
CLUTO ∗
A Software Package for Clustering High Dimensional Datasets

Release 1.5

George Karypis

University of Minnesota, Department of Computer Science
Minneapolis, MN 55455

karypis@cs.umn.edu

January 8, 2002

∗CLUTO is copyrighted by the regents of the University of Minnesota. This work was supported by NSF CCR-9972519, EIA-9986042, ACI-
9982274, by Army Research Office contract DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performance Computing
Research Center contract number DAAH04-95-C-0008. Related papers are available via WWW at URL: http://www.cs.umn.edu/˜karypis.
The name CLUTO is derived from CLUstering TOolkit.

1

Contents

1 Introduction 4
1.1 What is CLUTO . 4
1.2 When CLUTO Should be Used . 4
1.3 Outline of CLUTO’s Manual . 5

2 Major Changes From Release 1.0 6

3 Using CLUTO via its Stand-Alone Program 7
3.1 The vpcluster Clustering Program . 7

3.1.1 Optional Parameters . 7
3.2 The vacluster Clustering Program . 14

3.2.1 Optional Parameters . 15
3.3 Understanding the Information Produced by vpcluster and vacluster 16

3.3.1 Internal Cluster Quality Statistics . 17
3.3.2 External Cluster Quality Statistics . 17
3.3.3 Looking at each Cluster’s Features . 18
3.3.4 Looking at the Hierarchical Agglomerative Tree . 18
3.3.5 Looking at the Visualizations . 23

3.4 Input File Formats . 25
3.4.1 Matrix File . 25
3.4.2 Row Label File . 26
3.4.3 Column Label File . 26
3.4.4 Row Class Label File . 29

3.5 Output File Formats . 29
3.5.1 Clustering Solution File . 29
3.5.2 Tree File . 29

4 CLUTO’s Library Interface 31
4.1 Using CLUTO’s Library . 31
4.2 Matrix Data Structure . 31
4.3 Clustering Parameters . 32

4.3.1 The simfun Parameter . 32
4.3.2 The crfun Parameter . 32

4.4 Object Modeling Parameters . 32
4.4.1 The rowmodel Parameter . 32
4.4.2 The colmodel Parameter . 33
4.4.3 The colprune Parameter . 33

4.5 Debugging Parameter . 33
4.6 Clustering Routines . 34

CLUTO VP ClusterDirect . 34
CLUTO VP ClusterRB . 35
CLUTO VA Cluster . 36
CLUTO SA Cluster . 37
CLUTO V BuildTree . 39

4.7 Cluster Statistics Routines . 41
CLUTO V GetSolutionQuality . 41
CLUTO V GetClusterStats . 42
CLUTO V GetClusterFeatures . 44

2

CLUTO V GetTreeStats . 46
CLUTO V GetTreeFeatures . 47

5 System Requirements and Contact Information 49

6 Copyright Notice and Usage Terms 49

3

1 Introduction

Clustering algorithms divide data into meaningful or useful groups, called clusters, such that the intra-cluster similarity
is maximized and the inter-cluster similarity is minimized. These discovered clusters can be used to explain the
characteristics of the underlying data distribution and thus serve as the foundation for various data mining and analysis
techniques. The applications of clustering include characterization of different customer groups based upon purchasing
patterns, categorization of documents on the World Wide Web, grouping of genes and proteins that have similar
functionality, grouping of spatial locations prone to earth quakes from seismological data, etc.

1.1 What is CLUTO

CLUTO is a software package for clustering high dimensional datasets and for analyzing the characteristics of the
various clusters. The algorithms implemented in CLUTO follow either the partitional or the agglomerative paradigm
for cluster discovery [1] and treat the clustering problem as an optimization process which seeks to maximize or
minimize a particular clustering criterion function defined over the entire clustering solution. CLUTO provides a total
of seven different criterion functions that are described and analyzed in [2]. Most of these criterion functions have been
shown to produce high quality clustering solutions in high dimensional datasets, especially those arising in document
clustering.

An important aspect of partitional-based criterion-driven clustering algorithms is the method used to optimize this
criterion function. CLUTO uses a randomized incremental optimization algorithm that is greedy in nature, has low
computational requirements, and has been shown to produce high-quality clustering solutions [2].

In addition to the clustering algorithms, CLUTO provides tools for analyzing the discovered clusters to understand
the relations between the objects assigned to each cluster and the relations between the different clusters, and tools
for visualizing the discovered clustering solutions. In particular, CLUTO can identify the features that best describe
and/or discriminate each cluster. These set of features can be used to gain a better understanding of the set of objects
assigned to each cluster and to provide concise summaries about the cluster’s contents. Moreover, CLUTO provides
visualization capabilities that can be used to see the relationships between the clusters, objects, and features.

CLUTO’s distribution consists of both stand-alone programs (vpcluster and vacluster) for clustering and analyzing
these clusters, as well as a library via which an application program can access directly the various clustering and
analysis algorithms implemented in CLUTO.

1.2 When CLUTO Should be Used

CLUTO’s primary clustering algorithms treat the objects to be clustered as vectors in a high-dimensional space and
measure the degree of similarity between these objects using either the cosine function between these vectors or the
Pearson’s correlation coefficient. Using these measures, two objects are similar if their corresponding vectors 1 point
in the same direction (i.e., they have roughly the same set of features and in the same proportion), regardless of their
actual length.

These cosine- and correlation-based similarity measures are well-suited for clustering high-dimensional (as well
as low-dimensional) datasets arising in many diverse applications areas, including information retrieval, customer
purchasing transactions, science, and biology. Moreover, for many criterion functions, clustering algorithms based on
the cosine similarity measure are equivalent with algorithms that use the Euclidean distance measure on vectors that
are scaled to be of unit-length [2].

CLUTO’s algorithms have been optimized for operating on very large datasets both in terms of the number of objects
as well as the number of dimensions. This is especially true for CLUTO’s algorithms for partitional clustering. These
algorithms can quickly cluster datasets with several tens of thousands objects and several thousands of dimensions.
Moreover, since most high-dimensional datasets are very sparse, CLUTO directly takes into account this sparsity and
requires memory that is roughly linear on the input size.

1In the case of Pearson’s correlation coefficient the vectors are obtained by first subtracting their average value.

4

1.3 Outline of CLUTO’s Manual

CLUTO’s manual is organized as follows. Section 2 describe the major changes from the previous release. Section 3
describes the stand-alone program provided by CLUTO, and discusses its various options and analysis capabilities.
Section 4 describes the application programming interface (API) of the stand-alone library that implements the various
algorithms implemented in CLUTO. Finally, Section 5 describes the system requirements for the CLUTO package.

5

2 Major Changes From Release 1.0

The latest release of CLUTO contains five major additions over its earlier release, and a number of minor changes. The
major changes are the following:

1. CLUTO now includes a fully-functional set of agglomerative clustering routines and an agglomerative stand-
alone program called vacluster. CLUTO’s agglomerative routines compute an agglomerative clustering solution
that locally optimizes any one of its various clustering criterion functions. These routines are reasonably efficient
and they can cluster datasets having up to 3,000–6,000 objects. Of course, due to their agglomerative nature,
their space and memory complexity is at least quadratic on the number of objects. For this reason, the partitional
clustering algorithms should be preferred for large datasets.

2. CLUTO’s agglomerative routines can also be used to cluster a set of objects whose relations are defined in terms
of an arbitrary object-to-object similarity matrix. This functionality is currently available only via the use of the
CLUTO SA Cluster() routine in CLUTO’s library.

3. CLUTO can now cluster objects using the correlation coefficient between their vectors as a measure of their
similarity. This eliminates the need for pre-processing.

4. CLUTO’s stand-alone programs and library now support dense datasets. This allows CLUTO to be used directly
to cluster datasets arising in scientific data and microarray expression analysis.

5. CLUTO can now produce a number of different graphical visualizations of the discovered clusters. These vi-
sualizations can be used to see the relationships between the various clusters, objects, and features. Moreover,
CLUTO supports many widely used output formats including postscript, Adobe Illustrator, XFig, XML-based
SVG, PCL, WebCGM, and GIF.

6

3 Using CLUTO via its Stand-Alone Program

CLUTO provides access to its various clustering and analysis algorithms via the vpcluster and vacluster stand-alone
cluster programs. The rest of this section describes how to use these programs, how to interpret their output, the format
of the various input files that they require, and the format of the output files that they produce.

3.1 The vpcluster Clustering Program

The vpcluster program is used to cluster a collection of objects into a predetermined number of clusters k. The
vpcluster program treats each object as a vector in a high-dimensional space, and it computes the clustering solution
using the partitioning paradigm, whose goal is to optimize (minimize or maximize) a particular function that measures
the quality of the clustering solution. This vector-based representation and partitional-principle of vpcluster’s is the
reason for the “vp” prefix of vpcluster’s name.

The vpcluster program is invoked by providing two required parameters on the command line along with a number
of optional parameters. Its overall calling sequence is as follows:

vpcluster [optional parameters] MatrixFile NClusters

The first required argument, MatrixFile, is the name of the file that stores the n objects that need to be clustered. In
vpcluster, each one of these objects is considered to be a vector in an m-dimensional space. The collection of these
objects is treated as an n × m matrix, whose rows correspond to the objects, and whose columns correspond to the
dimensions of the feature space. The exact format of the matrix-file is described in Section 3.4.1. The second required
argument NClusters, is the number of clusters that is desired.

Upon successful execution, vpcluster displays statistics regarding the quality of the computed clustering solution
and the amount of time taken to perform the clustering. The actual clustering solution is stored in a file named
MatrixFile.clustering.NClusters, whose format is described in Section 3.5.1.

Figure 1 shows the output of vpcluster for clustering a matrix into 10 clusters. From this figure we see that
vpcluster initially prints information about the matrix, such as its name, the number of rows (#Rows), the number of
columns (#Columns), and the number of non-zeros in the matrix (#NonZeros). Next it prints information about the
values of the various options that it used to compute the clustering (we will discuss the various options in Section 3.2.1),
and the number of desired clusters (#Clusters). Once it computes the clustering solution, it displays information
regarding the quality of the overall clustering solution as well as the quality of each cluster. The meaning of the
various measures that are reported will be discussed in Section 3.3. Finally, vpcluster reports the time taken by the
various phases of the program. For this particular example, vpcluster required 0.950 seconds to read the input file and
write the clustering solution, 10.220 seconds to compute the actual clustering solution, and 0.220 seconds to compute
statistics on the quality of the clustering.

3.1.1 Optional Parameters

The behavior of vpcluster can be controlled by specifying a number of different optional parameters. These parame-
ters can be broadly categorized into two groups. The first group controls various aspects of the clustering algorithm,
whereas the second group controls the type of reporting and analysis that vpcluster performs on the computed clusters.

The optional parameters are specified using the standard -paramname or -paramname=value formats, where
the name of the optional parameter paramname can be truncated to a unique prefix of the parameter name.

Clustering Algorithm Parameters There are a total of 13 different optional parameters that control how vp-
cluster computes the clustering solution. The name and function of these parameters is as follows:

-denseinput
This parameter instructs vpcluster to use the dense matrix storage format while reading the input Matrix-
File matrix. If this parameter is omitted, then vpcluster assumes that the matrix is stored using a sparse
format.

7

�

�

�

�

prompt% vpcluster sports.mat 10

CLUTO 1.5 - vpcluster, Copyright 2001-02, Regents of the University of Minnesota

Matrix Information --
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options ---
CRfun=I2, RowModel=None, ColModel=IDF, Prune=1.00, NTrials=10, NIter=10
Direct=NO, RB=YES, Refine=NO, #Clusters: 10

Solution --

--
10-way clustering solution: [I2=2.28e+03]
--
cid Size ISim ISdev ESim ESdev

0 795 0.102 0.036 0.018 0.006 |
1 628 0.106 0.041 0.022 0.007 |
2 760 0.099 0.034 0.021 0.006 |
3 845 0.087 0.034 0.020 0.007 |
4 845 0.095 0.035 0.023 0.007 |
5 848 0.104 0.038 0.025 0.009 |
6 1168 0.051 0.016 0.021 0.006 |
7 831 0.045 0.015 0.019 0.005 |
8 984 0.032 0.012 0.015 0.006 |
9 876 0.046 0.016 0.023 0.008 |

--

Timing Information
--

I/O: 0.950 sec
Clustering: 10.220 sec
Reporting: 0.240 sec

Figure 1: Output of vpcluster for matrix sports.mat and a 10-way clustering.

-rb This parameter instructs vpcluster to compute the desired k-way clustering solution by performing a se-
quence of k − 1 repeated bisections. In this approach, the matrix is first clustered into two groups, then
one of these groups is selected and bisected further. This process continuous until the desired number of
clusters is found. During each step, vpcluster selects the largest cluster to bisect further. Note that this
approach ensures that the criterion function is locally optimized within each bisection, but in general is not
optimized globally. By default, vpcluster uses this approach to find the k-way clustering solution.

-direct This parameter instructs vpcluster to compute the desired k-way clustering solution, by simultaneously
finding all k clusters. In general, computing a k-way clustering directly is slower than clustering via
repeated bisections. In terms of quality, for reasonably small values of k (usually less than 20), the direct
approach leads to better clusters than those obtained via repeated bisections. However, as k increases, the -
rb approach tends to be better than -direct. Please refer to [2] (which is included with CLUTO’ distribution)
for a detailed comparisons of the -direct and -rb approach in the context of clustering document datasets.

-refine This parameter instructs vpcluster to globally optimize the clustering solution produced by the repeated
bisecting approach. Essentially, vpcluster uses the solution obtained by -rb as the initial clustering solution
and tries to optimize it further using its optimizer.

-fulltree Builds a complete hierarchical tree that preserves the clustering solution that was computed. In this hierar-
chical clustering solution, the objects of each cluster form a subtree, and the different subtrees are merged
to get an all inclusive cluster at the end. The hierarchical agglomerative clustering is computed so that
it optimizes the selected clustering criterion function (specified by -crfun). If -writetree is specified, the
resulting hierarchical agglomerative tree is stored in the appropriate file. This option should be used to
obtain a hierarchical agglomerative clustering solution for very large data sets, and for re-ordering the rows
of the matrix when -plotmatrix is specified.

-sim=int Selects the similarity function to be used for clustering. The possible values are:

1 The similarity between objects is computed using the cosine function. This is the default setting.

8

2 The similarity between objects is computed using the correlation coefficient.

The runtime of vpcluster may increase when -sim=2 is selected, as it needs to store and operate on the
dense n × m matrix.

-crfun=int
This parameter selects the particular clustering criterion function to be used in finding the clusters. A total
of seven different clustering criterion functions are provided that are selected by specifying the appropriate
integer value. The possible values for -crfun are:

1 Selects the I1 criterion function (�1 in [2]).

2 Selects the I2 criterion function (�2 in [2]). This is the default setting.

3 Selects the E1 criterion function (�1 in [2]).

4 Selects the G1 criterion function (�1 in [2]).

5 Selects the G1’ criterion function (� ′
1 in [2]).

6 Selects the H1 criterion function (�1 in [2]).

7 Selects the H2 criterion function (�2 in [2]).

The precise mathematical definition of these criterion functions is beyond the scope of this manual, and the
reader is referred to [2] for both a detailed description and evaluation of the various criterion functions.

The various criterion functions can sometimes lead to significantly different clustering solutions. In general,
the �2 and �2 criterion functions lead to very good clustering solutions, whereas the � 1 and � ′

1 criterion
functions leads to solutions that contain clusters that are of comparable size. However, the choice of the
right criterion function depends on the underlying application area, and the user should perform some
experimentation before selecting one appropriate for his/her needs.

-rowmodel=int
Selects the model to be used to scale the various columns of each row. The possible values are:

1 The columns of each row are not scaled and used as they are provided in the input file. This is the
default setting.

2 The columns of each row are scaled so that their values are between 0.5 and 1.0. In particular, the j th
column of the i th row of the matrix (r i, j) is scaled to be equal to

r ′
i, j = 0.5 + 0.5

ri, j

maxl(ri,l)
.

