
CLUTO ∗
A Clustering Toolkit

Release 2.0

George Karypis

University of Minnesota, Department of Computer Science
Minneapolis, MN 55455

karypis@cs.umn.edu

May 3, 2002

∗CLUTO is copyrighted by the regents of the University of Minnesota. This work was supported by NSF CCR-9972519, EIA-9986042, ACI-
9982274, by Army Research Office contract DA/DAAG55-98-1-0441, by the DOE ASCI program, and by Army High Performance Computing
Research Center contract number DAAH04-95-C-0008. Related papers are available via WWW at URL: http://www.cs.umn.edu/˜karypis.
The name CLUTO is derived from CLUstering TOolkit.

1

Contents

1 Introduction 4
1.1 What is CLUTO . 4
1.2 Outline of CLUTO’s Manual . 4

2 Major Changes From Release 1.5 5

3 UsingCLUTO via its Stand-Alone Program 6
3.1 The vcluster and scluster Clustering Programs . 6

3.1.1 Clustering Algorithm Parameters . 7
3.1.2 Reporting and Analysis Parameters . 15
3.1.3 Cluster Visualization Parameters . 17

3.2 Understanding the Information Produced by CLUTO’s Clustering Programs 19
3.2.1 Internal Cluster Quality Statistics . 19
3.2.2 External Cluster Quality Statistics . 19
3.2.3 Looking at each Cluster’s Features . 20
3.2.4 Looking at the Hierarchical Agglomerative Tree . 23
3.2.5 Looking at the Visualizations . 25

3.3 Input File Formats . 28
3.3.1 Matrix File . 28
3.3.2 Graph File . 31
3.3.3 Row Label File . 31
3.3.4 Column Label File . 32
3.3.5 Row Class Label File . 32

3.4 Output File Formats . 32
3.4.1 Clustering Solution File . 32
3.4.2 Tree File . 32

4 Which Clustering Algorithm Should I Use? 33
4.1 Cluster Types . 33
4.2 Similarity Measures Between Objects . 34
4.3 Scalability of CLUTO’s Clustering Algorithms . 35

5 CLUTO’s Library Interface 36
5.1 Using CLUTO’s Library . 36
5.2 Matrix and Graph Data Structure . 36
5.3 Clustering Parameters . 37

5.3.1 The simfun Parameter . 37
5.3.2 The crfun Parameter . 37
5.3.3 The cstype Parameter . 38

5.4 Object Modeling Parameters . 38
5.4.1 The rowmodel Parameter . 38
5.4.2 The colmodel Parameter . 38
5.4.3 The grmodel Parameter . 39
5.4.4 The colprune Parameter . 39
5.4.5 The edgeprune Parameter . 39
5.4.6 The vtxprune Parameter . 39

5.5 Debugging Parameter . 39
5.6 Clustering Routines . 40

2

CLUTO VP ClusterDirect . 40
CLUTO VP ClusterRB . 41
CLUTO VP GraphClusterRB . 42
CLUTO VA Cluster . 43
CLUTO SP ClusterDirect . 44
CLUTO SP ClusterRB . 45
CLUTO SP GraphClusterRB . 46
CLUTO SA Cluster . 47
CLUTO V BuildTree . 48
CLUTO S BuildTree . 50

5.7 Graph Creation Routines . 52
CLUTO V GetGraph . 52
CLUTO S GetGraph . 53

5.8 Cluster Statistics Routines . 54
CLUTO V GetSolutionQuality . 54
CLUTO S GetSolutionQuality . 55
CLUTO V GetClusterStats . 56
CLUTO S GetClusterStats . 58
CLUTO V GetClusterFeatures . 59
CLUTO V GetTreeStats . 61
CLUTO V GetTreeFeatures . 62

6 System Requirements and Contact Information 64

7 Copyright Notice and Usage Terms 64

3

1 Introduction

Clustering algorithms divide data into meaningful or useful groups, called clusters, such that the intra-cluster similarity
is maximized and the inter-cluster similarity is minimized. These discovered clusters can be used to explain the
characteristics of the underlying data distribution and thus serve as the foundation for various data mining and analysis
techniques. The applications of clustering include characterization of different customer groups based upon purchasing
patterns, categorization of documents on the World Wide Web, grouping of genes and proteins that have similar
functionality, grouping of spatial locations prone to earth quakes from seismological data, etc.

1.1 What is CLUTO

CLUTO is a software package for clustering low and high dimensional datasets and for analyzing the characteristics of
the various clusters.

CLUTO provides three different classes of clustering algorithms that operate either directly in the object’s feature
space or in the object’s similarity space. These algorithms are based on the partitional, agglomerative, and graph-
partitioning paradigms. A key feature in most of CLUTO’s clustering algorithms is that they treat the clustering
problem as an optimization process which seeks to maximize or minimize a particular clustering criterion function
defined either globally or locally over the entire clustering solution space. CLUTO provides a total of seven different
criterion functions that can be used to drive both partitional and agglomerative clustering algorithms, that are described
and analyzed in [6, 5]. Most of these criterion functions have been shown to produce high quality clustering solutions
in high dimensional datasets, especially those arising in document clustering. In addition to these criterion functions,
CLUTO provides some of the more traditional local criteria (e.g., single-link, complete-link, and UPGMA) that can
be used in the context of agglomerative clustering. Furthermore, CLUTO provides graph-partitioning-based clustering
algorithms that are well-suited for finding clusters that form contiguous regions that span different dimensions of the
underlying feature space.

