position specific information, we are able to

achieve an improvement in the overall classification performance. However, this improvement is not uniform across

the two datasets and performance assessment measures, as the P + PS coding scheme achieves better SOV, CC , CE ,

and CH values for the RS126 dataset and better CE values for the CB513 dataset over the PB+PBS coding scheme.

4.1.4 Comparison with Other Methods

Table IV compares the performance achieved by YASSPP with that achieved by SVMfreq [9], SVMpsi [14], and

PMSVM [6], three recently developed SVM-based secondary structure prediction methods.

From these results we can see that both YASSPPP+PS and YASSPPPB+PBS achieve better results than any of

the other three schemes. In terms of Q3 and SOV, these improvements are also statistically significant across the

different methods and datasets. Among these methods, PMSVM is more similar to YASSPPP+PS as it uses a pair of

cascaded models, utilizes PSSMs, employs an input coding scheme for the L1 model that is similar to P . Thus, the

improvement achieved by YASSPPP+PS over PMSVM can be attributed to the different kernel function (PMSVM

uses an rbf kernel function), the class-size sensitive misclassification cost, and the coding used for the L2 model.

In addition to the results obtained using the default regularization parameter, Table IV also presents the results ob-

tained when SVM’s regularization parameter was optimized to maximize the Q3 score (∗YASSPPP+PS and ∗YASSPPPB+PBS ).

This optimization was performed following the procedure outlined in Section 3.3. As was expected, by fine-tuning the

regularization parameter, YASSPPP+PS and YASSPPPB+PBS were able to achieve better results. However, these

improvements are not statistically significant over the performance achieved by the default settings.

4.2 EVAc4 Dataset

Table V compares the performance achieved by YASSPP against that achieved by PHDpsi [21], PSIPRED [10], SAM-

T99sec [13], PROFsec [23], SCRATCH [19], SSPro4 [19], and SABLE2 [20]. These schemes represent some of the
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Table IV: Comparative performance of YASSPP against other methods.

RS126 Dataset

Scheme Q3 SOV Info CC CE CH

SVMfreq 71.20 — — 0.510 0.520 0.620
SVMpsi 76.10 72.00 — — — —
YASSPPP+PS 77.63 72.25 0.371 0.559 0.637 0.721

ErrSig 0.82 1.34 0.015 0.015 0.022 0.020
∗YASSPPP+PS 77.72 72.20 0.371 0.560 0.636 0.723

ErrSig 0.78 1.34 0.015 0.015 0.022 0.019
YASSPPPB+PBS 77.68 72.04 0.373 0.562 0.617 0.708

ErrSig 0.84 1.34 0.015 0.015 0.023 0.021
∗YASSPPPB+PBS 77.91 72.81 0.375 0.572 0.633 0.711

ErrSig 0.83 1.28 0.015 0.015 0.022 0.021

CB513 Dataset

Scheme Q3 SOV Info CC CE CH

SVMfreq 73.50 — — 0.540 0.530 0.650
SVMpsi 76.60 73.50 — 0.560 0.600 0.680
PMSVM 75.20 — — 0.610 0.610 0.710
YASSPPP+PS 77.53 74.25 0.389 0.571 0.642 0.696

ErrSig 0.41 0.63 0.007 0.007 0.011 0.010
∗YASSPPP+PS 77.60 74.41 0.390 0.572 0.643 0.697

ErrSig 0.41 0.63 0.007 0.007 0.011 0.010
YASSPPPB+PBS 77.78 74.99 0.396 0.580 0.634 0.710

ErrSig 0.42 0.63 0.007 0.007 0.011 0.010
∗YASSPPPB+PBS 77.83 75.05 0.397 0.581 0.636 0.711