This scaling was motivated by a similar scaling of document vectors in information retrieval, and it is
referred to as the MAXTF scaling scheme.

3 The columns of each row are scaled to be equal to the square-root of their actual values. That is,
r ′
i, j = sign(ri, j)

√
ri, j , where sign(ri, j) is 1.0 or -1.0, depending on whether or not r i, j is positive or

negative. This scaling is referred to as the SQRT scaling scheme.

4 The columns of each row are scaled to be equal to the log of their actual values. That is, r ′
i, j =

sign(ri, j) log2 ri, j . This scaling is referred to as the LOG scaling scheme.

The last three scaling schemes are primarily used to smooth large values in certain columns (i.e., dimen-
sions) of each vector.

-colmodel=int
Selects the model to be used to scale the various columns globally across all the rows. The possible values
are:

9

1 The columns of the matrix are not globally scaled, and they are used as is. This is the default setting
used by vpcluster when the correlation coefficient-based similarity function is used.

2 The columns of the matrix are scaled according to the inverse-document-frequency (IDF) paradigm,
used in information retrieval. In particular, if rf i is the number of rows that the i th column belongs
to, then each entry of the i th column is scaled by − log2(rfi/n). The effect of this scaling is to de-
emphasize columns that appear in many rows. This is the default setting used by vpcluster when the
cosine similarity function is used.

The global scaling of the columns occurs after the per-row column scaling selected by the -rowmodel
parameter has been performed.

-prune=float
Selects the factor by which vpcluster will prune the columns before performing the clustering. This is a
number p between 0.0 and 1.0 and indicates the fraction of the overall similarity that the retained columns
must account for. For example, if p = 0.9, vpcluster first determines how much each column contributes
to the overall pairwise similarity between the rows, and then selects as many of the highest contributing
columns as required to account for 90% of the similarity. Reasonable values are within the range of
(0.8 · · ·1.0), and the default value used by vpcluster is 1.0, indicating that no columns will be pruned.
In general, this parameter leads to a substantial reduction of the number of columns (i.e., dimensions)
without seriously affecting the overall clustering quality.

-ntrials=int
Selects the number of different clustering solutions to be computed. If l is the supplied number, then
vpcluster computes a total of l clustering solutions (each one of them starting with a different set of seed
objects), and then selects the solution that has the best value of the criterion function that was used. The
default value for vpcluster is 10.

-niter=int
Selects the maximum number of refinement iterations to be performed, within each clustering step. Rea-
sonable values for this parameter are usually in the range of 5–20. The default value of vpcluster is 10.

-seed=int Selects the seed of the random number generator to be used in vpcluster.

Reporting and Analysis Parameters There are a total of 13 different optional parameters that control the
amount of information that vpcluster reports about the clusters as well as the analysis that it performs on the discovered
clusters. The name and function of these parameters is as follows:

-nooutput
Specifies that vpcluster should not write the clustering vector onto the disk.

-output=string
Specifies the name of the file onto which the clustering vector should be written. If this parameter is not
specified, then the clustering vector is written to the MatrixFile.clustering.NClusters file, where MatrixFile
is the name of the file that stores the matrix to be clustered, and NClusters is the number of desired clusters.

-clabelfile=string
Specifies the name of the file that stores the labels of the columns. The labels of the columns are used
for reporting purposes when the -showfeatures or the -labeltree options are specified. The format of this
file is described in Section 3.4.3. If this parameter is not specified, vpcluster looks to see if a file called
MatrixFile.clabel exists, and if it does, reads this file, instead. If no file is provided or the default file does
not exist, then the label of the j th column becomes “colj” (i.e., it is labeled by its corresponding column-id).

-rlabelfile=string
Specifies the name of the file that stores the labels of the rows. The labels of the rows are used for reporting
purposes when the -plotmatrix or the -plotclusters options are specified. The format of this file is described

10

in Section 3.4.2. If this parameter is not specified, vpcluster looks to see if a file called MatrixFile.rlabel
exists, and if it does, reads this file, instead. If no file is provided or the default file does not exist, then the
label of the j th row becomes “rowj” (i.e., it is labeled by its corresponding row-id).

-rclassfile=string
Specifies the name of the file that stores the class-labels of the rows (i.e., the objects to be clustered).
This is used by vpcluster to compute the quality of the clustering solution using external quality measures
and to output how the objects of different classes are distributed among clusters. The format of this file
is described in Section 3.4.4. If this parameter is not specified, vpcluster looks to see if a file called
MatrixFile.rlabel exists, and if it does, reads this file, instead. If no file is provided or the default file does
not exist, vpcluster assumes that the class labels of the objects are not known and does not perform any
cluster-quality analysis based on external measures.

-showfeatures
This parameter instructs vpcluster to analyze the discovered clusters and identify the set of features (i.e.,
columns of the matrix) that are most descriptive of each cluster, as well as the set of features that best
discriminate each cluster from the rest of the objects. The set of descriptive features is determined by
selecting the columns that contribute the most to the average similarity between the objects of each cluster.
On the other hand, the set of discriminating features is determined by selecting the columns that are more
prevalent in the cluster compared to the rest of the objects. In general, there will be a large overlap between
the descriptive and discriminating features. However, in some cases there may be certain differences,
especially when -colmodel=1.

-nfeatures=int
Specifies the number of descriptive and discriminating features to display for each cluster when the
-showfeatures or -labeltree options are used. The default value for this parameter is five (5).

-showtree=[int]
This parameter instructs vpcluster to build a hierarchical agglomerative tree on top of the clustering so-
lution that was obtained. This tree will have NClusters leaves, each one corresponding to one of the
discovered clusters, and provides a way of visualizing how the different clusters are related to each other.
It takes as a parameter the clustering criterion function that is optimized in the process of building the tree.
That is, the pairs of clusters that are selected and merged in each step are selected in such a fashion so that
the resulting solution will optimize the specified clustering criterion function. The values and meaning of
this parameter are identical to those used by -crfun. If no value is specified, then the tree is built using the
same criterion function as that used in finding the clusters.

Note that the tree built by -showtree is a subset of the tree built by -fulltree, as the later also performs a
hierarchical clustering within each cluster.

-labeltree
This parameter instructs vpcluster to label the nodes of the tree with the set of features that best describe
the corresponding clusters. The method used for determining these features is identical to that used in
-showfeatures. Note that the descriptive features for both the leaves (i.e., original clusters) as well as the
internal nodes of the tree are displayed. The number of features that is displayed is controlled by the
-nfeatures parameter.

-writetree=[string]
This parameter instructs vpcluster to write the hierarchical agglomerative tree into a file. The format of
this file is described in Section 3.5.2. The tree being written to the file can be either the tree built on top
of the clustering solution (i.e., the one displayed by -showtree), or the clustering-preserving tree produced
when -fulltree was specified. This parameter takes an optional argument which is the name of the output
file. If no name is specified, the tree is written to the MatrixFile.tree.NClusters file, or if -fulltree has also

11

been specified it is written to the MatrixFile.tree.Nrows file, where ‘Nrows’ is the number of rows in the
matrix.

-zscores This parameter instructs vpcluster to analyze each cluster and for each object to output the z-score of its
similarity to the other objects in its own cluster (internal z-score) as well as the objects of the different
clusters (external z-score). The various z-score values are stored in the clustering file whose format is
described in Section 3.5.1.

The internal z-score of an object j that is part of the lth cluster is given by (s I
j − µI

l)/σ I
l , where s I

j is the

average similarity between the j th object and the rest of the objects in its cluster, µ I
l is the average of the

various s I
j values over all the objects in the lth, and σ I

l is the standard deviation of these similarities.

The external z-score of an object j that is part of the lth cluster is given by (s E
j − µE

l)/σ E
l , where sE

j

is the average similarity between the j th object and the objects in the other clusters, µ E
l is the average

of the various s E
j values over all the objects in the lth cluster, and σ E

l is the standard deviation of these
similarities.

Objects that have large values of the internal z-score and small values of the external z-score will tend to
form the core of their clusters.

-dbglvl=int
Selects the level of debugging information to be printed. The value is obtained by adding the codes for the
various options. The possible values for this option are:

1 Prints information about the clustering process.

2 Prints information about the criterion optimization process.

4 Prints information about the tree-building phase.

The default value of this parameter is zero, indicating that no debugging information is printed.

-help This options instructs vpcluster to print a short description of the various command line parameters.

Cluster Visualization Parameters The vpcluster clustering program can also produce visualizations of the
computed clustering solutions. These visualizations are relatively simple plots of the original input matrix that show
how the different objects (i.e., rows) and features (i.e., columns) are clustered together. There are a total of six optional
parameters that control the type of visualization that vpcluster performs. The name and function of these parameters
is as follows:

-plotformat=string
Selects the format of the graphics files produced by vpcluster’s visualization options. The possible values
for this option are:

ps Outputs an encapsulated postscript2 file. This is the default option.

fig Outputs the visualization in a format that is compatible with the Unix XFig program. This file
can then be edited with XFig.

ai Outputs the visualization in a format that is compatible with the Adobe Illustrator program. This
file can then be edited with Illustrator or other programs that understand this format (e.g., Visio).

svg Outputs the visualization in the XML-based Scalable Vector Format that can be viewed by mod-
ern web-browsers (if the appropriate plug-in is installed).

2Sometimes, while trying to convert the postscript files generated by CLUTO into PDF format using Adobe’s distiller you may notice that the
text is not included in the PDF file. To correct this problem reconfigure your distiller not to include truetype fonts when the required text font is part
of the standard postscript fonts.

12

cgm Outputs the visualization in the WebCGM format.

pcl Outputs the visualization in HP’s PCL 5 format used by many laserjet or compatible printers.

gif Outputs the visualization in widely used GIF bitmap format.

-plotmatrix=string
Instructs vpcluster to produce a visualization that shows how the rows of the original matrix are clustered
together. This is done by showing an appropriate row- and possibly a column-permutation of the original
matrix, along with a color-intensity plot of the various values of the matrix. The actual visualization is
stored in the file whose name is supplied as an option to -plotmatrix.

In this matrix permutation, the rows of the matrix assigned to the same cluster are re-ordered to be at
consecutive rows, followed by a reordering of the clusters. The actual ordering of the rows and clusters
depends on whether the -fulltree parameter was specified. If it was not specified, then the clusters are
ordered according to their cluster-id number, and within each cluster the rows are numbered according
to the row-id number. However, if -fulltree was specified, both the rows and the clusters are re-ordered
according the hierarchical tree computed by -fulltree. In addition to that, the actual tree is drawn along the
side of the matrix.

If the input matrix is in dense format, then -plotmatrix displays the columns, in column-id order. If the -
clustercolumns option was specified, then the columns are re-ordered according to a hierarchical clustering
solution of the columns.

If the matrix is sparse, only a subset of the columns is displayed, that corresponds to the union of the
descriptive and discriminating features of each cluster computed by -showfeatures. The number of features
from each cluster that is included in that union can be controlled by the -nfeatures parameter. Again, the
columns can be displayed in either the column-id order or if the -clustercolumns option was specified, then
the columns are re-ordered according to a hierarchical clustering solution of the columns.

The labels printed along each row and column of the matrix can be specified by using the -rlabelfile and
-clabelfile, respectively.

The plot uses red to denote positive values and green to denote negative values. Bright red/green indicate
large positive/negative values, whereas colors close to white indicate values close to zero.

-plotclusters=string
Instructs vpcluster to produce a visualization that shows how the clusters are clustered together, by show-
ing a color-intensity plot of the various values in the various cluster centroid vectors. The actual visualiza-
tion is stored in the file whose name is supplied as an option to -plotclusters.

The produced visualization is similar to that produced by -plotmatrix, but now only NClusters rows are
shown, one for each cluster. The height of each row is proportional to the log of the corresponding cluster’s
size. The ordering of the clusters is determined by computing a hierarchical clustering (similar to that
produced via -showtree), and the ordering of the columns is controlled by the -clustercolumns parameter.

The column selection mechanism and color-scheme are identical to that used by -plotmatrix.

-clustercolumns
Instructs vpcluster to compute a hierarchical clustering of the columns and to reorder them when -plotmatrix
and -plotclusters is specified. This can be used to generate a visualization in which the features are clustered
together.

-noreorder
Instructs vpcluster not to try to produce a visually pleasing reordering of the various hierarchical trees that
is drawing. This option is turned off by default if the number of objects that are clustered is greater than
4000.

-zeroblack
Instructs vpcluster to use black color for denoting zero (or small values) in the matrix.

13

3.2 The vacluster Clustering Program

The vacluster program is used to cluster a collection of objects into a predetermined number of clusters k. The
vacluster program, treats each object as a vector in a high-dimensional space, and it computes the clustering solution
using the agglomerative paradigm whose goal is to locally optimize (minimize or maximize) a particular function
that measures the quality of the clustering solution. This vector-based representation and agglomerative-principle of
vacluster’s is the reason for the “va” prefix of vacluster’s name. Thus, the key difference between vacluster and
vpcluster is that the first uses an agglomerative approach to locally optimize the clustering criterion function, whereas
the later uses a partitional approach to either globally or locally optimize the clustering criterion function.

The vacluster program is invoked by providing two required parameters on the command line along with a number
of optional parameters–similar to the way vpcluster is invoked. Its overall calling sequence is as follows:

vacluster [optional parameters] MatrixFile NClusters

As was the case with vpcluster, the first required argument MatrixFile, is the name of the file that stores the
n objects that need to be clustered, and the second required argument NClusters, is the number of clusters that is
desired. Upon successful execution, vacluster displays statistics regarding the quality of the computed clustering
solution and the amount of time taken to perform the clustering. The actual clustering solution is stored in a file
named MatrixFile.clustering.NClusters, whereas the complete hierarchical agglomerative tress is stored in a file name
MatrixFile.tree.NRows (where “Nrows” is the number of the rows of the input matrix. The format of these files are
described in Section 3.5.1 and 3.5.2.

Because vacluster’s clustering algorithms are agglomerative in nature, they have a much higher computational and
memory complexity than the partitional algorithms used by vpcluster. For this reason, vacluster can only be used
to cluster datasets that have fewer than 3000–6000 objects, depending on the available memory and the particular
criterion function that was selected.

Figure 2 shows the output of vacluster for clustering a matrix into 10 clusters. From this figure we see that
vacluster’s output is similar to that produced by vpcluster (even though there are some slight differences),

�

�

�

�

prompt% vacluster k1b.mat 10

CLUTO 1.5 - vacluster, Copyright 2001-02, Regents of the University of Minnesota

Matrix Information --
Name: k1b.mat, #Rows: 2340, #Columns: 21839, #NonZeros: 349792

Options ---
CRfun=I2, RowModel=None, ColModel=IDF, Prune=1.00, SimFun=Cosine, #Clusters: 10

Solution --

--
10-way clustering solution: [I2=5.28e+02]
--
cid Size ISim ISdev ESim ESdev

0 472 +0.047 +0.013 +0.010 +0.003 |
1 142 +0.068 +0.021 +0.010 +0.002 |
2 624 +0.027 +0.008 +0.015 +0.005 |
3 77 +0.156 +0.041 +0.017 +0.005 |
4 111 +0.107 +0.055 +0.015 +0.003 |
5 399 +0.028 +0.010 +0.015 +0.004 |
6 67 +0.232 +0.077 +0.022 +0.008 |
7 155 +0.055 +0.022 +0.018 +0.005 |
8 157 +0.078 +0.038 +0.018 +0.007 |
9 136 +0.084 +0.038 +0.015 +0.004 |

--

Timing Information --
I/O: 0.930 sec
Clustering: 7.660 sec
Reporting: 0.290 sec

Figure 2: Output of vacluster for matrix k1b.mat and a 10-way clustering.