An important aspect of partitional-based criterion-driven clustering algorithms is the method used to optimize this
criterion function. CLUTO uses a randomized incremental optimization algorithm that is greedy in nature, has low
computational requirements, and has been shown to produce high-quality clustering solutions [6]. CLUTO’s graph-
partitioning-based clustering algorithms utilize high-quality and efficient multilevel graph partitioning algorithms de-
rived from the METIS and hMETIS graph and hypergraph partitioning algorithms [4, 3].

CLUTO also provides tools for analyzing the discovered clusters to understand the relations between the objects
assigned to each cluster and the relations between the different clusters, and tools for visualizing the discovered
clustering solutions. CLUTO can identify the features that best describe and/or discriminate each cluster. These set of
features can be used to gain a better understanding of the set of objects assigned to each cluster and to provide concise
summaries about the cluster’s contents. Moreover, CLUTO provides visualization capabilities that can be used to see
the relationships between the clusters, objects, and features.

CLUTO’s algorithms have been optimized for operating on very large datasets both in terms of the number of objects
as well as the number of dimensions. This is especially true for CLUTO’s algorithms for partitional clustering. These
algorithms can quickly cluster datasets with several tens of thousands objects and several thousands of dimensions.
Moreover, since most high-dimensional datasets are very sparse, CLUTO directly takes into account this sparsity and
requires memory that is roughly linear on the input size.

CLUTO’s distribution consists of both stand-alone programs (vcluster and scluster) for clustering and analyzing
these clusters, as well as, a library via which an application program can access directly the various clustering and
analysis algorithms implemented in CLUTO.

1.2 Outline of CLUTO’s Manual

CLUTO’s manual is organized as follows. Section 2 describe the major changes from the previous release. Section 3
describes the stand-alone programs provided by CLUTO, and discusses its various options and analysis capabilities.
Section 4 describes the type of clusters that CLUTO’s algorithms can find, and discusses their scalability. Section 5 de-

4

scribes the application programming interface (API) of the stand-alone library that implements the various algorithms
implemented in CLUTO. Finally, Section 6 describes the system requirements for the CLUTO package.

2 Major Changes From Release 1.5

The latest release of CLUTO contains many major additions over its earlier release and a number of minor changes.
The major changes are the following:

1. CLUTO provides a new class of clustering algorithms based on the graph-partitioning paradigm, that are well-
suited for finding non-globular clusters.

2. All of CLUTO’s clustering algorithms have been extended to operate on a user supplied object-to-object sim-
ilarity matrix. This allows CLUTO’s infrastructure to be used for clustering arbitrary datasets (e.g., protein
sequences, 3D structures, etc.), provided that the pair-wise similarity between the objects can be computed.

3. CLUTO’s agglomerative algorithm has been extended to include the traditional single-link, complete-link, and
group-average merging schemes.

4. CLUTO now provides limited support for Euclidean-distance based similarity measures.

5. CLUTO can now compute a clustering solution by combining both partitional and agglomerative approaches.
In this approach, the overall k-way clustering solution is obtained by first finding an m-way clustering solution
using a partitional algorithm (m > k), and then the final solution is obtained by using an agglomerative algorithm
to combine some of these clusters. This framework was motivated by the CHAMELEON clustering algorithm
[2], and can be used to find non-globular clusters.

6. CLUTO’s stand-alone programs and library API have been re-designed to accommodate the additions.

7. CLUTO’s input routines have been modified to automatically detect whether or not the input files are sparse or
dense. As a result, the -denseinput option has been eliminated.

5

3 Using CLUTO via its Stand-Alone Program

CLUTO provides access to its various clustering and analysis algorithms via the vcluster and scluster stand-alone
programs. The key difference between these programs is that vcluster takes as input the actual multi-dimensional
representation of the objects that need to be clustered (i.e., “v” comes from vector), whereas scluster takes as input
the similarity matrix (or graph) between these objects (i.e., “s” comes from similarity). Besides this difference, both
programs provide similar functionality.

The rest of this section describes how to use these programs, how to interpret their output, the format of the various
input files they require, and the format of the output files they produce.

3.1 The vcluster and scluster Clustering Programs

The vcluster and scluster programs are used to cluster a collection of objects into a predetermined number of clusters
k. The vcluster program treats each object as a vector in a high-dimensional space, and it computes the clustering
solution using one of five different approaches. Four of these approaches are partitional in nature, whereas the fifth
approach is agglomerative. On the other hand, the scluster program operates on the similarity space between the
objects and can compute the overall clustering solution using the same set of five different approaches.