ErrSig 0.42 0.64 0.007 0.007 0.011 0.010

YASSPPP+PS uses the P + PS input coding and the
YASSPPPB+PBS uses the PB + PBS input coding. Both schemes
use wmers of length 15 (w = 7). The results marked with ‘∗’ corre-
spond to those obtained after optimizing the regularization parameter
for SVM. The values of the regularization parameter that achieved
the highest Q3 value for the four experiments (in the order pre-
sented) were 0.24, 0.28, 0.105, and 0.105, respectively. The results
for SVMpsi, SVMfreq, and PMSVM were obtained using a similar
seven-fold cross validation approach and are directly comparable
with YASSPP’s results. Entries marked with ‘—’ indicate results that
could not be obtained from the publications of the respective methods.
ErrSig is the significant difference margin for each score (to distin-
guish between two methods) and is defined as the standard deviation
divided by the square root of the number of proteins (σ/

√
N ).
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best performing schemes, currently evaluated by the EVA server, and their results were obtained directly from EVA.

Since EVA did not use all the methods to predict all the sequences of EVAc4, Table V presents four different sets of

results for YASSPPP+PS and YASSPPPB+PBS (indicated by the superscripts 1–4), each obtained by averaging the

various performance assessment methods over the common subset. These common subsets contained 165, 134, 86,

and 115 sequences, respectively.

These results show that both YASSPPP+PS and YASSPPPB+PBS achieve better prediction performance than that

achieved by any of the other schemes across all the different performance assessment measures. In particular, for the

entire dataset, YASSPPPB+PBS achieves a Q3 score of 79.34%, which is 1.7 percentage points higher than the second

best-performing scheme in terms of Q3 (SAM-T99sec), and an SOV score of 78.65%, which is 2.6 percentage points

higher than the second best performing scheme in terms of SOV (PSIPRED).

Comparing the two different versions of YASSPP, we can see that unlike the results reported earlier for RS126

and CB513, YASSPPPB+PBS performs considerably better than YASSPPP+PS . On the entire dataset, its prediction

performance is better by one percentage point in terms of Q3, and better by 1.45 percentage points in terms of SOV. To

better understand the source of this improvement, we analyzed the two sets of predictions and compared the positions

that both schemes predicted correctly with those that were predicted correctly by only one of the two schemes. This

comparison was performed by analyzing the amount of information that is captured at each position of the profile,

which provides a quantitative measure of each position’s sequence conservation among the homologous sequences

used to construct the PSSM. For this purpose we used the “information per position” measure that is computed by

PSI-BLAST itself and is stored at the generated PSSM file.

The results of this analysis are summarized in Table VI, which shows the average information for positions that were

correctly predicted by both schemes, positions that were correctly predicted only by YASSPP P+PS , and positions

that were correctly predicted only by YASSPPPB+PBS . From these results we can see that the positions that are

predicted correctly only by YASSPPPB+PBS have considerably less information than those predicted correctly by

either YASSPPP+PS alone or by both schemes. This is true across all three secondary structure states, and it is more

pronounced for helices and for coils. Even though there are many reasons why such low information positions can

occur in the PSSM, one reason is the lack of a sufficient number of strong homologous sequences. This is indeed the

case for the 165 sequences of the EVAc4 dataset, for which PSI-BLAST was unable to find more than 20 homologous

sequences for each one of 51 query sequences, and could find at least 100 homologous sequences for only 68 query

sequences. Thus, by augmenting the input coding of each wmer with the BLOSUM62 information of their residues,

YASSPPPB+PBS is able to correctly predict a larger number of such low information positions, and to some degree

overcome the information loss due to insufficient number of homologous sequences.

4.3 Performance of the YASSPP Server

Table VII compares the performance achieved by YASSPP’s production server with that achieved by other model-

based servers such as PSIPRED, PHD, Prof, and SSPro [22]. These results show that the performance achieved by

YASSPPP+PS and YASSPPPB+PBS is in general higher than that achieved by the other servers. YASSPPPB+PBS ’s

performance is one to four percentage points higher in terms of Q3 and SOV. The only exception is the RS126 dataset

for which PSIPRED achieves somewhat better prediction performance than either YASSPPP+PS or YASSPPPB+PBS

(PSIPRED achieves a Q3 score of 81.01 vs 80.29 for YASSPPPB+PBS ). However, as measured by ErrSig, this per-

formance difference is not statistically significant. Also, as it was the case with the previous results, YASSPPPB+PBS

achieves better prediction performance than that achieved by YASSPPP+PS .
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Table V: Performance on the EVAc4 dataset.