14

3.2.1 Optional Parameters

The behavior of vacluster can be controlled by specifying a number of different optional parameters. Because many
of vacluster’s parameters as similar to those used by vpcluster, our description will only focus on describing the
differences between them.

Clustering Algorithm Parameters There are a total of six different optional parameters that control how va-
cluster computes the clustering solution. The name and function of these parameters is as follows:

-denseinput
Identical to vpcluster’s corresponding parameter.

-sim=int Identical to vpcluster’s corresponding parameter.

-crfun=int
Identical to vpcluster’s corresponding parameter.

Note that the computational complexity of the vacluster program depends on the criterion function that
is selected. In particular, if n is the number of objects, the complexity for the � 1, �2, �1, �1, and � ′

1 is
O(n2 log n), whereas vacluster’s complexity for the �1 and �2 criterion functions is O(n4). The very
high complexity for�1 and�2 is due to the fact that these two criterion functions are defined globally over
the entire solution and they cannot be accurately evaluated based on the local combination of two clusters.

-rowmodel=int
Identical to vpcluster’s corresponding parameter.

-colmodel=int
Identical to vpcluster’s corresponding parameter.

-prune=float
Identical to vpcluster’s corresponding parameter.

Reporting and Analysis Parameters There are a total of 13 different optional parameters that control the
amount of information that vacluster reports about the clusters as well as the analysis that it performs on the discovered
clusters. The name and function of these parameters is as follows:

-nooutput
Identical to vpcluster’s corresponding parameter.

-clustfile=string
Identical to vpcluster’s -output parameter.

-treefile=string
Specifies the name of the file into which the agglomerative tree will be written. The format of this tree
is described in Section 3.5.2. If this parameter is not specified, then the tree is written to the Matrix-
File.tree.NRows file, where MatrixFile is the name of the file that stores the matrix to be clustered, and
NRows is the number of rows in the matrix file.

-clabelfile=string
Identical to vpcluster’s corresponding parameter.

-rlabelfile=string
Identical to vpcluster’s corresponding parameter.

-rclassfile=string
Identical to vpcluster’s corresponding parameter.

-showfeatures
Identical to vpcluster’s corresponding parameter.

15

-nfeatures=int
Identical to vpcluster’s corresponding parameter.

-showtree=[int]
Identical to vpcluster’s corresponding parameter.

-labeltree
Identical to vpcluster’s corresponding parameter.

-zscores Identical to vpcluster’s corresponding parameter.

-dbglvl=int
Selects the level of debugging information to be printed. The value is obtained by adding the codes for the
various options. The possible values for this option are:

1 Prints progress information about the object-to-object similarity computational phase.

2 Prints information about the agglomeration progress.

The default value of this parameter is zero, indicating that no debugging information is printed.

-help Identical to vpcluster’s corresponding parameter.

Cluster Visualization Parameters The vacluster clustering program can also produce visualizations of the
computed clustering solutions, similar to those produced by vpcluster. There are a total of seven optional parameters
that control the type of visualization that vacluster performs. The name and function of these parameters is as follows:

-plotformat=string
Identical to vpcluster’s corresponding parameter.

-plottree=string
This parameter instructs vacluster to produce a graphic representation of the entire hierarchical tree pro-
duced by vacluster. The leaves of this tree are labeled based on the supplied row labels (i.e., via the
-rlabelfile parameter).

-plotmatrix=string
This parameter is identical to vpcluster’s corresponding parameter with the only difference being that
both the rows of the matrix as well as the clusters are automatically re-ordered according to the computed
hierarchical agglomerative tree.

-plotclusters=string
Identical to vpcluster’s corresponding parameter.

-clustercolumns
Identical to vpcluster’s corresponding parameter.

-noreorder
Identical to vpcluster’s corresponding parameter.

-zeroblack
Identical to vpcluster’s corresponding parameter.

3.3 Understanding the Information Produced by vpcluster and vacluster

From the description of vpcluster’s and vacluster’s parameters we can see that they can output a wide-range of
information and statistics about the clusters that they find. In the rest of this section we describe the format and
meaning of these statistics. Most of our discussion will focus on vpcluster’s output, since it is similar to that produced
by vacluster.

16

3.3.1 Internal Cluster Quality Statistics

The simpler statistics reported by vpcluster & vacluster have to do with the quality of each cluster as measured by
the criterion function that it uses and the similarity between the objects in each cluster. In particular, as the example in
Figure 1 shows, the “Solution” section of vpcluster’s output displays information about the clustering solution.

The first statistic that it reports is the overall value of the criterion function for the computed clustering solution.
In our example, this is reported as “I2=2.28e+03”, which is the value of the � 2 criterion function of the resulting
solution. If a different criterion function is specified (by using the -crfun option), then the overall cluster quality
information will be displayed with respect to that criterion function.

After that, vpcluster then displays a table in which each row contains various statistics for each one of the clusters.
The meaning of the columns of this table is as follows. The column labeled “cid” corresponds to the cluster number
(or cluster id). The column labeled “Size” displays the number of objects that belongs to each cluster. The column
labeled “ISim” displays the average similarity between the objects of each cluster (i.e., internal similarities). The
column labeled “ISdev” displays the standard deviation of these average internal similarities (i.e., internal standard
deviations). The column labeled “ESim” displays the average similarity of the objects of each cluster and the rest
of the objects (i.e., external similarities). Finally, the column labeled “ESdev” display the standard deviation of the
external similarities (i.e., external standard deviations).

Note that the clusters discovered by vpcluster are ordered in increasing (ISIM-ESIM) order. In other words,
clusters that are tight and far away from the rest of the objects have smaller cid values.

3.3.2 External Cluster Quality Statistics

In addition to the internal cluster quality measures, vpcluster & vacluster can also take into account information about
the classes that the various objects belong to (via the -rclassfile option) and compute various statistics that determine
the quality of the clusters using that information. These statistics are usually referred to as external quality measures
as the quality is determined by looking at information that was not used while finding the clustering solution.

Figure 3 shows the output of vpcluster when such a class file is provided for our example sports.mat dataset.
This dataset contains various documents that talk about seven different sports (baseball, basketball, football, hockey,
boxing, bicycling, and golfing), and each document (i.e., object to be clustered) belongs to one of these topics. Once
vpcluster finds the 10-way clustering solution, it then uses this class information to analyze both the quality of the
overall clustering solution as well as the quality of each cluster. Also note that vpcluster was invoked with the -refine
option to performs a global refinement on the clustering solution.

Looking at Figure 3 we can see that vpcluster, in addition to the overall value of the criterion function, now
prints the entropy and the purity of the clustering solution. For the exact formula of how the entropy and purity of
the clustering solution is computed, please refer to [2]. Small entropy values and large purity values indicate good
clustering solutions.

In addition to these measures, the cluster information table now contains two additional sets of information. The
first set is the entropy and purity of each cluster and is displayed in the columns labeled “Entpy” and “Purty”, re-
spectively. The second set is information about how the different classes are distributed in each one of the clusters.
This information is displayed in the last seven columns of this table, whose column labels are derived from the first
four characters if the class names. That is “base” corresponds to baseball, “bask” corresponds to basketball, and so
on. Each column shows the number of documents of this class that are in each cluster. For example, the first cluster
contains one document about baseball, one document about basketball, and 786 documents about hockey. Looking at
this class-distribution table, we can easily determine the quality of the different clusters.

Finally, comparing this clustering solution with the one displayed in Figure 1 we can see that by performing a final
k-way refinement, the value of the criterion function improves. In this case, � 2’s criterion function is now 2.30e + 03
which is greater than the earlier value of 2.28e + 03. Note that the goal of the clustering algorithm with respect to the
�2 criterion function is to maximize its value.

17

�

�

�

�

prompt% vpcluster -refine -rclassfile=sports.rclass sports.mat 10

CLUTO 1.5 - vpcluster, Copyright 2001-02, Regents of the University of Minnesota

Matrix Information --
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options ---
CRfun=I2, RowModel=None, ColModel=IDF, Prune=1.00, NTrials=10, NIter=10
Direct=NO, RB=YES, Refine=YES, #Clusters: 10

Solution --

10-way clustering solution: [I2=2.30e+03], Entropy: 0.169, Purity: 0.878

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 788 0.103 0.036 0.018 0.006 0.010 0.997 | 1 1 0 786 0 0 0
1 682 0.109 0.035 0.021 0.006 0.011 0.997 | 1 0 680 0 0 0 1
2 610 0.110 0.041 0.022 0.007 0.018 0.995 | 607 1 2 0 0 0 0
3 818 0.090 0.034 0.020 0.007 0.014 0.996 | 0 815 2 1 0 0 0
4 795 0.102 0.034 0.023 0.007 0.016 0.995 | 791 0 4 0 0 0 0
5 863 0.103 0.038 0.025 0.009 0.000 1.000 | 863 0 0 0 0 0 0
6 791 0.045 0.018 0.015 0.006 0.821 0.411 | 76 33 92 5 120 140 325
7 1133 0.050 0.016 0.021 0.007 0.030 0.991 | 7 2 1123 1 0 0 0
8 988 0.044 0.014 0.019 0.005 0.486 0.533 | 54 527 390 8 0 1 8
9 1112 0.036 0.013 0.021 0.008 0.210 0.910 | 1012 31 53 8 2 4 2

Timing Information --
I/O: 1.830 sec
Clustering: 14.540 sec
Reporting: 0.220 sec

Figure 3: Output of vpcluster for matrix sports.mat and a 10-way clustering that uses external quality measures.

3.3.3 Looking at each Cluster’s Features

By specifying the -showfeatures option, vpcluster & vacluster will analyze each one of the clusters and determine
the set of features (i.e., columns of the matrix) that best describe and discriminate each one of the clusters. Figure 4
shows the output produced by vpcluster when -showfeatures was specified and when a file was provided with the
labels of each one of the columns (via the -clabelfile option).

Looking at this figure, we can see that the set of descriptive and discriminating features are displayed right after the
table that provides statistics for the various clusters. For each cluster, vpcluster displays three lines of information.
The first line contains some basic statistics for each cluster (e.g., cid, Size, ISim, ESim), whose meaning is identical
to those displayed in the earlier table. The second line contains the five most descriptive features, whereas the third
line contains the five most discriminating features. The features in these lists are sorted in decreasing descriptive or
discriminating order. The reason that five features are printed is because this is the default value for the -nfeatures
parameter; fewer or more features can be displayed by setting this parameter appropriately.

Right next to each feature, vpcluster displays a number that in the case of the descriptive features is the percentage
of the within cluster similarity that this particular feature can explain. For example, for the 0th cluster, the feature
“goal” explains 9.5% of the average similarity between the objects of the 0th cluster. A similar quantity is displayed
for each one of the discriminating features, and is the percentage of the dissimilarity between the cluster and the rest
of the objects which this feature can explain. In general there is a large overlap between descriptive and discriminating
features, with the only difference being that the percentages associated with the discriminating features are typically
smaller than the corresponding percentages of the descriptive features. This is because some of the descriptive features
of a cluster may also be present in a small fraction of the objects that do not belong to this cluster.

If no labels for the different columns are provided, vpcluster outputs the column number of each feature instead
of its label. This is illustrated in Figure 5 for the same problem in which -clabelfile was not specified. Note that the
columns are numbered from one.

3.3.4 Looking at the Hierarchical Agglomerative Tree

The vpcluster & vacluster programs can also produce a hierarchical agglomerative tree in which the discovered
clusters form the leaf nodes of this tree. This is done by specifying the -showtree parameter. In constructing this tree,
the algorithms repeatedly merge a particular pair of clusters, and the pair of clusters to be merged is selected so that

18

�

�

�

�

prompt% vpcluster -refine -rclassfile=sports.rclass -clabelfile=sports.clabel -showfeatures sports.mat 10

CLUTO 1.5 - vpcluster, Copyright 2001-02, Regents of the University of Minnesota

Matrix Information --
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options ---
CRfun=I2, RowModel=None, ColModel=IDF, Prune=1.00, NTrials=10, NIter=10
Direct=NO, RB=YES, Refine=YES, #Clusters: 10

Solution --

10-way clustering solution: [I2=2.30e+03], Entropy: 0.169, Purity: 0.878

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 788 0.103 0.036 0.018 0.006 0.010 0.997 | 1 1 0 786 0 0 0
1 682 0.109 0.035 0.021 0.006 0.011 0.997 | 1 0 680 0 0 0 1
2 610 0.110 0.041 0.022 0.007 0.018 0.995 | 607 1 2 0 0 0 0
3 818 0.090 0.034 0.020 0.007 0.014 0.996 | 0 815 2 1 0 0 0
4 795 0.102 0.034 0.023 0.007 0.016 0.995 | 791 0 4 0 0 0 0
5 863 0.103 0.038 0.025 0.009 0.000 1.000 | 863 0 0 0 0 0 0
6 791 0.045 0.018 0.015 0.006 0.821 0.411 | 76 33 92 5 120 140 325
7 1133 0.050 0.016 0.021 0.007 0.030 0.991 | 7 2 1123 1 0 0 0
8 988 0.044 0.014 0.019 0.005 0.486 0.533 | 54 527 390 8 0 1 8
9 1112 0.036 0.013 0.021 0.008 0.210 0.910 | 1012 31 53 8 2 4 2

--
10-way clustering solution - Descriptive & Discriminating Features...
--
Cluster 0, Size: 788, ISim: 0.103, ESim: 0.018

Descriptive: shark 22.5%, goal 9.5%, nhl 4.3%, period 3.5%, penguin 1.6%
Discriminating: shark 17.2%, goal 6.0%, nhl 3.3%, period 2.3%, penguin 1.2%

Cluster 1, Size: 682, ISim: 0.109, ESim: 0.021
Descriptive: yard 37.6%, pass 8.1%, touchdown 6.9%, td 2.8%, kick 2.1%

Discriminating: yard 28.6%, pass 5.5%, touchdown 5.2%, td 2.2%, kick 1.5%

Cluster 2, Size: 610, ISim: 0.110, ESim: 0.022
Descriptive: canseco 9.1%, henderson 7.6%, russa 6.4%, la 3.9%, mcgwire 3.3%

Discriminating: canseco 7.4%, henderson 5.9%, russa 5.4%, mcgwire 2.7%, la 2.7%

Cluster 3, Size: 818, ISim: 0.090, ESim: 0.020
Descriptive: warrior 15.4%, laker 4.3%, hardawai 2.6%, mullin 2.4%, nba 2.2%

Discriminating: warrior 12.7%, laker 3.6%, hardawai 2.2%, mullin 2.0%, nba 1.7%

Cluster 4, Size: 795, ISim: 0.102, ESim: 0.023
Descriptive: giant 20.6%, mitchell 5.0%, craig 3.4%, mcgee 2.4%, clark 2.1%

Discriminating: giant 15.1%, mitchell 4.3%, craig 2.4%, mcgee 2.1%, clark 1.6%

Cluster 5, Size: 863, ISim: 0.103, ESim: 0.025
Descriptive: in 9.5%, hit 8.3%, homer 4.0%, run 4.0%, sox 2.1%

Discriminating: in 6.3%, hit 5.0%, homer 2.5%, run 1.7%, sox 1.4%

Cluster 6, Size: 791, ISim: 0.045, ESim: 0.015
Descriptive: box 31.6%, golf 3.9%, hole 3.0%, round 2.4%, par 2.1%

Discriminating: box 23.5%, golf 3.4%, hole 2.5%, par 1.8%, round 1.4%

Cluster 7, Size: 1133, ISim: 0.050, ESim: 0.021
Descriptive: seifert 3.5%, montana 3.2%, raider 2.6%, nfl 2.6%, bowl 2.4%

Discriminating: seifert 3.8%, montana 3.4%, raider 2.6%, nfl 2.6%, super 2.2%

Cluster 8, Size: 988, ISim: 0.044, ESim: 0.019
Descriptive: santa 2.4%, confer 2.3%, cal 2.3%, school 1.9%, st 1.7%

Discriminating: santa 2.2%, cal 2.0%, confer 1.8%, school 1.6%, stanford 1.4%

Cluster 9, Size: 1112, ISim: 0.036, ESim: 0.021
Descriptive: basebal 3.3%, million 2.3%, pitcher 2.0%, brave 1.9%, leagu 1.6%

Discriminating: basebal 3.9%, million 2.3%, brave 1.8%, pitcher 1.6%, outfield 1.2%
--

Timing Information --
I/O: 1.530 sec
Clustering: 14.520 sec
Reporting: 0.700 sec

Figure 4: Output of vpcluster for matrix sports.mat and a 10-way clustering that shows the descriptive and discriminating features
of each cluster.