Both the vcluster and scluster programs are invoked by providing two required parameters on the command line
along with a number of optional parameters. Their overall calling sequence is as follows:

vcluster [optional parameters] MatrixFile NClusters
scluster [optional parameters] GraphFile NClusters

MatrixFile is the name of the file that stores the n objects to be clustered. In vcluster, each one of these objects is
considered to be a vector in an m-dimensional space. The collection of these objects is treated as an n × m matrix,
whose rows correspond to the objects, and whose columns correspond to the dimensions of the feature space. The
exact format of the matrix-file is described in Section 3.3.1. Similarly, GraphFile, is the name of the file that stores
the adjacency matrix of the similarity graph between the n objects to be clustered. The exact format of the graph-file
is described in Section 3.3.2. The second argument for both programs, NClusters, is the number of clusters that is
desired.

Upon successful execution, vcluster and scluster display statistics regarding the quality of the computed clustering
solution and the amount of time taken to perform the clustering. The actual clustering solution is stored in a file named
MatrixFile.clustering.NClusters (or GraphFile.clustering.NClusters), whose format is described in Section 3.4.1.

The behavior of vcluster and scluster can be controlled by specifying a number of different optional parameters
(described in subsequent sections). These parameters can be broadly categorized into three groups. The first group
controls various aspects of the clustering algorithm, the second group controls the type of analysis and reporting that is
performed on the computed clusters, and the third set controls the visualization of the clusters. The optional parameters
are specified using the standard -paramname or -paramname=value formats, where the name of the optional
parameter paramname can be truncated to a unique prefix of the parameter name.

Examples of Using vcluster and scluster Figure 1 shows the output of vcluster for clustering a matrix into
10 clusters. From this figure we see that vcluster initially prints information about the matrix, such as its name, the
number of rows (#Rows), the number of columns (#Columns), and the number of non-zeros in the matrix (#NonZeros).
Next it prints information about the values of the various options that it used to compute the clustering (we will discuss
the various options in the subsequent sections), and the number of desired clusters (#Clusters). Once it computes the
clustering solution, it displays information regarding the quality of the overall clustering solution and the quality
of each cluster. The meaning of the various measures that are reported will be discussed in Section 3.2. Finally,
vcluster reports the time taken by the various phases of the program. For this particular example, vcluster required
0.920 seconds to read the input file and write the clustering solution, 12.440 seconds to compute the actual clustering
solution, and 0.220 seconds to compute statistics on the quality of the clustering.

Similarly, Figure 2 shows the output of scluster for clustering a different dataset into 10 clusters. In this example

6

�

�

�

�

prompt% vcluster sports.mat 10

vcluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Matrix Information ---
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options --
CLMethod=RB, CRfun=I2, SimFun=Cosine, #Clusters: 10
RowModel=None, ColModel=IDF, GrModel=SY-DIR, NNbrs=40
Colprune=1.00, EdgePrune=-1.00, VtxPrune=-1.00, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=I2, NTrials=10, NIter=10

Solution ---

--
10-way clustering: [I2=2.29e+03] [8580 of 8580]
--
cid Size ISim ISdev ESim ESdev
0 364 +0.166 +0.050 +0.020 +0.005 |
1 628 +0.106 +0.041 +0.022 +0.007 |
2 793 +0.102 +0.036 +0.018 +0.006 |
3 754 +0.100 +0.034 +0.021 +0.006 |
4 845 +0.095 +0.035 +0.023 +0.007 |
5 637 +0.079 +0.036 +0.022 +0.008 |
6 1724 +0.059 +0.026 +0.022 +0.007 |
7 703 +0.049 +0.018 +0.016 +0.006 |
8 1025 +0.054 +0.016 +0.021 +0.006 |
9 1107 +0.029 +0.010 +0.017 +0.006 |

--

Timing Information ---
I/O: 0.920 sec
Clustering: 12.440 sec
Reporting: 0.220 sec

Figure 1: Output of vcluster for matrix sports.mat and a 10-way clustering.

the similarity between the objects was computed as the cosine between the object vectors. From this figure we see
that scluster initially prints information about the graph, such as its name, the number of vertices (#vtxs), and the
number of edges in the graph (#Edges). Next it prints information about the values of the various options that it used
to compute the clustering, and the number of desired clusters (#Clusters). Once it computes the clustering solution,
it displays information regarding the quality of the overall clustering solution and the quality of each cluster. Finally,
scluster reports the time taken by the various phases of the program. For this particular example, scluster required
12.930 seconds to read the input file and write the clustering solution, 34.730 seconds to compute the actual clustering
solution, and 0.610 seconds to compute statistics on the quality of the clustering. Note that even though the dataset
used by scluster contained only 3204 objects, it took almost 3× more time than that required by vcluster to cluster a
dataset with 8580 objects. The performance difference between these two approaches is due to the fact that scluster
operates on the graph that in this example contains almost 32042 edges.

3.1.1 Clustering Algorithm Parameters

There are a total of 18 different optional parameters that control how vcluster and scluster compute the clustering
solution. The name and function of these parameters is described in the rest of this section. Note for each parameter
we also list the program(s) for which they are applicable.