Scheme Q3 SOV Info CC CE CH

PHDpsi 74.52 70.69 0.346 0.529 0.685 0.665
PSIPRED 77.62 76.05 0.375 0.561 0.735 0.696
SAM-T99sec 77.64 75.05 0.385 0.578 0.721 0.675
PROFsec 76.54 75.39 0.378 0.562 0.714 0.677
1YASSPPP+PS 78.35 77.20 0.407 0.589 0.746 0.708

ErrSig 0.86 1.21 0.015 0.015 0.021 0.017
1YASSPPPB+PBS 79.34 78.65 0.419 0.608 0.747 0.722

ErrSig 0.82 1.16 0.015 0.015 0.021 0.016

SCRATCH 75.75 71.38 0.357 0.545 0.690 0.659
2YASSPPP+PS 78.39 77.69 0.406 0.586 0.750 0.711

ErrSig 0.97 1.36 0.016 0.017 0.023 0.018
2YASSPPPB+PBS 79.31 78.75 0.416 0.602 0.751 0.722

ErrSig 0.94 1.29 0.016 0.017 0.023 0.018

SSPro4 77.96 72.73 0.385 0.559 0.711 0.696
3YASSPPP+PS 79.21 78.60 0.418 0.590 0.749 0.723

ErrSig 1.19 1.67 0.021 0.023 0.030 0.022
3YASSPPPB+PBS 80.03 79.00 0.430 0.605 0.751 0.736

ErrSig 1.18 1.68 0.022 0.024 0.030 0.022

SABLE2 76.85 73.55 0.376 0.546 0.725 0.682
4YASSPPP+PS 78.70 78.09 0.417 0.596 0.766 0.715

ErrSig 1.00 1.42 0.018 0.018 0.025 0.019
4YASSPPPB+PBS 79.85 79.71 0.432 0.615 0.768 0.730

ErrSig 0.97 1.39 0.018 0.019 0.025 0.019

YASSPPP+PS uses the P +PS input coding and the YASSPPPB+PBS

uses the PB + PBS input coding and were obtained using w = 7 (i.e.,
wmers of size 15). The 1YASSPP are the averages over the set of se-
quences in common with PHDpsi, PSIPRED, SAM-T99sec, and PROF-
sec. The 2YASSPP are the averages over the set of sequences in com-
mon with SCRATCH. The 3YASSPP are the averages over the set of se-
quences in common with SSPro4. The 4YASSPP are the averages over
the set of sequences in common with SABLE2.
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Table VI: Analysis of the correct predictions computed by YASSPPP+PS

and YASSPPPB+PBS on the EVAc4 dataset.

P & PB P & ¬PB ¬P & PB

w C E H C E H C E H

0 0.71 0.75 0.67 0.72 0.73 0.75 0.62 0.67 0.50
1 0.70 0.75 0.66 0.68 0.79 0.74 0.65 0.68 0.51
2 0.69 0.75 0.66 0.67 0.78 0.76 0.67 0.68 0.51
3 0.69 0.75 0.67 0.68 0.76 0.76 0.67 0.67 0.51

The average information per position of different length wmers
centered at each residue that was correctly predicted by both meth-
ods (P & PB), correctly predicted only by YASSPPP+PS (P &
¬PB), and correctly predicted only by YASSPPPB+PBS (¬P &
PB). The results are presented based on the secondary structure
state of the central residue. The w = 0 results correspond to the
wmer consisting of just the position itself. The average informa-
tion for longer wmers was computed by first computing the aver-
age information for each wmer and then reporting the average of
these averages.

Note that the performance reported in Table VII is not a truly independent evaluation of the different schemes, as

in almost all of the cases, the training sets used to build the various models contain sequences that are homologous

to those in the test datasets. For this reason, only the results reported in Tables IV and V represent an independent

assessment of the relative performance of the various schemes and Table VII was included for completeness purposes.