19

�

�

�

�

prompt% vpcluster -refine -rclassfile=sports.rclass -showfeatures sports.mat 10

CLUTO 1.5 - vpcluster, Copyright 2001-02, Regents of the University of Minnesota

Matrix Information --
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options ---
CRfun=I2, RowModel=None, ColModel=IDF, Prune=1.00, NTrials=10, NIter=10
Direct=NO, RB=YES, Refine=YES, #Clusters: 10

Solution --

10-way clustering solution: [I2=2.30e+03], Entropy: 0.169, Purity: 0.878

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 788 0.103 0.036 0.018 0.006 0.010 0.997 | 1 1 0 786 0 0 0
1 682 0.109 0.035 0.021 0.006 0.011 0.997 | 1 0 680 0 0 0 1
2 610 0.110 0.041 0.022 0.007 0.018 0.995 | 607 1 2 0 0 0 0
3 818 0.090 0.034 0.020 0.007 0.014 0.996 | 0 815 2 1 0 0 0
4 795 0.102 0.034 0.023 0.007 0.016 0.995 | 791 0 4 0 0 0 0
5 863 0.103 0.038 0.025 0.009 0.000 1.000 | 863 0 0 0 0 0 0
6 791 0.045 0.018 0.015 0.006 0.821 0.411 | 76 33 92 5 120 140 325
7 1133 0.050 0.016 0.021 0.007 0.030 0.991 | 7 2 1123 1 0 0 0
8 988 0.044 0.014 0.019 0.005 0.486 0.533 | 54 527 390 8 0 1 8
9 1112 0.036 0.013 0.021 0.008 0.210 0.910 | 1012 31 53 8 2 4 2

--
10-way clustering solution - Descriptive & Discriminating Features...
--
Cluster 0, Size: 788, ISim: 0.103, ESim: 0.018

Descriptive: col04688 22.5%, col00134 9.5%, col04423 4.3%, col02099 3.5%, col04483 1.6%
Discriminating: col04688 17.2%, col00134 6.0%, col04423 3.3%, col02099 2.3%, col04483 1.2%

Cluster 1, Size: 682, ISim: 0.109, ESim: 0.021
Descriptive: col00086 37.6%, col00091 8.1%, col00084 6.9%, col01091 2.8%, col00132 2.1%

Discriminating: col00086 28.6%, col00091 5.5%, col00084 5.2%, col01091 2.2%, col00132 1.5%

Cluster 2, Size: 610, ISim: 0.110, ESim: 0.022
Descriptive: col18174 9.1%, col11733 7.6%, col18183 6.4%, col01570 3.9%, col26743 3.3%

Discriminating: col18174 7.4%, col11733 5.9%, col18183 5.4%, col26743 2.7%, col01570 2.7%

Cluster 3, Size: 818, ISim: 0.090, ESim: 0.020
Descriptive: col02843 15.4%, col10737 4.3%, col06054 2.6%, col03655 2.4%, col03412 2.2%

Discriminating: col02843 12.7%, col10737 3.6%, col06054 2.2%, col03655 2.0%, col03412 1.7%

Cluster 4, Size: 795, ISim: 0.102, ESim: 0.023
Descriptive: col01536 20.6%, col04716 5.0%, col04640 3.4%, col03838 2.4%, col01045 2.1%

Discriminating: col01536 15.1%, col04716 4.3%, col04640 2.4%, col03838 2.1%, col01045 1.6%

Cluster 5, Size: 863, ISim: 0.103, ESim: 0.025
Descriptive: col04265 9.5%, col00281 8.3%, col13856 4.0%, col00340 4.0%, col01362 2.1%

Discriminating: col04265 6.3%, col00281 5.0%, col13856 2.5%, col00340 1.7%, col01362 1.4%

Cluster 6, Size: 791, ISim: 0.045, ESim: 0.015
Descriptive: col00351 31.6%, col01953 3.9%, col00396 3.0%, col00532 2.4%, col16968 2.1%

Discriminating: col00351 23.5%, col01953 3.4%, col00396 2.5%, col16968 1.8%, col00532 1.4%

Cluster 7, Size: 1133, ISim: 0.050, ESim: 0.021
Descriptive: col02393 3.5%, col10761 3.2%, col00031 2.6%, col00026 2.6%, col00024 2.4%

Discriminating: col02393 3.8%, col10761 3.4%, col00031 2.6%, col00026 2.6%, col00147 2.2%

Cluster 8, Size: 988, ISim: 0.044, ESim: 0.019
Descriptive: col01186 2.4%, col00910 2.3%, col00899 2.3%, col00616 1.9%, col00428 1.7%

Discriminating: col01186 2.2%, col00899 2.0%, col00910 1.8%, col00616 1.6%, col00611 1.4%

Cluster 9, Size: 1112, ISim: 0.036, ESim: 0.021
Descriptive: col01391 3.3%, col00169 2.3%, col01364 2.0%, col00606 1.9%, col01380 1.6%

Discriminating: col01391 3.9%, col00169 2.3%, col00606 1.8%, col01364 1.6%, col10638 1.2%
--

Timing Information --
I/O: 1.540 sec
Clustering: 14.500 sec
Reporting: 0.700 sec

Figure 5: Output of vpcluster for matrix sports.mat and a 10-way clustering that shows the descriptive and discriminating features
of each cluster.

20

the resulting clustering solution at that point optimizes the specified clustering criterion function.
The format of the produced tree for the sports.mat data set is shown in Figure 6. This result was obtained by

specifying both -showtree as well as the -rclassfile parameter that provides the class labels for each object in the
matrix.

�

�

�

�

prompt% vpcluster -refine -rclassfile=sports.rclass -showtree sports.mat 10

CLUTO 1.5 - vpcluster, Copyright 2001-02, Regents of the University of Minnesota

Matrix Information --
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options ---
CRfun=I2, RowModel=None, ColModel=IDF, Prune=1.00, NTrials=10, NIter=10
Direct=NO, RB=YES, Refine=YES, #Clusters: 10

Solution --

10-way clustering solution: [I2=2.30e+03], Entropy: 0.169, Purity: 0.878

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 788 0.103 0.036 0.018 0.006 0.010 0.997 | 1 1 0 786 0 0 0
1 682 0.109 0.035 0.021 0.006 0.011 0.997 | 1 0 680 0 0 0 1
2 610 0.110 0.041 0.022 0.007 0.018 0.995 | 607 1 2 0 0 0 0
3 818 0.090 0.034 0.020 0.007 0.014 0.996 | 0 815 2 1 0 0 0
4 795 0.102 0.034 0.023 0.007 0.016 0.995 | 791 0 4 0 0 0 0
5 863 0.103 0.038 0.025 0.009 0.000 1.000 | 863 0 0 0 0 0 0
6 791 0.045 0.018 0.015 0.006 0.821 0.411 | 76 33 92 5 120 140 325
7 1133 0.050 0.016 0.021 0.007 0.030 0.991 | 7 2 1123 1 0 0 0
8 988 0.044 0.014 0.019 0.005 0.486 0.533 | 54 527 390 8 0 1 8
9 1112 0.036 0.013 0.021 0.008 0.210 0.910 | 1012 31 53 8 2 4 2

--
Hierarchical Tree that optimizes the I2 criterion function...
--

base bask foot hock boxi bicy golf

18
|-------14
| |-------10
| | |---5 863 0 0 0 0 0 0
| | |---9 1012 31 53 8 2 4 2
| |-13
| |---------2 607 1 2 0 0 0 0
| |---------4 791 0 4 0 0 0 0
|-17

|---15
| |-------11
| | |-----6 76 33 92 5 120 140 325
| | |-----8 54 527 390 8 0 1 8
| |-----12
| |-------1 1 0 680 0 0 0 1
| |-------7 7 2 1123 1 0 0 0
|-16
|---------------0 1 1 0 786 0 0 0
|---------------3 0 815 2 1 0 0 0

--

Timing Information
--

I/O: 1.790 sec
Clustering: 14.760 sec
Reporting: 0.440 sec

Figure 6: Output of vpcluster for matrix sports.mat that also shows the hierarchical tree built on top of the discovered clusters.

Looking at this figure we can see that vpcluster displays the tree in a rotated fashion, i.e., the root of the tree is
at the first column, and the tree grows from left to right. The leaves of this tree are numbered from 0 to NClusters-1,
and each one represents the corresponding cluster discovered by vpcluster. The internal nodes are numbered from
NClusters to 2*NClusters-2, with the root being the highest numbered node. The numbering of the internal nodes is
done so that nodes that were obtained by merging a pair of clusters at an earlier stage of the agglomerative process have
lower numbers compared to nodes obtained at later stages. For example, in Figure 6 the node numbered 10 represents
the first pair of clusters (5 and 9) that were merged, the node numbered 11 represents the second pair of clusters (6 and
8) that were merged, and so on.

In addition to the tree itself, vpcluster also prints information about how the objects of the various classes are
distributed in each cluster. This information is identical to that presented in the earlier table, and are replicated here to
provide a better understanding on the content of the clusters that are merged together. Thus, looking at the tree we can

21

see that the subtree rooted at node 14, contains clusters that primarily contain documents about baseball, whereas the
subtree rooted at 12 primarily contain clusters whose documents are about football. If the -rclassfile was not specified,
this information is omitted.

�

�

�

�

prompt% vpcluster -refine -rclassfile=sports.rclass -clabelfile=sports.clabel -showtree -labeltree sports.mat 10

CLUTO 1.5 - vpcluster, Copyright 2001-02, Regents of the University of Minnesota

Matrix Information --
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options ---
CRfun=I2, RowModel=None, ColModel=IDF, Prune=1.00, NTrials=10, NIter=10
Direct=NO, RB=YES, Refine=YES, #Clusters: 10

Solution --

10-way clustering solution: [I2=2.30e+03], Entropy: 0.169, Purity: 0.878

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 788 0.103 0.036 0.018 0.006 0.010 0.997 | 1 1 0 786 0 0 0
1 682 0.109 0.035 0.021 0.006 0.011 0.997 | 1 0 680 0 0 0 1
2 610 0.110 0.041 0.022 0.007 0.018 0.995 | 607 1 2 0 0 0 0
3 818 0.090 0.034 0.020 0.007 0.014 0.996 | 0 815 2 1 0 0 0
4 795 0.102 0.034 0.023 0.007 0.016 0.995 | 791 0 4 0 0 0 0
5 863 0.103 0.038 0.025 0.009 0.000 1.000 | 863 0 0 0 0 0 0
6 791 0.045 0.018 0.015 0.006 0.821 0.411 | 76 33 92 5 120 140 325
7 1133 0.050 0.016 0.021 0.007 0.030 0.991 | 7 2 1123 1 0 0 0
8 988 0.044 0.014 0.019 0.005 0.486 0.533 | 54 527 390 8 0 1 8
9 1112 0.036 0.013 0.021 0.008 0.210 0.910 | 1012 31 53 8 2 4 2

--
Hierarchical Tree that optimizes the I2 criterion function...
--

Size ISim XSim
18 [8580, 0.026, 0.000] [giant 1.7%, yard 1.6%, hit 1.3%, box 1.2%, in 1.2%]
|-------14 [3380, 0.045, 0.017] [in 4.2%, giant 3.7%, hit 3.4%, pitch 2.3%, homer 2.0%]
| |-------10 [1975, 0.049, 0.034] [in 4.9%, hit 4.7%, homer 2.2%, run 2.1%, sox 2.0%]
| | |---5 [863, 0.103, 0.035] [in 9.5%, hit 8.3%, homer 4.0%, run 4.0%, sox 2.1%]
| | |---9 [1112, 0.036, 0.035] [basebal 3.3%, million 2.3%, pitcher 2.0%, brave 1.9%, leagu 1.6%]
| |-13 [1405, 0.071, 0.034] [giant 9.7%, canseco 2.7%, pitch 2.4%, henderson 2.3%, mitchell 2.3%]
| |---------2 [610, 0.110, 0.036] [canseco 9.1%, henderson 7.6%, russa 6.4%, la 3.9%, mcgwire 3.3%]
| |---------4 [795, 0.102, 0.036] [giant 20.6%, mitchell 5.0%, craig 3.4%, mcgee 2.4%, clark 2.1%]
|-17 [5200, 0.029, 0.017] [yard 3.9%, box 2.5%, shark 1.9%, goal 1.6%, warrior 1.4%]

|---15 [3594, 0.031, 0.019] [yard 7.5%, box 4.1%, pass 2.1%, touchdown 1.4%, bowl 1.1%]
| |-------11 [1779, 0.031, 0.021] [box 10.0%, tournam 1.9%, santa 1.4%, confer 1.2%, golf 1.2%]
| | |-----6 [791, 0.045, 0.017] [box 31.6%, golf 3.9%, hole 3.0%, round 2.4%, par 2.1%]
| | |-----8 [988, 0.044, 0.017] [santa 2.4%, confer 2.3%, cal 2.3%, school 1.9%, st 1.7%]
| |-----12 [1815, 0.052, 0.021] [yard 15.1%, pass 4.0%, touchdown 3.0%, quarterback 1.7%, bowl 1.5%]
| |-------1 [682, 0.109, 0.036] [yard 37.6%, pass 8.1%, touchdown 6.9%, td 2.8%, kick 2.1%]
| |-------7 [1133, 0.050, 0.036] [seifert 3.5%, montana 3.2%, raider 2.6%, nfl 2.6%, bowl 2.4%]
|-16 [1606, 0.060, 0.019] [shark 9.3%, warrior 6.0%, goal 4.5%, period 2.0%, score 1.9%]
|---------------0 [788, 0.103, 0.024] [shark 22.5%, goal 9.5%, nhl 4.3%, period 3.5%, penguin 1.6%]
|---------------3 [818, 0.090, 0.024] [warrior 15.4%, laker 4.3%, hardawai 2.6%, mullin 2.4%, nba 2.2%]

--

Timing Information --
I/O: 1.830 sec
Clustering: 14.310 sec
Reporting: 0.900 sec

Figure 7: Output of vpcluster for matrix sports.mat that shows the hierarchical tree built on top of the discovered clusters as well
as the descriptive features of each cluster.

Besides showing the agglomerative tree, vpcluster can also analyze each of the clusters produced during this
agglomerative process, displaying statistics regarding their quality and a set of descriptive features. This is done by
specifying the -labeltree option. The output of vpcluster in this case is shown in Figure 7.

Looking at this figure we can see that in addition to the tree itself, vpcluster prints a number of statistics for each
cluster. In particular, it displays the cluster’s “Size” which is the number of objects in that cluster, the cluster’s “ISim”
which is the average similarity between the objects of each cluster, and the cluster’s “XSim” which is the average
similarity between the objects of each pair of clusters that are the children of the same node of the tree. For example,
the cluster corresponding to node 13, contains 1405 documents, whose average similarity is 0.071, and the average
similarity between the documents in this cluster and the documents in the cluster corresponding to node 10 is 0.034.

Next to these statistics, it prints the set of features that best describe each cluster. The method used to derive these
features and the information that is displayed are identical to those used by the -showfeatures option.

22

3.3.5 Looking at the Visualizations

As discussed in Sections 3.1 and 3.2 both vpcluster and vacluster can produce a number of graphical visualizations
showing the relation between the different objects, features, and clusters. Our goal in this section is to provide some
illustrative examples of what the various -plotXXX commands can do.