-clmethod=string vcluster & scluster
This parameter selects the method to be used for clustering the objects. The possible values are:

rb In this method, the desired k-way clustering solution is computed by performing a sequence of
k − 1 repeated bisections. In this approach, the matrix is first clustered into two groups, then one
of these groups is selected and bisected further. This process continuous until the desired number
of clusters is found. During each step, the cluster is bisected so that the resulting 2-way clustering
solution optimizes a particular clustering criterion function (which is selected using the -crfun
parameter). Note that this approach ensures that the criterion function is locally optimized within
each bisection, but in general is not globally optimized. The cluster that is selected for further
partitioning is controlled by the -cstype parameter. By default, vcluster uses this approach to find

7

�

�

�

�

prompt% scluster la1.graph 10

scluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Graph Information --
Name: la1.graph, #Vtxs: 3204, #Edges: 10252448

Options --
CLMethod=RB, CRfun=I2, #Clusters: 10
EdgePrune=-1.00, VtxPrune=-1.00, GrModel=SY-DIR, NNbrs=40, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=I2, NTrials=10, NIter=10

Solution ---

--
10-way clustering: [I2=6.59e+02] [3204 of 3204]
--
cid Size ISim ISdev ESim ESdev
0 93 +0.128 +0.045 +0.013 +0.003 |
1 261 +0.083 +0.025 +0.013 +0.003 |
2 214 +0.048 +0.024 +0.015 +0.005 |
3 191 +0.043 +0.014 +0.013 +0.004 |
4 285 +0.040 +0.015 +0.013 +0.004 |
5 454 +0.036 +0.015 +0.013 +0.005 |
6 302 +0.035 +0.015 +0.011 +0.004 |
7 307 +0.027 +0.009 +0.012 +0.004 |
8 504 +0.027 +0.010 +0.014 +0.005 |
9 593 +0.032 +0.013 +0.012 +0.004 |

--

Timing Information ---
I/O: 12.930 sec
Clustering: 34.730 sec
Reporting: 0.610 sec

Figure 2: Output of scluster for graph la1.graph and a 10-way clustering.

the k-way clustering solution.

rbr In this method the desired k-way clustering solution is computed in a fashion similar to the
repeated-bisecting method but at the end, the overall solution is globally optimized. Essentially,
vcluster uses the solution obtained by -clmethod=rb as the initial clustering solution and tries to
further optimize the clustering criterion function.

direct In this method, the desired k-way clustering solution is computed by simultaneously finding all k
clusters. In general, computing a k-way clustering directly is slower than clustering via repeated
bisections. In terms of quality, for reasonably small values of k (usually less than 10–20), the
direct approach leads to better clusters than those obtained via repeated bisections. However, as k
increases, the repeated-bisecting approach tends to be better than direct clustering.

agglo In this method, the desired k-way clustering solution is computed using the agglomerative paradigm
whose goal is to locally optimize (minimize or maximize) a particular clustering criterion function
(which is selected using the -crfun parameter). The solution is obtained by stopping the agglom-
eration process when k clusters are left.

graph In this method, the desired k-way clustering solution is computed by first modeling the objects
using a nearest-neighbor graph (each object becomes a vertex, and each object is connected to
its most similar other objects), and then splitting the graph into k-clusters using a min-cut graph
partitioning algorithm. Note that if the graph contains more than one connected component,
then vcluster and scluster return a (k +m)-way clustering solution, wherem is the number
of connected components in the graph.

The suitability of these clustering methods are in general domain and application dependent. Section 4
discusses relative merits of the various methods and their scalability characteristics. Also, you can refer to
[6, 5] (which are included with CLUTO’ distribution) for a detailed comparisons of the rb, rbr, direct, and
agglo approaches in the context of clustering document datasets.

-sim=string vcluster
Selects the similarity function to be used for clustering. The possible values are:

8

cos The similarity between objects is computed using the cosine function. This is the default setting.

corr The similarity between objects is computed using the correlation coefficient.

dist The similarity between objects is computed to be inversely proportional to the Euclidean distance
between the objects. This similarity function is only applicable when -clmethod=graph.

The runtime of vcluster may increase for -sim=corr, as it needs to store and operate on the dense n × m
matrix.

-crfun=string vcluster & scluster
This parameter selects the particular clustering criterion function to be used in finding the clusters. A total
of seven different clustering criterion functions are provided that are selected by specifying the appropriate
integer value. The possible values for -crfun are:

i1 Selects the I1 criterion function.

i2 Selects the I2 criterion function. This is the default setting for all but the graph-based clustering
method, which uses a min-cut based criterion function.

e1 Selects the E1 criterion function.

g1 Selects the G1 criterion function.

g1p Selects the G1′ criterion function.

h1 Selects the H1 criterion function.

h2 Selects the H2 criterion function.

slink Selects the traditional single-link criterion function.

wslink Selects a cluster-weighted single-link criterion function.

clink Selects the traditional complete-link criterion function.

wclink Selects a cluster-weighted complete-link criterion function.

upgma Selects the traditional UPGMA criterion function.

The precise mathematical definition of the first seven functions is shown in Table 1. The reader is referred to
[6] for both a detailed description and evaluation of the various criterion functions. The slink, wslink, clink,
wclink, and upgma criterion functions can only be used within the context of agglomerative clustering, and
cannot be used for partitional clustering.

The wslink and wclink criterion function were designed for building an agglomerative solution on top of
an existing clustering solution (see -agglofrom, or -showtree options). In this context, the weight of the
“link” between two clusters Si and S j is set equal to the aggregate similarity between the objects of Si to
the objects in S j divided by the total similarity between the objects in Si

⋃
S j .