5 Discussion and Conclusion

This paper presented and experimentally evaluated a new protein secondary structure prediction algorithm YASSPP

that uses a pair of cascaded SVM-based models to compute a three-state prediction (C, E, H). The experimental

evaluation using three standard benchmark datasets showed that YASSPP is capable of producing superior prediction

performance, measured both in terms of the three-state prediction accuracy (Q3) and the segment overlap score (SOV),

than that achieved by existing widely used schemes such as PSIPRED, SSPro, SAM-T99sec, as well as previously

developed SVM-based schemes such as SVMfreq and SVMpsi.

These improvement gains can be attributed to three different factors. First, YASSPP uses a kernel function that is

designed to capture the sequence conservation signals around the local window of each residue. This kernel function

captures position information, interdependencies between positions, and a distance-based position weighting scheme,

all of which have been shown to have some correlation with secondary structure [3]. Even though each of these

elements have been used in the past in various secondary structure prediction algorithms, to the best of our knowledge,

YASSPP is the first scheme that explicitly couples all of them together.

Second, YASSPP’s L2 model in addition to the three-state predictions produced by the L 1 model also combines

information about the original sequence as captured by its PSSM-based (and BLOSUM62-based) coding. This ad-

ditional information allows SVM to explicitly capture dependencies between amino acid composition and predicted

secondary structure of different positions. These dependencies are captured by the second order (Equation 3) and the

exponential kernel (Equation 2). The results reported in Table II show that by doing so, YASSPP is able to achieve
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Table VII: Comparative performance of YASSPP against other sec-
ondary structure prediction servers.

RS126 Dataset

Scheme Q3 SOV Info CC CE CH

PSIPRED 81.01 76.24 0.45 0.65 0.70 0.77
PHD 76.92 72.57 0.38 0.57 0.63 0.73
Prof 76.95 71.70 0.38 0.58 0.63 0.73
SSPro 77.01 70.24 0.38 0.58 0.61 0.72
YASSPPP+PS 79.81 74.41 0.42 0.61 0.70 0.76

ErrSig 0.80 1.28 0.02 0.02 0.02 0.02
YASSPPPB+PBS 80.29 75.65 0.43 0.61 0.70 0.75

ErrSig 0.79 1.25 0.02 0.02 0.02 0.02

CB513 Dataset

Scheme Q3 SOV Info CC CE CH

PSIPRED 79.95 76.48 0.43 0.63 0.68 0.76
PHD 77.61 74.98 0.39 0.59 0.65 0.73
Prof 77.13 73.74 0.39 0.58 0.64 0.73
SSPro 79.07 74.39 0.42 0.61 0.65 0.76
YASSPPP+PS 80.52 77.39 0.45 0.62 0.70 0.74

ErrSig 0.40 0.60 0.01 0.01 0.01 0.01
YASSPPPB+PBS 80.99 77.86 0.45 0.63 0.70 0.75

ErrSig 0.39 0.60 0.01 0.01 0.01 0.01

YASSPPP+PS uses the P + PS input coding and the
YASSPPPB+PBS uses the PB + PBS input coding. Both
schemes use wmers of length 15 (w = 7). The results for
PSIPRED, PHD, Prof, and SSPro were obtained from [22].
ErrSig is the significant difference margin for each score (to dis-
tinguish between two methods) and is defined as the standard
deviation divided by the square root of the number of proteins
(σ/

√
N ).

measurable prediction improvements.

Third, YASSPPPB+PBS uses an input coding scheme that combines both position-specific and non-position spe-

cific information for each sequence. In doing so, it can learn a model that depends on information being derived from

these two sources as well as their interdependencies. The latter is achieved via YASSPP’s kernel function. The experi-

ments with the EVAc4 dataset and their analysis suggest that this combined input coding scheme can lead to accuracy

gains for sequence positions with low information per position. This often occurs when there is not a sufficiently

large number of strong homologous sequences covering this position and/or the profile generation algorithm failed to

produce correct alignments for them.
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