Figure 8 shows the type of visualizations that can be produced when -plotmatrix is specified for a sparse matrix. In
particular, Figure 8(a) shows the visualization produced by executing the following command:

vpcluster -plotmatrix=fig1.ps tr23.mat 10.

As we can see from that plot, vpcluster shows the rows of the input matrix re-ordered in such a way so that the
rows assigned to each one of the ten clusters are numbered consecutively. The columns of the displayed matrix are
selected to be the union of the nfeatures most descriptive and discriminating features of each cluster, and are ordered
according their column-id. Also, at the top of each column, the label of each feature is shown (if you enlarge the
postscript or PDF file of the manual you will be able to see the names of the words that these columns correspond
to). Each non-zero positive element of the matrix is displayed by a different shade of red. Entries that are bright
red correspond to large values and the brightness of the entries decreases as their value decrease. The values that are
plotted correspond to the values obtained after applying the particular -rowmodel and -colmodel, and normalizing each
row to be of unit length. Figure 8(b) shows a visualization of the same clustering solution in which the rows and the
columns are also re-ordered according to a hierarchical clustering solution. In particular, this plot was obtained by
executing the following command:

vpcluster -fulltree -clustercolumns -plotmatrix=fig2.ps tr23.mat 10.

As we can see from this plot, vpcluster now re-orders the rows and the columns so that rows/columns that are part of
the same subtree are closer to each other in the final output. Also, along the rows and the columns of the displayed
matrix, vpcluster draws the actual hierarchical tree that was computed. Finally, Figure 8(c) shows a visualization of
the 10-way clustering solution obtained by vacluster. In particular, this plot was obtained by executing the following
command:

vacluster -clustercolumns -plotmatrix=fig3.ps tr23.mat 10.

Figure 9 shows the type of visualizations that can be produced when -plotmatrix is specified for a dense matrix, for
a particular micro-array gene expression data set. The three different visualizations were produced by executing the
following commands, respectively:

vpcluster -denseinput -sim=2 -plotmatrix=fig4.ps genes1.mat 5
vpcluster -denseinput -sim=2 -fulltree -clustercolumns -plotmatrix=fig5.ps genes1.mat 5
vacluster -denseinput -sim=2 -clustercolumns -plotmatrix=fig6.ps genes1.mat 5

These plots are similar in nature to those produced for sparse matrices and the only difference is that they show all
the columns (and not just the union of the descriptive and discriminating features). Also note that each row now has a
label (corresponding to the name of the particular gene) that is read by default from the file name “genes.mat.rlabel”.
Finally, note that the plots contain both red and green boxes, representing positive and negative values, respectively.
The values used to derive the colors correspond to those used internally by CLUTO. In this particular example, since
the clusters were obtained using the correlation coefficient, the values correspond to the mean-subtracted original row
vectors, normalized to be of unit length.

A similar dense-matrix visualization is shown in Figure 10 for another micro-array gene expression data set. The
different visualizations were produced by executing the following commands:

vacluster -denseinput -plotmatrix=fig7.ps genes2.mat 1
vacluster -denseinput -zeroblack -plotmatrix=fig8.ps genes2.mat 1

Figure 11 shows the type of visualization that can be produced when -plotcluster is specified for a sparse matrix.
This plot was obtained by executing the following command:

vpcluster -clustercolumns -plotclusters=fig9.ps tr23.mat 10. vpcluster -clustercolumns -
plotclusters=fig10.ps -nfeatures=10 -clabelfile=sports.cname sports.mat 20.

23

row00001

row00002

row00003

row00004

row00005

row00006

row00007

row00008

row00009

row00010

row00011

row00012

row00013

row00014

row00015

row00016

row00017

row00018

row00019

row00020

row00021

row00022

row00023

row00024

row00025

row00026

row00027

row00028

row00029

row00030

row00031

row00032

row00033

row00034

row00035

row00036

row00037

row00038

row00039

row00040

row00041

row00042

row00043

row00044

row00045

row00046

row00047

row00048

row00049

row00050

row00051

row00052

row00053

row00054

row00055

row00056

row00057

row00058

row00059

row00060

row00061

row00062

row00063

row00064

row00065

row00066

row00067

row00068

row00069

row00070

row00071

row00072

row00073

row00074

row00075

row00076

row00077

row00078

row00079

row00080

row00081

row00082

row00083

row00084

row00085

row00086

row00087

row00088

row00089

row00090

row00091

row00092

row00093

row00094

row00095

row00096

row00097

row00098

row00099

row00100

row00101

row00102

row00103

row00104

row00105

row00106

row00107

row00108

row00109

row00110

row00111

row00112

row00113

row00114

row00115

row00116

row00117

row00118

row00119

row00120

row00121

row00122

row00123

row00124

row00125

row00126

row00127

row00128

row00129

row00130

row00131

row00132

row00133

row00134

row00135

row00136

row00137

row00138

row00139

row00140

row00141

row00142

row00143

row00144

row00145

row00146

row00147

row00148

row00149

row00150

row00151

row00152

row00153

row00154

row00155

row00156

row00157

row00158

row00159

row00160

row00161

row00162

row00163

row00164

row00165

row00166

row00167

row00168

row00169

row00170

row00171

row00172

row00173

row00174

row00175

row00176

row00177

row00178

row00179

row00180

row00181

row00182

row00183

row00184

row00185

row00186

row00187

row00188

row00189

row00190

row00191

row00192

row00193

row00194

row00195

row00196

row00197

row00198

row00199

row00200

row00201

row00202

row00203

row00204

car

new

uk solar

relief

speaker
center

energi

batteri

qtag

frnew
lin

am
end

pjg

volcano

itag

xnec

insur
loss

ban

cn tpeleph

patient

anim

electr

abort

gentlem
an

rep

poach

m
ine

disast

ti earthquak

alum
inium

ivori

quake
brief

reinsur

erupt

chairm
an

care

dollar

renew
fuel

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4
cl

us
te

r
5

cl
us

te
r

6
cl

us
te

r
7

cl
us

te
r

8
cl

us
te

r
9

row00001

row00002

row00003

row00004

row00005

row00006

row00007

row00008

row00009

row00010

row00011

row00012

row00013

row00014

row00015

row00016

row00017

row00018

row00019

row00020

row00021

row00022

row00023

row00024

row00025

row00026

row00027

row00028

row00029

row00030

row00031

row00032

row00033

row00034

row00035

row00036

row00037

row00038

row00039

row00040

row00041

row00042

row00043

row00044

row00045

row00046

row00047

row00048

row00049

row00050

row00051

row00052

row00053

row00054

row00055

row00056

row00057

row00058

row00059

row00060

row00061

row00062

row00063

row00064

row00065

row00066

row00067

row00068

row00069

row00070

row00071

row00072

row00073

row00074

row00075

row00076

row00077

row00078

row00079

row00080

row00081

row00082

row00083

row00084

row00085

row00086

row00087

row00088

row00089

row00090

row00091

row00092

row00093

row00094

row00095

row00096

row00097

row00098

row00099

row00100

row00101

row00102

row00103

row00104

row00105

row00106

row00107

row00108

row00109

row00110

row00111

row00112

row00113

row00114

row00115

row00116

row00117

row00118

row00119

row00120

row00121

row00122

row00123

row00124

row00125

row00126

row00127

row00128

row00129

row00130

row00131

row00132

row00133

row00134

row00135

row00136

row00137

row00138

row00139

row00140

row00141

row00142
row00143
row00144

row00145

row00146

row00147

row00148

row00149

row00150

row00151

row00152

row00153

row00154

row00155

row00156

row00157

row00158

row00159

row00160

row00161

row00162

row00163

row00164

row00165

row00166

row00167

row00168

row00169

row00170

row00171

row00172

row00173

row00174

row00175

row00176

row00177

row00178

row00179

row00180

row00181

row00182

row00183

row00184

row00185
row00186

row00187

row00188

row00189

row00190

row00191

row00192

row00193

row00194

row00195

row00196

row00197

row00198

row00199

row00200

row00201

row00202

row00203

row00204

car

new

solar

relief

speaker
pre
center

energi

batteri

spacefram

qtag

frnew
lin

am
end

pjg

un volcano

m
erced

itag

xnec

insur
loss

ban

cn tpeleph

electr

cam
bodia

gentlem
an

rep

m
azda

m
ine

disast

tiearthquak

alum
inium

ivori

quake
brief

reinsur

erupt

chairm
an

w
ar

dollar

vehicl

fuel

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4
cl

us
te

r
5

cl
us

te
r

6
cl

us
te

r
7

cl
us

te
r

8
cl

us
te

r
9

row00001

row00002

row00003

row00004

row00005

row00006

row00007

row00008

row00009

row00010
row00011

row00012

row00013

row00014

row00015

row00016
row00017
row00018

row00019

row00020

row00021

row00022

row00023

row00024

row00025

row00026

row00027

row00028

row00029

row00030

row00031

row00032

row00033

row00034

row00035

row00036

row00037

row00038

row00039
row00040

row00041

row00042

row00043

row00044

row00045

row00046

row00047

row00048

row00049

row00050

row00051

row00052

row00053

row00054
row00055
row00056

row00057

row00058
row00059

row00060

row00061

row00062

row00063

row00064

row00065

row00066

row00067

row00068

row00069

row00070
row00071

row00072

row00073

row00074

row00075

row00076

row00077

row00078

row00079

row00080

row00081

row00082

row00083

row00084

row00085

row00086

row00087

row00088

row00089

row00090

row00091

row00092

row00093

row00094

row00095

row00096

row00097

row00098

row00099

row00100

row00101

row00102

row00103

row00104

row00105

row00106

row00107

row00108
row00109

row00110

row00111

row00112

row00113

row00114

row00115

row00116

row00117

row00118

row00119

row00120

row00121

row00122

row00123

row00124

row00125

row00126

row00127

row00128

row00129

row00130

row00131

row00132

row00133

row00134

row00135

row00136

row00137

row00138

row00139

row00140

row00141

row00142
row00143
row00144

row00145

row00146

row00147

row00148

row00149

row00150

row00151

row00152

row00153

row00154

row00155

row00156

row00157

row00158

row00159

row00160

row00161

row00162

row00163

row00164

row00165

row00166

row00167

row00168

row00169

row00170

row00171
row00172

row00173

row00174

row00175

row00176
row00177

row00178

row00179

row00180

row00181

row00182

row00183
row00184

row00185

row00186

row00187

row00188

row00189
row00190

row00191

row00192

row00193

row00194

row00195

row00196
row00197

row00198

row00199

row00200

row00201

row00202

row00203

row00204

car
new
solar
relief
speaker
pre
center
energi
batteri
spacefram
qtag
frnew

lin
am

end
pjg
un volcano
m

erced
itag
x nec
insur
loss
ban
cn tp eleph
electr
cam

bodia
gentlem

an
rep
m

azda
m

ine
disast
ti earthquak
alum

inium
ivori
quake
brief
reinsur
erupt
chairm

an
w

ar
dollar
vehicl
fuel

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4
cl

us
te

r
5

cl
us

te
r

6
cl

us
te

r
7

cl
us

te
r

8
cl

us
te

r
9

(a) (b) (c)

Figure 8: Various visualizations generated by the -plotmatrix parameter. (a) Shows the clustering solution produced by vpcluster;
(b) Shows the same clustering solution but the rows and columns have been re-ordered. (c) Shows the clustering solution produced
by vacluster.

24

5HT1b
5HT2

5HT3

ACHE

actin

aFGF

BDNF
bFGF

Brm

CCO1
CCO2

cellubrevin

cjun

CNTF

CNTFR

CX43

cyclinA
cyclinB
EGF
FABP

G67I8086
G67I86
GAD65

GAD67

GAP43

GFAP

GMFb

GRa1

GRa2
GRa3
GRa4

GRa5

GRb1
GRb2
GRb3
GRg1

GRg2

GRg3

H4
IGF1

IGF2
IGFR1
IGFR2
InsR

IP3R2

IP3R3

mAChR1

mAChR2
mGluR3
mGluR8

MK2

MOG

nAChRa3

nAChRa5

nAChRa7
neno

nestin

NFH
NFL

NFM

NT3

ODC

PDGFb
PDGFR
preGAD67

S100beta

synaptophysin

TCP

TH

trkC

col00001
col00002
col00003
col00004
col00005
col00006
col00007
col00008
col00009
col00010
col00011
col00012
col00013
col00014
col00015
col00016
col00017
col00018
col00019
col00020

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4
5HT1b

5HT2

5HT3

ACHE

actin

aFGF

BDNF

bFGF

Brm

CCO1

CCO2

cellubrevin

cjun

CNTF

CNTFR

CX43

cyclinA
cyclinB

EGF

FABP

G67I8086
G67I86

GAD65

GAD67

GAP43

GFAP

GMFb

GRa1
GRa2

GRa3

GRa4

GRa5

GRb1

GRb2
GRb3

GRg1

GRg2

GRg3

H4

IGF1

IGF2

IGFR1

IGFR2
InsR

IP3R2

IP3R3

mAChR1

mAChR2

mGluR3

mGluR8

MK2

MOG

nAChRa3

nAChRa5

nAChRa7

neno

nestin

NFH

NFL

NFM

NT3

ODC

PDGFb
PDGFR

preGAD67

S100beta

synaptophysin

TCP

TH

trkC

col00001
col00002

col00003

col00004
col00005

col00006
col00007

col00008
col00009

col00010
col00011
col00012
col00013
col00014
col00015
col00016
col00017

col00018
col00019
col00020

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4

5HT1b

5HT2

5HT3

ACHE

actin

aFGF

BDNF

bFGF

Brm

CCO1

CCO2

cellubrevin

cjun

CNTF

CNTFR

CX43

cyclinA
cyclinB

EGF

FABP

G67I8086
G67I86

GAD65

GAD67

GAP43

GFAP

GMFb

GRa1

GRa2

GRa3

GRa4

GRa5
GRb1

GRb2
GRb3

GRg1

GRg2

GRg3

H4

IGF1

IGF2

IGFR1

IGFR2
InsR

IP3R2

IP3R3

mAChR1

mAChR2

mGluR3

mGluR8

MK2

MOG

nAChRa3

nAChRa5

nAChRa7

neno

nestin

NFH

NFL

NFM

NT3

ODC

PDGFb
PDGFR

preGAD67

S100beta
synaptophysin

TCP

TH

trkC

col00001
col00002

col00003

col00004
col00005

col00006
col00007

col00008
col00009

col00010
col00011
col00012
col00013
col00014
col00015
col00016
col00017

col00018
col00019
col00020

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4

(b) (c)(a)

Figure 9: Various visualizations generated by the -plotmatrix parameter. (a) Shows the clustering solution produced by vpcluster;
(b) Shows the same clustering solution but the rows and columns have been re-ordered. (c) Shows the clustering solution produced
by vacluster.

This plot shows the clustering solution shown at Figure 8(b) by replacing the set of rows in each cluster by a single
row that corresponds to the centroid vector of the cluster. The -plotcluster option is particularly useful for displaying
very large data sets, as the number of rows in the plot is only equal to the number of clusters.

Finally, Figure 12 shows the type of visualization that can be produced when -plottree is specified. This plot was
obtained by executing the following command:

vacluster -plottree=fig11.ps tr23.mat 10.

This plot shows the entire hierarchical tree for the tr23.mat data set. The leaves of the tree are labeled with the
particular row-id (or row label if available). You can see the labels by properly magnifying the figure.

3.4 Input File Formats

The vpcluster program provided with CLUTO requires an input file that stores the objects to be clustered in a matrix
format, as well as various optional files containing the column labels and the class labels of the various objects. The
format of these files are described in the following sections.

3.4.1 Matrix File

The primary input of the programs in CLUTO is a matrix storing the objects to be clustered. Each row of this matrix
represent a single object, and its various columns correspond to the dimensions (i.e., features) of the objects. This
matrix is stored in a file and is supplied to the various programs as one of the command line parameters.