The various criterion functions can sometimes lead to significantly different clustering solutions. In general,
the �2 and �2 criterion functions lead to very good clustering solutions, whereas the �1 and � ′

1 criterion
functions leads to solutions that contain clusters that are of comparable size. However, the choice of the
right criterion function depends on the underlying application area, and the user should perform some
experimentation before selecting one appropriate for his/her needs.

Note that the computational complexity of the agglomerative clustering algorithm (i.e., -clmethod=agglo)
depends on the criterion function that is selected. In particular, if n is the number of objects, the complexity
for �1 and �2 criterion functions is O(n3), whereas the complexity of the remaining criterion functions
is O(n2 log n). The higher complexity for �1 and �2 is due to the fact that these two criterion functions
are defined globally over the entire solution and they cannot be accurately evaluated based on the local
combination of two clusters.

9

Criterion Function Optimazition Function

�1 maximize
k∑

i=1

1

ni

(∑
v,u∈Si

sim(v, u)

)
(1)

�2 maximize
k∑

i=1

√ ∑
v,u∈Si

sim(v, u) (2)

�1 minimize
k∑

i=1

ni

∑
v∈Si ,u∈S sim(v, u)√∑

v,u∈Si
sim(v, u)

(3)

�1 minimize
k∑

i=1

∑
v∈Si ,u∈S sim(v, u)∑
v,u∈Si

sim(v, u)
(4)

�′
1 minimize

k∑
i=1

n2
i

∑
v∈Si ,u∈S sim(v, u)∑
v,u∈Si

sim(v, u)
(5)

�1 maximize
�1

�1
(6)

�2 maximize
�2

�1
(7)

Table 1: The mathematical definition of CLUTO’s clustering criterion functions. The notation in these equations are as follows: k
is the total number of clusters, S is the total objects to be clustered, Si is the set of objects assigned to the i th cluster, ni is the
number of objects in the i th cluster, v and u represent two objects, and sim(v, u) is the similarity between two objects.

-agglofrom=int vcluster & scluster
This parameter instructs the clustering programs to compute a clustering by combining both the partitional
and agglomerative methods. In this approach, the desired k-way clustering solution is computed by first
clustering the dataset into m clusters (m > k), and then the final k-way clustering solution is obtained by
merging some of these clusters using an agglomerative algorithm. The number of clusters m is the input
to this parameter. The method used to obtained the agglomerative solution is controlled by the -agglocrfun
parameter.

This approach was motivated by the two-phase clustering approach of the CHAMELEON algorithm [2], and
was designed to allow the user to compute a clustering solution that uses a different clustering criterion
function for the partitioning phase from that used for the agglomeration phase. An application of such
an approach is to allow the clustering algorithm to find non-globular clusters. In this case, the partitional
clustering solution can be computed using a criterion function that favors globular clusters (e.g., ‘i2’), and
then combine these clusters using a single-link approach (e.g., ‘wslink’) to find non-globular but well-
connected clusters. Figure 3 shows two such examples for two 2D point datasets.

-agglocrfun=string vcluster & scluster
This parameter controls the criterion function that is used during the agglomeration when -agglofrom option
was specified. The values that this parameter can take are identical to those used by the -crfun parameter.
If -agglocrfun is not specified, then for all but the graph-partitioning-based clustering methods it uses
the same criterion function as that used to find the clusters. In the case of the graph-partitioning-based
clustering methods, it uses the “wslink” criterion function.

-cstype=string vcluster & scluster
This parameter selects the method that is used to select the cluster to be bisected next when -clmethod is
equal to “rb”, “rbr”, or “graph”. The possible values are:

large Selects the largest cluster to be bisected next.

10

(a) (b)

Figure 3: Examples of using the -agglofrom option for two spatial datasets. The result in (a) was obtained by running ‘vclus-
ter t4.mat 6 -clmethod=graph -sim=dist -agglofrom=30’ and the results in (b) was obtained by running ‘vcluster t7.mat 9 -
clmethod=graph -sim=dist -agglofrom=30’.

best Selects the cluster whose bisection will optimize the value of the overall clustering criterion
function the most. This is the default option.

Note that in the case of graph-partitioning based clustering, the overall criterion function is
evaluated in terms of the ratio cut, as to prevent (up to a point) the creation of very small clusters.
However, this method is not 100% robust, so if you notice that in your dataset you are getting
a clustering solution that contains very large and very small clusters, you should use “large”
instead.

-fulltree=string vcluster & scluster
Builds a complete hierarchical tree that preserves the clustering solution that was computed. In this hierar-
chical clustering solution, the objects of each cluster form a subtree, and the different subtrees are merged
to get an all inclusive cluster at the end. The hierarchical agglomerative clustering is computed so that it
optimizes the selected clustering criterion function (specified by -crfun). This option should be used to
obtain a hierarchical agglomerative clustering solution for very large data sets, and for re-ordering the rows
of the matrix when -plotmatrix is specified. Note that this option can only be used with the “rb”, “rbr”, and
“direct” clustering methods.