CLUTO understands two different input matrix formats. The first format is suitable for sparse matrices and is the
default format that is assumed by CLUTO; and the second format is suitable for storing dense matrices and is the

25

E
F

B
1

Y
A

L004W
S

S
A

1

M
D

M
10

C
Y

S
3

N
T

G
1

Y
A

L018C

M
A

K
16

F
U

N
19

F
U

N
12

F
U

N
11

C
D

C
19

C
LN

3

A
C

S
1

Y
A

L055W

G
D

H
3

S
E

O
1

Y
A

R
003W

R
F

A
1

A
D

E
1

Y
A

R
027W

Y
B

L009W
Y

B
L010C

A
C

H
1

R
P

L19A

U
R

A
7

Y
B

L042C

E
C

M
13

Y
B

L054W

U
B

P
13

R
P

S
8A

Y
B

L078C

C
D

C
27

A
T

P
1

Y
B

L108W

N
T

H
2

Y
B

R
005W

Y
B

R
025C

C
D

S
1

Y
B

R
030W

R
P

L2A
Y

B
R

032W

G
IP

1

Y
B

R
059C

Y
B

R
063C

Y
B

R
064W

Y
B

R
066C

H
S

P
26

E
C

M
33

R
P

G
1

U
B

C
4

R
P

L19B

Y
B

R
086C

P
O

L30

Y
B

R
101C

A
G

P
2

A
D

H
5

Y
S

W
1

R
P

B
5

Y
B

R
168W

S
M

Y
2

Y
B

R
177C

Y
B

R
178W

R
P

S
10A

M
E

L1

P
C

H
2

P
G

I1

Y
B

R
214W

F
A

T
2

Y
B

R
231C

Y
B

R
232C

Y
B

R
233W

E
N

P
1

Y
B

R
250W

P
O

P
4

M
R

P
L37

Y
B

R
285W

Y
B

R
287W

G
LK

1
Y

C
L042W

Y
C

L048W

K
R

R
1

C
H

A
1

Y
C

LX
02C

Y
C

LX
03C

C
D

C
10

C
IT

2

Y
C

R
007C

Y
C

R
010C

P
G

K
1

Y
C

R
013C

H
S

P
30

C
R

Y
1

A
R

E
1

P
W

P
2

Y
C

R
056W

P
W

P
2

Y
C

R
061W

Y
C

R
062W

spo0
spo30
spo2
spo5
spo7
spo9
spo11

cluster 0

E
F

B
1

Y
A

L004W
S

S
A

1

M
D

M
10

C
Y

S
3

N
T

G
1

Y
A

L018C

M
A

K
16

F
U

N
19

F
U

N
12

F
U

N
11

C
D

C
19

C
LN

3

A
C

S
1

Y
A

L055W

G
D

H
3

S
E

O
1

Y
A

R
003W

R
F

A
1

A
D

E
1

Y
A

R
027W

Y
B

L009W
Y

B
L010C

A
C

H
1

R
P

L19A

U
R

A
7

Y
B

L042C

E
C

M
13

Y
B

L054W

U
B

P
13

R
P

S
8A

Y
B

L078C

C
D

C
27

A
T

P
1

Y
B

L108W

N
T

H
2

Y
B

R
005W

Y
B

R
025C

C
D

S
1

Y
B

R
030W

R
P

L2A
Y

B
R

032W

G
IP

1

Y
B

R
059C

Y
B

R
063C

Y
B

R
064W

Y
B

R
066C

H
S

P
26

E
C

M
33

R
P

G
1

U
B

C
4

R
P

L19B

Y
B

R
086C

P
O

L30

Y
B

R
101C

A
G

P
2

A
D

H
5

Y
S

W
1

R
P

B
5

Y
B

R
168W

S
M

Y
2

Y
B

R
177C

Y
B

R
178W

R
P

S
10A

M
E

L1

P
C

H
2

P
G

I1

Y
B

R
214W

F
A

T
2

Y
B

R
231C

Y
B

R
232C

Y
B

R
233W

E
N

P
1

Y
B

R
250W

P
O

P
4

M
R

P
L37

Y
B

R
285W

Y
B

R
287W

G
LK

1
Y

C
L042W

Y
C

L048W

K
R

R
1

C
H

A
1

Y
C

LX
02C

Y
C

LX
03C

C
D

C
10

C
IT

2

Y
C

R
007C

Y
C

R
010C

P
G

K
1

Y
C

R
013C

H
S

P
30

C
R

Y
1

A
R

E
1

P
W

P
2

Y
C

R
056W

P
W

P
2

Y
C

R
061W

Y
C

R
062W

spo0
spo30
spo2
spo5
spo7
spo9
spo11

cluster 0

(b)
(a)

Figure 10: Various visualizations generated by the -plotmatrix parameter. (a) Shows the clustering solution produced by vacluster;
(b) Shows the same clustering solution but the color scheme has been changed.

format that is assumed when the -denseinput parameter is specified.

Sparse Matrix Format A sparse matrix A with n rows and m columns is stored in a plain text file that contains
n + 1 lines. The first line contains information about the size of the matrix, while the remaining n lines contain
information for each row of A. In CLUTO’s sparse matrix format only the non-zero entries of the matrix are stored.

The first line of the matrix file contains exactly three numbers, all of which are integers. The first integer is the
number of rows in the matrix (n), the second integer is the number of columns in the matrix (m), and the third integer
is the total number of non-zeros entries in the n × m matrix.

The remaining n lines store information about the actual non-zero structure of the matrix. In particular, the (i +
1)st line of the file contains information about the non-zero entries of the i th row of the matrix. Since the i th row
corresponds to the i th object to be clustered, this is nothing more than the non-zero entries of the i th object’s feature
vector. The non-zero entries of each row are specified as a space-separated list of pairs. Each pair contains the column
number followed by the value for that particular column (i.e., feature). The column numbers are assumed to be integers
and their corresponding values are assumed to be floating point numbers. The meaning of the values associated with
each entry of the object’s vector is problem dependent.

Note that the columns are numbered starting from 1 (not from 0 as is often done in C). Furthermore, CLUTO’s
matrix format does not require the column-pairs (column-number — column-value) to be sorted in any order.

An example of CLUTO’s matrix format is shown in Figure 13. This figure shows an example 7 × 8 matrix and its
corresponding representation in CLUTO’s matrix format.

Dense Matrix Format A dense matrix A with n rows and m columns is stored in a plain text file that contains n+1
lines. The first line stores information about the size of the matrix, while the remaining n lines contain information
for each row of A. The first line of the matrix file contains exactly two numbers, all of which are integers. The first
integer is the number of rows in the matrix (n) and the second integer is the number of columns in the matrix (m). The
remaining n lines store the values of the m columns for each one of the rows. In particular, each line contains exactly
m space-separated floating point values, such that the i th value corresponds to the i th column of A.

3.4.2 Row Label File

As discussed in Section 3, when the -rlabelfile parameter is used, CLUTO’s stand-alone programs read a file that stores
the label for each one of the rows (i.e., objects) of the matrix. The format of this file is as follows. If n is the total
number of rows in the matrix, then the row-label file contains exactly n lines. The information stored in each line
is treated as a string and becomes the label of the corresponding row of the matrix. That is, the i th line of this file
contains the label of the i th row of the matrix.

3.4.3 Column Label File

As discussed in Section 3.1, when the -clabelfile parameter is used, the vpcluster program reads a file that stores the
label for each one of the columns (i.e., features) of the matrix. The format of this file is as follows. If m is the total

26

0 (2
7)

1 (2
7)

2 (1
9)

3 (1
0)

4 (1
7)

5 (1
9)

6 (2
1)

7 (1
2)

8 (2
7)

9 (2
5)

car

new

solar

relief

speaker
pre
center

energi

batteri

spacefram

qtag

frnew
lin

am
end

pjg

un volcano

m
erced

itag

xnec

insur
loss

ban

cn tpeleph

electr

cam
bodia

gentlem
an

rep

m
azda

m
ine

disast

tiearthquak

alum
inium

ivori

quake
brief

reinsur

erupt

chairm
an

w
ar

dollar

vehicl

fuel

0
(3

63
)

1
(4

08
)

2
(1

69
)

3
(3

85
)

4
(3

13
)

5
(4

29
)

6
(6

11
)

7
(2

45
)

8
(4

00
)

9
(4

24
)

10 (6
43

)

11 (1
96

)

12 (3
34

)

13 (4
61

)

14 (6
19

)

15 (3
54

)

16 (5
17

)

17 (5
10

)

18 (6
73

)

19 (5
26

)

citi

bow
l

nfl

quarter

raider

quarterback

touchdow
n

score

yard
pass
kick

goal

super

cb m
illion

cours

football

hockei

hit

fight

run

box

tournam

hole

round

rebound

atlanta

bull

brave

school

jose

logan

card

clark

seri

rice

tdsanta
clara

nelson

de sox

pitcher

basebal

giant

la m
ile

golf

period

tyson

tw
in

seifert

w
arrior

thom
pson

vrbnba

philli

m
ullin

m
cgee

innhl

penguin

craig

shark

m
itchell

hardaw
ai

bono

kingston

m
unicip

outfield

laker

m
ontana

richm
ond

henderson

lott

averi

hom
er

m
odesto

m
oreau

sf pirat

w
r

cub

par

lb canseco

russa

g m
cgw

ire

holyfield

huism
an

(a)

(b)

Figure 11: Various visualizations generated by the -plotcluster parameter.

27

40
6

34
1

23
7

22
4

21
8

21
7

21
6

20
8

20
6 20

5

21
2

21
1

21
4

30
8

26
3

24
9

21
9

24
4

22
1

22
8

22
6

22
3

22
0

20
7

21
0

20
9

22
2

40
5

40
1

39
1

38
4

37
4

23
8

35
3

33
9

36
5

33
8

31
7

36
0

32
4

30
9

26
2

26
8

27
5

27
1

23
5

23
1

26
1

22
7

23
4

25
0

24
0

23
6

34
6

25
4

24
5

23
3

39
8

38
5

37
2

31
0 28

7

35
1

31
8 29

0

33
0

27
8

36
9

29
1

35
4

32
2

29
3

39
4

38
1

36
4

32
8

30
7

31
1

33
7

30
2

37
3

27
6

35
6

32
9

30
3 25

9

40
4

40
3

38
7

31
5

28
6 25

5

26
7

35
8

31
2

25
8

28
8

28
5

26
5 25

2

29
2

24
8 21

5

40
0

39
3

38
8

36
6

35
2

33
1

30
4

32
6

38
0

36
2

32
1

28
2

34
7

29
5

32
7

37
9

34
5

28
9

23
9

36
8

34
9

31
3

25
6

30
0

22
9

25
7

39
7

37
8

35
7

34
3

29
9

29
8

28
3

34
8

24
6

30
5

37
0

35
0

32
5

26
4

34
0

31
6 26

9

26
0

40
2

39
5

38
6

37
1

34
2

31
4

28
0

24
3

37
5

31
9

27
4

23
0

25
1

33
3

30
1 27

9

28
4

39
0

26
6

24
7

22
5

37
6

36
3

27
7

33
2

20
4

39
9

39
6

39
2

38
2

35
5

29
4

32
0

33
4 27

0

38
3

21
3

24
2

38
9

36
7

35
9

33
6

29
7

34
4

25
3

28
1

37
7

30
6

27
3

36
1

33
5

32
3

29
6

27
2

24
1 23

2

row00001

row00002

row00003

row00004

row00005

row00006

row00007

row00008

row00009

row00010

row00011

row00012

row00013

row00014

row00015

row00016

row00017

row00018

row00019

row00020

row00021

row00022

row00023

row00024

row00025

row00026

row00027

row00028

row00029

row00030

row00031

row00032

row00033

row00034

row00035

row00036

row00037

row00038

row00039

row00040

row00041

row00042

row00043

row00044

row00045

row00046

row00047

row00048

row00049

row00050

row00051

row00052

row00053

row00054

row00055

row00056

row00057

row00058

row00059

row00060

row00061

row00062

row00063

row00064

row00065

row00066

row00067

row00068

row00069

row00070

row00071

row00072

row00073

row00074

row00075

row00076

row00077

row00078

row00079

row00080

row00081

row00082

row00083

row00084

row00085

row00086

row00087

row00088

row00089

row00090

row00091

row00092

row00093

row00094

row00095

row00096

row00097

row00098

row00099

row00100

row00101

row00102

row00103

row00104

row00105

row00106

row00107

row00108

row00109

row00110

row00111

row00112

row00113

row00114

row00115

row00116

row00117

row00118

row00119

row00120

row00121

row00122

row00123

row00124

row00125

row00126

row00127

row00128

row00129

row00130

row00131

row00132

row00133

row00134

row00135

row00136

row00137

row00138

row00139

row00140

row00141

row00142

row00143

row00144

row00145

row00146

row00147

row00148

row00149

row00150

row00151

row00152

row00153

row00154

row00155

row00156

row00157

row00158

row00159

row00160

row00161

row00162

row00163

row00164

row00165

row00166

row00167

row00168

row00169

row00170

row00171

row00172

row00173

row00174

row00175

row00176

row00177

row00178

row00179

row00180

row00181

row00182

row00183

row00184

row00185

row00186

row00187

row00188

row00189

row00190

row00191

row00192

row00193

row00194

row00195

row00196

row00197

row00198

row00199

row00200

row00201

row00202

row00203

row00204

Figure 12: Various visualizations generated by the -plottree parameter.

28

0.41.4 -0.4

-0.5 0.2

1.8 2.0 3.0

1.0

5.5 3.0 8.0

1.0 -1.0 2.0

3.5 4.0 8.0-1.0 2.0

1.1

3 1.8 6 2.0 8 3.0
1 1.0

1 1.4 2 0.4 4 -0.4
2 1.1 5 -0.5 8 0.2
7 8 21

2 5.5 4 3.0 7 8.0
3 1.0 5 -1.0 6 2.0
2 3.5 4 -1.0 5 4.0 7 2.0 8 8.0

Matrix Input File

Figure 13: Storage format of a sample matrix.

number of columns in the matrix, then the column-label file contains exactly m lines. The information stored in each
line is treated as a string and becomes the label of the corresponding column of the matrix. That is, the i th line of this
file contains the label of the i th column of the matrix.

3.4.4 Row Class Label File

As discussed in Section 3.1, when the -rclassfile parameter is used, the vpcluster program reads a file that stores the
class labels for each one of the rows (i.e., objects) of the matrix. The format of this file is as follows. If n is the total
number of rows in the matrix, then the class-label file contains exactly n lines. The information stored in each line is
treated as a string and becomes the class-label of the corresponding object of the matrix. That is, the i th line of this
file contains the label of the i th row of the matrix. In order to ensure that a set of objects belong to the same class,
their corresponding rows in the class-label file must contain identical strings.

3.5 Output File Formats

The vpcluster program can generate two different output files. The first file contains the clustering vector and the
internal and external z-scores for each object (when the -zscores option was specified), whereas the second file contains
the hierarchical agglomerative tree that may be built on top of the computed clustering solution. The format of these
files is described in the following sections.

3.5.1 Clustering Solution File

The clustering file of a matrix with n rows consists of n lines with a single number per line. The i th line of the file
contains the cluster number that the i th object/row belongs to. Cluster numbers run from zero to the number of clusters
minus one.

CLUTO’s clustering algorithms remove all the columns that occur in fewer than three rows before computing the
clustering solution. This is for performance reasons, and it does not affect the quality of the computed clustering
solution. However, as a result of this pruning step, some objects may loose all of their features. In this case, CLUTO

will not be able to assign these objects to any of the clusters. In this case, the cluster number for that particular row
will be set to -1.

If the -zscores is specified, each line of this file also contains two additional numbers right after the cluster number.
The first number is its internal z-score, and the second number is its external z-score.

3.5.2 Tree File

The tree produced by performing a hierarchical agglomerative clustering on top of the k-way clustering solution
produced by vpcluster is stored in a file in the form of a parent array. In particular, if k is the number of clusters, then
the tree file contains 2k − 1 lines, such that the i th line contains the parent of the i th node of the tree. In the case of the
root node, that is stored in the last line of the file, the parent is set to -1. For example, the tree file for the tree shown
in Figure 7 will contain 19 lines, and each line will store the following numbers (one number per line): 16, 12, 13, 16,
13, 10, 11, 12, 11, 10, 14, 15, 15, 14, 18, 17, 17, 18, -1.

In addition to the parent of each node, CLUTO’s tree file also contains the average similarity between the siblings of

29

each tree node. Since this quantity is not defined for the leaves, only the rows of the file corresponding to the interior
nodes of the tree contain meaningful numbers.

If for some reason, CLUTO’s clustering programs cannot produce an entire single hierarchical tree, then the parent
array will contain multiple subtrees. The subtrees can be re-constructed by traversing the parent array from the leaves
toward the root. When a “-1” is encountered as the parent of a node other than the root’s, then this particular subtree
ends.

30

4 CLUTO’s Library Interface

The functionality provided by CLUTO’s vpcluster program can also be accessed directly from a C or C++ program
by using the provided stand-alone library. In the rest of this section we provide information about how to link your
program with CLUTO’s library, describe the data structures used to pass information into the routines and give a
detailed description of the calling sequence of the various routines.

4.1 Using CLUTO’s Library

In order to use CLUTO’s stand-alone library you must link your program with CLUTO’s pre-compiled library that is
provide in the software distribution. For Unix-based distributions, the name of the library is libcluto.a, and for
the Windows 32 distribution, the name of the library file is libcluto.lib. At this point no dynamic link libraries
are provided for either Unix- or Windows-based distributions; however, such libraries may be provided in the future.

The method by which an external library is linked to your program varies from system to system. In most Unix-
based systems you can link it by just specifying -lcluto at the end of “cc” or “ld” command line. Care must be taken
that CLUTO’s library is in the default library search path. In most cases this can be modified by using the “-L” option
to specify the directory where libcluto.a is stored. For Windows-based systems, the linking method depends on
the particular development environment, and you should consult its documentation.

Any program that uses CLUTO’s library must include the cluto.h header file that is provided with CLUTO’s
distribution. This file contains various constant definitions as well as function prototypes and allows C and C++
programs to access CLUTO’s functions.

4.2 Matrix Data Structure

Most of the routines in CLUTO’s library take, as input, the objects to be clustered in the form of a matrix. CLUTO’s
routines support both sparse and dense matrices using the same set of data structures. As with the matrix-file format
of CLUTO’s stand-alone programs, the rows of this matrix correspond to the objects, and the columns correspond to
their various features.

Sparse Matrix Data Structure A sparse matrix is supplied to CLUTO’s routines using a row-based compressed
storage format (CSR). The CSR format is a widely used scheme for storing sparse matrices. In this format a matrix
with n rows, m columns, and nnz non-zero entries is represented using three arrays that are called rowptr, rowind,
and rowval. The array rowptr is of size n + 1 whereas the arrays rowind and rowval are of size nnz.

The array rowind stores the column-indices of the non-zero entries in the matrix, and the array rowval stores
their corresponding values. In particular, the array rowind stores the column-indices of the first row, followed by
the column-indices of the second row, and so on. Similarly, the array rowval stores the corresponding values of the
non-zero entries of the first row, followed by the corresponding values of the non-zero entries of the second row, and
so on. The array rowptr is used to determine where the storage of a row starts and ends in the arrays, rowind and
rowval. In particular, the column-indices of the i th row are stored starting at rowind[rowptr[i]] and ending at
(but not including) rowind[rowptr[i+1]]. Similarly, the values of the non-zero entries of the i th row are stored
starting at rowval[rowptr[i]] and ending at (but not including) rowval[rowptr[i+1]]. Also note that the
number of non-zero entries of the i th row is simply rowptr[i+1]-rowptr[i].

Figure 14 illustrates the CSR format for the sparse matrix used earlier to illustrated the format of the matrix file
used by vpcluster. Note, that the numbering of the columns in the CSR format starts from zero and not from one.

Dense Matrix Data Structure A dense matrix is supplied to CLUTO’s routines by using only the rowval array
and setting the rowptr and rowind arrays to NULL. In fact, CLUTO’s routines determine the input matrix format
by checking to see if rowptr is NULL or not. A dense matrix with n rows and m columns is passed to CLUTO by
supplying in rowval the n × m values of the matrix, in row-major order format. That is, the m values of the i th row
(where i takes values from 0 . . .n − 1) is stored starting at location rowval[i*m] and ending at (but not including)
rowval[(i+1)*m].

31

0.41.4 -0.4

-0.5 0.2

1.8 2.0 3.0

1.0

5.5 3.0 8.0

1.0 -1.0 2.0

3.5 4.0 8.0-1.0 2.0

1.1

6

5

4

3

2

1

0

1.1 -0.5 0.2 1.4 0.4 -0.4 1.8 2.0 3.0 1.0 5.5 3.0 8.0 1.0 -1.0 2.0 3.5 -1.0 4.0 2.0 8.0

1 4 7 0 1 3 2 5 7 0 1 3 6 2 4 5 1 3 4 6 7

0 3 6 9 10 13 16 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

rowptr

rowind

rowval

0 1 2 3 4 5 6 7 CSR Data Structures

Figure 14: An example of the CSR format for storing sparse matrices.

4.3 Clustering Parameters

Most of CLUTO’s routines take, as input, two parameters that control the similarity function to be used while clustering
the objects and the clustering criterion function to be optimized in the process of clustering. These two parameters are
called simfun and crfun, respectively.

4.3.1 The simfun Parameter

This parameter specified the similarity function to be used for clustering the objects. This parameter is similar to the
-sim option of vpcluster and vacluster. The possible values for the simfun parameter are the following:

CLUTO SIM COSINE The similarity between the objects is computed using the cosine func-
tion of their vectors. This is the similarity function used by the default
settings of vpcluster and vacluster.

CLUTO SIM CORRCOEF The similarity between the objects is computed using the correlation
coefficient of their vectors.

4.3.2 The crfun Parameter

This parameter specifies the clustering criterion function to be used in finding the clusters. This parameter is similar
to the -crfun option of vpcluster and vacluster. The possible values for the crfun parameter are the following:

CLUTO CLFUN I1 Selects the I1 criterion function (�1 in [2]).

CLUTO CLFUN I2 Selects the I2 criterion function (�2 in [2]). This is the criterion function used
by the default settings of vpcluster and vacluster.

CLUTO CLFUN E1 Selects the E1 criterion function (�1 in [2]).

CLUTO CLFUN G1 Selects the G1 criterion function (�1 in [2]).

CLUTO CLFUN G1P Selects the G1’ criterion function (� ′
1 in [2]).

CLUTO CLFUN H1 Selects the H1 criterion function (�1 in [2]).

CLUTO CLFUN H2 Selects the H2 criterion function (�2 in [2]).

4.4 Object Modeling Parameters

Most of CLUTO’s routines take as input three parameters that control how the rows and columns of the input matrix
will be modeled. These parameters are called rowmodel, colmodel, and colprune.

4.4.1 The rowmodel Parameter

This parameter specifies the model to be used for scaling the various columns of each row. This parameter is similar
to the -rowmodel option of vpcluster and vacluster. The possible values for this parameter are:

CLUTO ROWMODEL NONE The columns of each row are not scaled and used as supplied in the
rowval array. This is the default setting of vpcluster.

32

CLUTO ROWMODEL MAXTF The columns of each row are scaled so their values are between 0.5
and 1.0. This scaling scheme corresponds to vpcluster’s scheme in
which -rowmodel=2.

CLUTO ROWMODEL SQRT The columns of each row are scaled to be equal to the square root of
their actual values. This scaling scheme corresponds to vpcluster’s
scheme in which -rowmodel=3.

CLUTO ROWMODEL LOG The columns of each row are scaled to be equal to the log of their ac-
tual values. This scaling scheme corresponds to vpcluster’s scheme
in which -rowmodel=4.

4.4.2 The colmodel Parameter

This parameter specifies the model to be used for scaling the various columns globally across all the rows of the matrix.
This parameter is similar to the -colmodel option of vpcluster and vacluster. The possible values for this parameter
are:

CLUTO COLMODEL NONE The columns of the matrix are not globally scaled and they are used as
is.

CLUTO COLMODEL IDF The columns of the matrix are scaled according to the inverse doc-
ument frequency paradigm (IDF), that was described in vpcluster’s
section. This is the default setting of vpcluster.

4.4.3 The colprune Parameter

This parameter specifies the factor by which the columns of the matrix will be pruned before performing the clustering.
Valid range of values are from (0.0, 1.0]. A value of 1.0 indicates no pruning and is the default setting for vpcluster
and vacluster.

4.5 Debugging Parameter

Most of CLUTO’s routines take as input a parameter called dbglvl that controls the amount of information to be printed.
The value is obtained by adding the codes for the various options. The possible options are:

CLUTO DBG PROGRESS Print information about the clustering process.

CLUTO DBG RPROGRESS Print information about the criterion optimization process as well about
the progress of object-to-object similarity calculations.

CLUTO DBG APROGRESS Print information about the agglomeration process.

A value of zero inhibits any debugging output.

33

4.6 Clustering Routines

void CLUTO VP ClusterDirect (int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun,
int crfun, int rowmodel, int colmodel, float colprune, int ntrials, int niter,
int seed, int dbglvl, int nclusters, int *part)

Description
Used to cluster a matrix into a specified (k) number of clusters using a partitional clustering algorithm that
computes the k-way clustering directly. Provides the functionality of the -direct option of the vpcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 4.2.

simfun, crfun
The clustering parameters whose meaning and possible values are described in Section 4.3.

rowmodel, colmodel, colprune
The object modeling parameters whose meaning and possible values are described in Section 4.4.

ntrials Specifies the number of different clustering solutions to be computed. The solution that achieves the
best value of the criterion function is the one that is returned. The value for ntrials must be greater
than zero, and vpcluster’s default setting is 10.

niter Specifies the maximum number of iterations that are performed during each refinement cycle. The
value for niter has to be greater than zero.

seed The seed to be used by the random number generator.

dbglvl The debugging parameter whose meaning and possible values are described in Section 4.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

Note
The various values for the simfun, crfun, rowmodel, colmodel, and dbglvl parameters are defined in cluto.h,
and this header file must be included in all programs that use CLUTO’s library.

34

void CLUTO VP ClusterRB (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int crfun, int rowmodel, int colmodel, float colprune,
int ntrials, int niter, int seed, int kwayrefine, int dbglvl,
int nclusters, int *part)

Description
Used to cluster a matrix into a specified (k) number of clusters using a partitional clustering algorithm that
computes the k-way by performing a sequence of repeated bisections. Provides the functionality of the -rb
option of the vpcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.
rowptr, rowind, rowval

The matrix itself in the format described in Section 4.2.
simfun, crfun

The clustering parameters whose meaning and possible values are described in Section 4.3.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 4.4.

ntrials Specifies the number of different clustering solutions to be computed. The solution that achieves the
best value of the criterion function is the one that is returned. The value for ntrials must be greater
than zero.

niter Specifies the maximum number of iterations that are performed during each refinement cycle. The
value for niter has to be greater than zero.

seed The seed to be used by the random number generator.
kwayrefine

This parameter controls whether or not the clustering solution will be globally optimized at the end
by performing a series of k-way refinement iterations. The possible values for this parameter are:

0 Does not optimize the clustering solution globally.

1 Optimizes the clustering solution globally.

The global optimization of the clustering solution can significantly increase the amount of time
required to perform the clustering.

dbglvl The debugging parameter whose meaning and possible values are described in Section 4.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

Note
The various values for the simfun, crfun, rowmodel, colmodel, and dbglvl parameters are defined in cluto.h,
and this header file must be included in all programs that use CLUTO’s library.

CLUTO VP ClusterRB is considerably faster than CLUTO VP ClusterDirect and it should be preferred if the
number of desired clusters is quite large (e.g., greater than 20–30).

35

void CLUTO VA Cluster (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int crfun, int rowmodel, int colmodel, float colprune,
int dbglvl, int nclusters, int *part, int *ptree, float *tsims)

Description
Used to cluster a matrix into a specified (k) number of clusters using a hierarchical agglomerative clustering
algorithm. Provides the functionality of the vacluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 4.2.

simfun, crfun
The clustering parameters whose meaning and possible values are described in Section 4.3.

rowmodel, colmodel, colprune
The object modeling parameters whose meaning and possible values are described in Section 4.4.

dbglvl The debugging parameter whose meaning and possible values are described in Section 4.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

ptree This is an array of size 2*nrows that upon successful completion stores the parent array of the bi-
nary hierarchical tree. In this tree, each node corresponds to a cluster. The leaf nodes are the original
nrows objects, and they are numbered from 0 to nrows-1. The internal nodes of the tree are numbered
from nrows to 2*nrows-2. The numbering of the internal nodes is performed so that smaller num-
bers correspond to clusters obtained by merging a pair of clusters earlier during the agglomeration
process. The root of the tree is numbered 2*nrows-2.

The i th entry of the ptree array stores the parent node of the i node of the tree. The ptree entry for
the root is set to -1.

The application is responsible for allocating the memory for this array.

tsims This is an array of size 2*nrows that upon successful completion stores the average similarity be-
tween every pair of siblings in the induced tree. In particular, tsims[i] stores the average pairwise
similarity between the pair of clusters that are the children of the i th node of the tree. Note that the
first nrows entries of this vector are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

Note
The various values for the simfun, crfun, rowmodel, colmodel, and dbglvl parameters are defined in cluto.h,
and this header file must be included in all programs that use CLUTO’s library.

Due to the high computational requirements of CLUTO VA Cluster, it should only be used to cluster matrices
that have fewer than 3,000–6,000 rows.

36

void CLUTO SA Cluster (int nobjects, int *objwgts, float *smat, int simfun, int crfun, int memflag,
int dbglvl, int nclusters, int *part, int *ptree, float *tsims, float *gains)

Description
Used to cluster a set of objects into a specified (k) number of clusters using a hierarchical agglomerative clus-
tering algorithm. Unlike the rest of CLUTO’s clustering routines, CLUTO SA Cluster uses a user-supplied
object-to-object similarity matrix.

Input Parameters
nobjects The number of objects to be clustered.

objwgts This is an array of size nobjects that stores the weight of each object. For normal operation supply
an array whose entries are set to one.

smat An array of size nobjects×nobjects that stores the similarity between any pair of objects. The similar-
ity between the i th and j th objects is stored at locationsmat[i*nobjects+j] and smat[j*nobjects+i].
The between object similarities have to be symmetric, and the similarity between the i th object with
itself must also be provided.

crfun The clustering criterion function whose meaning and possible values are described in Section 4.3.2.

memflag This parameter controls whether or not CLUTO SA Cluster can overwrite the memory that smat
points to. The possible values for this parameter are:

CLUTO MEM NOREUSE It does not overwrite the original smat array.

CLUTO MEM REUSE It overwrites the original smat array.

If CLUTO MEM NOREUSE is specified, CLUTO SA Cluster allocates sufficient memory to make
a copy of smat, which increases the overall memory complexity of the clustering algorithm.

dbglvl The debugging parameter whose meaning and possible values are described in Section 4.5.

nclusters The number of desired clusters.

Output Parameters
part An array of size nobjects that upon successful completion stores the clustering vector of the dataset.

The i th entry of this array stores the cluster number that the i th object belongs to. Note that the
numbering of the clusters starts from zero. The application is responsible for allocating the memory
for this array.

ptree An array of size 2*nobjects that upon successful completion stores the parent array of the binary
hierarchical tree. In this tree, each node corresponds to a cluster. The leaf nodes are the original
objects, and they are numbered from 0 to nobjects-1. The internal nodes of the tree are numbered
from nobjects to 2*nobjects-2. The numbering of the internal nodes is done in such a fashion so
that smaller numbers correspond to clusters obtained by merging a pair of clusters earlier during the
agglomeration process. The root of the tree is numbered 2*nobjects-2.