-rowmodel=string vcluster
Selects the model to be used to scale the various columns of each row. The possible values are:

none The columns of each row are not scaled and used as they are provided in the input file. This is
the default setting.

maxtf The columns of each row are scaled so that their values are between 0.5 and 1.0. In particular,
the j th column of the i th row of the matrix (ri, j) is scaled to be equal to

r ′
i, j = 0.5 + 0.5

ri, j

maxl(ri,l)
.

This scaling was motivated by a similar scaling of document vectors in information retrieval,
and it is referred to as the MAXTF scaling scheme.

sqrt The columns of each row are scaled to be equal to the square-root of their actual values. That
is, r ′

i, j = sign(ri, j)
√

ri, j , where sign(ri, j) is 1.0 or -1.0, depending on whether or not ri, j is
positive or negative. This scaling is referred to as the SQRT scaling scheme.

log The columns of each row are scaled to be equal to the log of their actual values. That is,
r ′

i, j = sign(ri, j) log2 ri, j . This scaling is referred to as the LOG scaling scheme.

11

The last three scaling schemes are primarily used to smooth large values in certain columns (i.e., dimen-
sions) of each vector.

-colmodel=string vcluster
Selects the model to be used to scale the various columns globally across all the rows. The possible values
are:

none The columns of the matrix are not globally scaled, and they are used as is. This is the default
setting used by vcluster when the correlation coefficient-based similarity function is used.

idf The columns of the matrix are scaled according to the inverse-document-frequency (IDF) paradigm,
used in information retrieval. In particular, if rfi is the number of rows that the i th column be-
longs to, then each entry of the i th column is scaled by − log2(rfi/n). The effect of this scaling is
to de-emphasize columns that appear in many rows. This is the default setting used by vcluster
when the cosine similarity function is used.

The global scaling of the columns occurs after the per-row column scaling selected by the -rowmodel
parameter has been performed.

The choice of the options for both -rowmodel and -colmodel were motivated by the clustering requirements
of high-dimensional datasets arising in document and commercial datasets. However, for other domains
the provided options may not be sufficient. In such domains, the data should be pre-processed to apply
the desired row/column model before supplying them to CLUTO. In that case -rowmodel=none and -
colmodel=none should probably be used.

-colprune=float vcluster
Selects the factor by which vcluster will prune the columns before performing the clustering. This is a
number p between 0.0 and 1.0 and indicates the fraction of the overall similarity that the retained columns
must account for. For example, if p = 0.9, vcluster first determines how much each column contributes to
the overall pairwise similarity between the rows, and then selects as many of the highest contributing
columns as required to account for 90% of the similarity. Reasonable values are within the range of
(0.8 · · · 1.0), and the default value used by vcluster is 1.0, indicating that no columns will be pruned.
In general, this parameter leads to a substantial reduction of the number of columns (i.e., dimensions)
without seriously affecting the overall clustering quality.

-nnbrs=int vcluster & scluster
This parameter specifies the number of nearest neighbors of each object that will be used in creating the
nearest neighbor graph that is used by the graph-partitioning based clustering algorithm. The exact ap-
proach of combining these nearest-neighbors to create the graph is controlled by the -grmodel parameter.
The default value for this parameter is set to 40.

-grmodel=string vcluster & scluster
This parameter controls the type of nearest-neighbor graph that will be constructed on the fly and supplied
to the graph-partitioning based clustering algorithm. The possible values are:

sd Symmetric-Direct
A graph is constructed so that there will be an edge between two objects u and v if and only if
both of them are in the nearest-neighbor lists of each other. That is, v is one of the nnbrs of u
and vice versa. The weight of this edge is set equal to the similarity of the objects (or inversely
related to their distance). This is the default option used by both vcluster and scluster.

ad Asymmetric-Direct
A graph is constructed so that there will be an edge between two objects u and v as long as one
of them is in the nearest-neighbor lists of the other. That is, v is one of the nnbrs of u and/or u
is one of the nnbrs of v. The weight of this edge is set equal to the similarity of the objects (or
inversely related to their distance).

12

sl Symmetric-Link
A graph is constructed that has exactly the same adjacency structure as that of the “sd” option.
However, the weight of each edge (u, v) is set equal to the number of vertices that are in common
in the adjacency lists of u and v (i.e., is equal to the number of shared nearest neighbors). We
will refer to this as the link(u, v) count between u and v. This option was motivated by the link
graph used by the CURE clustering algorithm [1].

al Asymmetric-Link
A graph is constructed that has exactly the same adjacency structure as that of the “ad” option.
However, the weight of each edge (u, v) is set in a fashion similar to “sl”.

none This option is used only by scluster and indicates that the input graph will be used as is.

-edgeprune=float vcluster & scluster
This parameter can be used to eliminate certain edges from the nearest-neighbor graph that will tend to
connect vertices belonging to different clusters. In particular, if x is the supplied parameter, then an edge
(u, v) will be eliminated if and only if

link(u, v) < x ∗ nnbrs,

where link(u, v) is as defined in -grmodel=sl, and nnbrs is the number of nearest neighbors used in creating
the graph.

The basic motivation behind this pruning method is that if two vertices are part of the same cluster they
should be part of a well-connected subgraph (i.e., be part of a sufficiently large clique-like subgraph).
Consequently, their adjacency lists must have many common vertices. If that does not happen, then that
edge may have been created because these objects matched in non-relevant aspects of their feature vectors,
or it may be an edge bridging separate clusters. In either case, it can potentially be eliminated.

The default value of this parameter is set to -1, indicating no edge-pruning. Reasonable values for this
parameter are within [0.0, 0.5] when -grmodel is ‘sd’ or ‘sl’, and [1.0, 1.5] when -grmodel is ‘ad’ or ‘al’.

Note that this parameter is used only by the graph-partitioning based clustering algorithm.

-vtxprune=float vcluster & scluster
This parameter is used to eliminate certain vertices from the nearest-neighbor graph that tend to be outliers.
In particular, if x is the supplied parameter, then a vertex u will be eliminated if its degree is less than
x ∗ nnbrs. The key idea behind this method, especially when the symmetric graph models are used, is that
if a particular vertex u is not in the the nearest-neighbor list of its nearest-neighbors, then it will most likely
be an outlier.

The default value of this parameter is set to -1, indicating no vertex-pruning. Reasonable values for this
parameter are within [0.0, 0.5] when -grmodel is ‘sd’ or ‘sl’, and [1.0, 1.5] when -grmodel is ‘ad’ or ‘al’.
Note that by using relatively large values for -edgeprune and -vtxprune you can obtain a graph that contains
many small connected components. Such components often correspond to tight clusters in the dataset. This
is illustrated in Figure 4. Note that the clustering solution in this example has 48 connected components
larger than five vertices, containing only 1345 out of the 8580 objects (please refer to Section 3.2 to find
out how to interpret these results).

The vertex-pruning is applied after the edge-pruning has been done.

Note that this parameter is used only by the graph-partitioning based clustering algorithm.

-mincomponent=int vcluster & scluster
This parameter is used to eliminate small connected components from the nearest-neighbor graph prior to
clustering. In general, if the edge- and vertex-pruning options are used, the resulting graph may have a
large number of small connect components (in addition to larger ones). By eliminating (i.e., not clustering)

13

�

�

�

�

prompt% vcluster -rclassfile=sports.rclass -clmethod=graph -edgeprune=0.4 -vtxprune=0.4 sports.mat 1

vcluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Matrix Information ---
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options --
CLMethod=GRAPH, CRfun=Cut, SimFun=Cosine, #Clusters: 1
RowModel=None, ColModel=IDF, GrModel=SY-DIR, NNbrs=40
Colprune=1.00, EdgePrune=0.40, VtxPrune=0.40, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=SLINK_W, NTrials=10, NIter=10

Solution ---

48-way clustering: [Cut=7.19e+03] [1345 of 8580], Entropy: 0.086, Purity: 0.929

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 41 +0.776 +0.065 +0.000 +0.000 0.000 1.000 | 41 0 0 0 0 0 0
1 41 +0.745 +0.067 +0.000 +0.000 0.000 1.000 | 41 0 0 0 0 0 0
2 11 +0.460 +0.059 +0.000 +0.000 0.000 1.000 | 0 11 0 0 0 0 0
3 11 +0.439 +0.055 +0.000 +0.001 0.157 0.909 | 0 1 10 0 0 0 0
4 33 +0.426 +0.159 +0.000 +0.000 0.432 0.727 | 3 1 24 5 0 0 0
5 33 +0.434 +0.119 +0.000 +0.000 0.000 1.000 | 0 0 33 0 0 0 0
6 9 +0.410 +0.031 +0.001 +0.000 0.000 1.000 | 0 0 9 0 0 0 0
7 29 +0.400 +0.087 +0.000 +0.000 0.000 1.000 | 0 29 0 0 0 0 0
8 14 +0.402 +0.058 +0.000 +0.000 0.000 1.000 | 14 0 0 0 0 0 0
9 21 +0.399 +0.091 +0.000 +0.000 0.000 1.000 | 0 0 21 0 0 0 0