The i th entry of the ptree array stores the parent node of the i node of the tree. The ptree entry for
the root is set to -1.

The application is responsible for allocating the memory for this array.

tsims An array of size 2*nobjects that upon successful completion stores the average similarity between
every pair of siblings in the induced tree. In particular, tsims[i] stores the average pairwise similarity
between the pair of clusters that are the children of the i th node of the tree. Note that the first nobjects
entries of this vector are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

37

gains An array of size 2*nobjects that upon successful completion stores the gains in the value of the cri-
terion function obtained by merging every pair of siblings in the induced tree. In particular, gains[i]
stores the gain achieved by merging the pair of clusters that are the children of the i th node of the
tree. Note that the first nobjects entries of this vector are not defined.

The application is responsible for allocating the memory for this array.

Note
The various values for the crfun, memflag, and dbglvl parameters are defined in cluto.h, and this header file
must be included in all programs that use CLUTO’s library.

Due to the high computational requirements of CLUTO SA Cluster, it should only be used to cluster datasets
with fewer than 3,000–6,000 objects.

38

void CLUTO V BuildTree (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int crfun, int rowmodel, int colmodel, float colprune,
int treetype, int nclusters, int *part, int *ptree, float *tsims)

Description
Builds a hierarchical agglomerative tree that preserves the clustering solution supplied in the part array. It can
build two types of trees. The first type is a tree built on top of a particular clustering solution, such that the
leaves of the tree correspond to the different clusters. This is the type of tree used when the -showtree option of
vpcluster and vacluster is specified. The second type of tree is a complete agglomerative tree that preserves
the clustering. This is the type of tree used when the -fulltree option of vpcluster is specified. The hierarchical
agglomerative tree is build so that it optimizes a particular clustering criterion function.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 4.2.

simfun, crfun
The clustering parameters whose meaning and possible values are described in Section 4.3.

rowmodel, colmodel, colprune
The object modeling parameters whose meaning and possible values are described in Section 4.4.

treetype
Specifies the type of tree that needs to be built. The possible values for this parameter are:

CLUTO TREE TOP Builds a tree whose leaves correspond to the different clusters.

CLUTO TREE FULL Builds a complete tree that preserves the clustering solution.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

Output Parameters
ptree An array whose size depends on the type of tree that is requested.

If treetype==CLUTO TREE TOP, then it is of size 2*nclusters that upon successful completion
stores the parent array of the binary hierarchical tree. In this tree, each node corresponds to a cluster.
The leaf nodes are the original nclusters clusters supplied via the part array, and they are numbered
from 0 to nclusters-1. The internal nodes of the tree are numbered from nclusters to 2*nclusters-2.
The root of the tree is numbered 2*nclusters-2.

If treetype==CLUTO TREE FULL, then it is of size 2*nrows that upon successful completion stores
the parent array of the binary hierarchical tree. In this tree, each node corresponds to a cluster. The
leaf nodes are the original rows of the matrix, and they are numbered from 0 to nrows-1. The internal
nodes of the tree are numbered from nrows to 2*nrows-2. The root of the tree is numbered 2*nrows-
2.

The numbering of the internal nodes is done in such a fashion so that smaller numbers correspond to
clusters obtained by merging a pair of clusters earlier during the agglomeration process.

The i th entry of the ptree array stores the parent node of the i node of the tree. The ptree entry for
the root is set to -1.

The application is responsible for allocating the memory for this array.

39

tsims An array whose size depends on the type of tree that is requested. If treetype==CLUTO TREE TOP,
then it is of size 2*nclusters and if treetype==CLUTO TREE FULL then it is of size 2*nrows.

Upon successful completion stores the average similarity between every pair of siblings in the in-
duced tree. In particular, tsims[i] stores the average pairwise similarity between the pair of clusters
that are the children of the i th node of the tree. Note that the first nclusters or nrows entries of this
vector are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

Note
The various values for the simfun, crfun, rowmodel, colmodel, and treetype parameters are defined in cluto.h,
and this header file must be included in all programs that use CLUTO’s library.

In order for this routine to build the accurate tree for a particular clustering solution, the values for the rowmodel,
colmodel, and colprune parameters should be identical to those used to compute the clustering solution.

This routine can be used to build the hierarchical agglomerative tree with respect to any clustering criterion
function regardless of the criterion function used to compute the clustering solution.

40

4.7 Cluster Statistics Routines

float CLUTO V GetSolutionQuality (int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun,
int crfun, int rowmodel, int colmodel, float colprune, int nclusters, int *part)

Description
Returns the value of a particular criterion function for a given clustering solution.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 4.2.

simfun, crfun
The clustering parameters whose meaning and possible values are described in Section 4.3.

rowmodel, colmodel, colprune
The object modeling parameters whose meaning and possible values are described in Section 4.4.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

Returned Value
This function returns the value of the clustering criterion function of the supplied clustering solution. Please
refer to [2] for the exact definitions of these criterion functions.

Note
The various values for the simfun, crfun, rowmodel, and colmodel parameters are defined in cluto.h, and this
header file must be included in all programs that use CLUTO’s library.

This routine can be used to find the value of any clustering criterion function regardless of the criterion function
used to compute the clustering solution.

41

void CLUTO V GetClusterStats (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int nclusters,
int *part, int *pwgts, float *cintsim, float *cintsdev, float *izscores,
float *cextsim, float *cextsdev, float *ezscores)

Description
Returns a number of statistics about a given clustering solution.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 4.2.

simfun The clustering similarity function whose meaning and possible values are described in Section 4.3.1.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 4.4.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

Output Parameters
pwgts An array of size nclusters that returns the sizes of the different clusters. In particular, the size of the

i th cluster is returned in pwgts[i]. The application is responsible for allocating the memory for this
array.

cintsim An array of size nclusters that returns the average similarity between the objects assigned to each
cluster. In particular, the average similarity between the objects of the i th cluster is returned in
cintsim[i]. The application is responsible for allocating the memory for this array.

cintsdev An array of size nclusters that returns the standard deviation of the average similarity between each
object and the other objects in its own cluster. In particular, the standard deviation of the i th cluster
is returned in cintsdev[i]. The application is responsible for allocating the memory for this array.

izscores An array of size nrows that returns the internal z-scores of each object. The internal z-score of the
i th object is returned in izscores[i]. The internal z-score of each object is described in the discussion
of the -zscores option of vpcluster. The application is responsible for allocating the memory for this
array.

cextsim An array of size nclusters that returns the average similarity between the objects of each cluster and
the remaining objects. In particular, the average external similarity of the objects of the i th cluster is
returned in cextsim[i]. The application is responsible for allocating the memory for this array.

cextsdev An array of size nclusters that returns the standard deviation of the average external similarities of
each object. In particular, the external standard deviation of the objects of the i th cluster is returned
in cextsdev[i]. The application is responsible for allocating the memory for this array.

ezscores An array of size nrows that returns the external z-scores of each object. The external z-score of the
i th object is returned in ezscores[i]. The external z-score of each object is described in the discussion
of the -zscores option of vpcluster. The application is responsible for allocating the memory for this
array.

42

Note
The various values for the simfun, rowmodel, and colmodel parameters are defined in cluto.h, and this header
file must be included in all programs that use CLUTO’s library.

In order for this routine to get the accurate statistics for a particular clustering solution, the values for the row-
model, colmodel, and colprune parameters should be identical to those used to compute the clustering solution.

43

void CLUTO V GetClusterFeatures (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int nclusters,
int *part, int nfeatures, int *internalids, float *internalwgts,
int *externalids, float *externalwgts)

Description
Returns the set of features that best describe and discriminate each one of the clusters of a given clustering
solution. It provides the functionality of the -showfeatures option of the vpcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.
rowptr, rowind, rowval

The matrix itself in the format described in Section 4.2.

simfun The clustering similarity function whose meaning and possible values are described in Section 4.3.1.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 4.4.

nclusters The number of clusters in the supplied clustering solution.

part This is an array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

nfeatures The number of descriptive and discriminating features that is desired.

Output Parameters
internalids

An array of size nclusters*nfeatures that returns the column numbers of the descriptive features. The
set of features of the i th cluster are stored in the internalids array starting at location i ∗ nfeatures
up to location (but excluding) (i + 1) ∗ nfeatures. The set of features for each cluster are returned
in decreasing importance order. The numbering of the returned columns starts from zero. The
application is responsible for allocating the memory for this array.

internalwgts
An array of size nclusters*nfeatures that returns the weight of each one of the descriptive features
returned in the internalids array. The weight of the features stored in the i th location of the internalids
array is returned in the i th location of the internalwgts array. The weights are numbers between
0.0 and 1.0 and represent the fraction of the within cluster similarity that each particular feature is
responsible for. The application is responsible for allocating the memory for this array.

externalids
This is an array of size nclusters*nfeatures that returns the column numbers of the discriminating
features. The set of features of the i th cluster are stored in the externalids array starting at location
i ∗nfeatures up to location (but excluding) (i +1)∗nfeatures. The set of features for each cluster are
returned in decreasing importance order. The numbering of the returned columns starts from zero.
The application is responsible for allocating the memory for this array.

externalwgts
This is an array of size nclusters*nfeatures that returns the weight of each one of the discriminating
features returned in the externalids array. The weight of the features stored in the i th location of the
externalids array is returned in the i th location of the externalwgts array. The weights are numbers
between 0.0 and 1.0 and represent the fraction of the dissimilarity between the cluster and the rest of
the objects that each particular feature is responsible for. The application is responsible for allocating
the memory for this array.

44

Note
The various values for the simfun, rowmodel, and colmodel parameters are defined in cluto.h, and this header
file must be included in all programs that use CLUTO’s library.

In order for this routine to get the accurate set of features for a particular clustering solution, the values for
the rowmodel, colmodel, and colprune parameters should be identical to those used to compute the clustering
solution.

45

void CLUTO V GetTreeStats (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int nclusters,
int *part, int *ptree, int *pwgts, float *cintsim, float *cextsim)

Description
Returns a number of statistics about the clusters corresponding to the different nodes of the hierarchical agglom-
erative tree.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 4.2.

simfun The clustering similarity function whose meaning and possible values are described in Section 4.3.1.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 4.4.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

ptree An array of size 2*nclusters that was populated by the CLUTO V BuildTree routine.

Output Parameters
pwgts An array of size 2*nclusters that returns the sizes of the clusters corresponding to the various nodes

of the tree. In particular, the size of the cluster corresponding to the i th tree-node is returned in
pwgts[i]. The application is responsible for allocating the memory for this array.

cintsim An array of size 2*nclusters that returns the average similarity between the objects assigned to each
cluster. In particular, the average similarity between the objects of the cluster corresponding to the
i th tree-node is returned in cintsim[i]. The application is responsible for allocating the memory for
this array.

cextsim An array of size 2*nclusters that returns the average similarity between the objects of each cluster
and their sibling cluster in the tree. In particular, the average external similarity of the objects of the
i th cluster is returned in cextsim[i]. Note that each pair of sibling clusters will have the same cextsim
value. The application is responsible for allocating the memory for this array.

Note
The various values for the simfun, rowmodel, and colmodel parameters are defined in cluto.h, and this header
file must be included in all programs that use CLUTO’s library.

In order for this routine to get the accurate statistics for a particular clustering solution, the values for the
rowmodel, colmodel, and colprune, nclusters, part, and ptree parameters should be identical to those used to
compute the clustering solution and build the hierarchical agglomerative tree.

46

void CLUTO V GetTreeFeatures (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int nclusters,
int *part, int *ptree, int nfeatures, int *internalids, float *internalwgts,
int *externalids, float *externalwgts)

Description
Returns the set of features that best describe and discriminate each one of the clusters corresponding to the
various nodes of the hierarchical agglomerative tree that was built on top of the clustering solution. It provides
the functionality of the -labeltree option of the vpcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 4.2.

simfun The clustering similarity function whose meaning and possible values are described in Section 4.3.1.

rowmodel, colmodel, colprune
The object modeling parameters whose meaning and possible values are described in Section 4.4.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

ptree An array of size 2*nclusters that was populated by the CLUTO V BuildTree routine.

nfeatures The number of descriptive and discriminating features that is desired.

Output Parameters
internalids

An array of size 2*nclusters*nfeatures that returns the column numbers of the descriptive features.
The set of features of the cluster corresponding to the i th tree node are stored in the internalids array
starting at location i ∗ nfeatures up to location (but excluding) (i + 1) ∗ nfeatures. The set of features
for each cluster are returned in decreasing importance order. The numbering of the returned columns
starts from zero. The application is responsible for allocating the memory for this array.

internalwgts
An array of size 2*nclusters*nfeatures that returns the weight of each one of the descriptive features
returned in the internalids array. The weight of the features stored in the i th location of the internalids
array is returned in the i th location of the internalwgts array. The weights are numbers between
0.0 and 1.0 and represent the fraction of the within cluster similarity that each particular feature is
responsible for. The application is responsible for allocating the memory for this array.

externalids
An array of size 2*nclusters*nfeatures that returns the column numbers of the discriminating fea-
tures. The discriminating features are defined within the context of the pair of clusters that are the
children of the same tree node. Consequently, there are no discriminating features for the root node
of the tree. The set of features of the cluster corresponding to the i th tree node are stored in the
externalids array starting at location i ∗ nfeatures up to location (but excluding) (i + 1) ∗ nfeatures.
The set of features for each cluster are returned in decreasing importance order. The numbering of
the returned columns starts from zero. The application is responsible for allocating the memory for
this array.

47

externalwgts
An array of size 2*nclusters*nfeatures that returns the weight of each one of the discriminating
features returned in the externalids array. The weight of the features stored in the i th location of the
externalids array is returned in the i th location of the externalwgts array. The weights are numbers
between 0.0 and 1.0 and represent the fraction of the dissimilarity between the cluster and the rest of
the objects that each particular feature is responsible for. The application is responsible for allocating
the memory for this array.

Note
The various values for the simfun, rowmodel, and colmodel parameters are defined in cluto.h, and this header
file must be included in all programs that use CLUTO’s library.

In order for this routine to get the accurate set of features for a particular clustering solution, the values for the
rowmodel, colmodel, and colprune, nclusters, part, and ptree parameters should be identical to those used to
compute the clustering solution and build the hierarchical agglomerative tree.

48

5 System Requirements and Contact Information

CLUTO is written in ANSI C and has been extensively tested under Linux, Solaris, and Windows. At this point
CLUTO’s distribution is only in a binary format, as it is actively under development. However, we expect to make the
source code available in future releases.

Even though, CLUTO contains no known bugs, it does not mean that all of its bugs have been found and fixed. If you
find any problems, please send email to karypis@cs.umn.edu, with a brief description of the problem you have found.
Also, any future updates to vpcluster will be made available on WWW at http://www.cs.umn.edu/˜karypis/cluto.

6 Copyright Notice and Usage Terms

The CLUTO package is copyrighted by the Regents of the University of Minnesota. It can be freely used for educational
and research purposes by non-profit institutions and US government agencies only. Other organizations are allowed
to use CLUTO only for evaluation purposes, and any further uses will require prior approval. The software may not
be sold or redistributed without prior approval. One may make copies of the software for their use provided that the
copies, are not sold or distributed, are used under the same terms and conditions.

As unestablished research software, this code is provided on an “as is” basis without warranty of any kind, either
expressed or implied. The downloading, or executing any part of this software constitutes an implicit agreement to
these terms. These terms and conditions are subject to change at any time without prior notice.

References
[1] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley & Sons, 2001.

[2] Ying Zhao and George Karypis. Criterion functions for document clustering: Experiments and analysis. Technical Report
TR #01–40, Department of Computer Science, University of Minnesota, Minneapolis, MN, 2001. Available on the WWW at
http://cs.umn.edu/˜karypis/publications.

49