10 36 +0.381 +0.067 +0.000 +0.000 0.000 1.000 | 0 0 0 0 0 36 0
11 27 +0.375 +0.050 +0.000 +0.000 0.000 1.000 | 0 0 0 27 0 0 0
12 41 +0.370 +0.071 +0.000 +0.000 0.000 1.000 | 0 41 0 0 0 0 0
13 39 +0.371 +0.095 +0.000 +0.000 0.687 0.487 | 7 9 19 2 1 0 1
14 37 +0.366 +0.088 +0.000 +0.000 0.000 1.000 | 0 0 37 0 0 0 0
15 18 +0.357 +0.043 +0.000 +0.000 0.000 1.000 | 0 18 0 0 0 0 0
16 10 +0.351 +0.021 +0.000 +0.000 0.000 1.000 | 10 0 0 0 0 0 0
17 5 +0.345 +0.012 +0.000 +0.000 0.000 1.000 | 5 0 0 0 0 0 0
18 23 +0.345 +0.055 +0.000 +0.000 0.000 1.000 | 23 0 0 0 0 0 0
19 12 +0.340 +0.043 +0.000 +0.000 0.000 1.000 | 12 0 0 0 0 0 0
20 20 +0.328 +0.059 +0.000 +0.000 0.000 1.000 | 0 0 20 0 0 0 0
21 18 +0.323 +0.040 +0.001 +0.001 0.000 1.000 | 0 0 18 0 0 0 0
22 5 +0.316 +0.025 +0.000 +0.000 0.000 1.000 | 5 0 0 0 0 0 0
23 8 +0.314 +0.021 +0.000 +0.000 0.289 0.750 | 0 2 6 0 0 0 0
24 12 +0.321 +0.036 +0.000 +0.000 0.000 1.000 | 12 0 0 0 0 0 0
25 36 +0.312 +0.054 +0.001 +0.001 0.065 0.972 | 35 0 1 0 0 0 0
26 7 +0.305 +0.040 +0.000 +0.000 0.000 1.000 | 0 0 7 0 0 0 0
27 25 +0.321 +0.042 +0.000 +0.000 0.000 1.000 | 0 25 0 0 0 0 0
28 23 +0.309 +0.047 +0.000 +0.000 0.000 1.000 | 23 0 0 0 0 0 0
29 41 +0.297 +0.056 +0.001 +0.001 0.000 1.000 | 41 0 0 0 0 0 0
30 20 +0.293 +0.053 +0.000 +0.000 0.000 1.000 | 0 20 0 0 0 0 0
31 30 +0.294 +0.068 +0.000 +0.000 0.000 1.000 | 30 0 0 0 0 0 0
32 14 +0.280 +0.032 +0.000 +0.000 0.000 1.000 | 0 0 0 0 0 0 14
33 37 +0.290 +0.054 +0.000 +0.000 0.000 1.000 | 0 0 0 37 0 0 0
34 45 +0.273 +0.097 +0.000 +0.000 0.000 1.000 | 0 0 0 0 45 0 0
35 22 +0.257 +0.046 +0.000 +0.000 0.000 1.000 | 0 0 0 0 0 0 22
36 36 +0.267 +0.064 +0.000 +0.000 0.406 0.556 | 1 15 20 0 0 0 0
37 34 +0.251 +0.075 +0.000 +0.000 0.068 0.971 | 33 1 0 0 0 0 0
38 31 +0.249 +0.065 +0.000 +0.000 0.146 0.935 | 0 29 1 1 0 0 0
39 36 +0.247 +0.062 +0.000 +0.000 0.000 1.000 | 0 36 0 0 0 0 0
40 26 +0.255 +0.088 +0.000 +0.000 0.000 1.000 | 26 0 0 0 0 0 0
41 20 +0.241 +0.046 +0.000 +0.000 0.000 1.000 | 0 0 0 0 0 0 20
42 26 +0.236 +0.083 +0.000 +0.000 0.000 1.000 | 0 26 0 0 0 0 0
43 5 +0.297 +0.081 +0.000 +0.000 0.000 1.000 | 0 0 0 5 0 0 0
44 36 +0.170 +0.053 +0.000 +0.000 0.000 1.000 | 0 0 0 0 0 36 0
45 84 +0.145 +0.046 +0.000 +0.001 0.000 1.000 | 0 0 84 0 0 0 0
46 64 +0.147 +0.055 +0.000 +0.001 0.000 1.000 | 0 0 64 0 0 0 0
47 93 +0.111 +0.047 +0.000 +0.000 0.504 0.527 | 37 2 49 3 2 0 0

Timing Information ---
I/O: 5.680 sec
Clustering: 17.480 sec
Reporting: 0.050 sec

Figure 4: Output of vcluster for matrix sports.mat using 0.4 for edge- and vertex-prune.

14

the smaller components eliminates some of the clutter in the resulting clustering solution, and it removes
some additional outliers. The default value for this parameter is set to five.

Note that this parameter is used only by the graph-partitioning based clustering algorithm.

-ntrials=int vcluster & scluster
Selects the number of different clustering solutions to be computed by the various partitional algorithms.
If l is the supplied number, then vcluster and scluster computes a total of l clustering solutions (each one
of them starting with a different set of seed objects), and then selects the solution that has the best value of
the criterion function that was used. The default value for vcluster is 10.

-niter=int vcluster & scluster
Selects the maximum number of refinement iterations to be performed, within each clustering step. Rea-
sonable values for this parameter are usually in the range of 5–20. This parameter applies only to the
partitional clustering algorithms. The default value is set to 10.

-seed=int vcluster & scluster
Selects the seed of the random number generator to be used by vcluster and scluster.

3.1.2 Reporting and Analysis Parameters

There are a total of 13 different optional parameters that control the amount of information that vcluster and scluster
report about the clusters, as well as, the analysis that they perform on the discovered clusters. The name and function
of these parameters is as follows:

-nooutput vcluster & scluster
Specifies that vcluster and scluster should not write the clustering vector and/or agglomerative trees onto
the disk.

-clustfile=string vcluster & scluster
Specifies the name of the file onto which the clustering vector should be written. The format of this file
is described in Section 3.4.1 If this parameter is not specified, then the clustering vector is written to
the MatrixFile.clustering.NClusters (GraphFile.clustering.NClusters) file, where MatrixFile (GraphFile)
is the name of the file that stores the matrix (graph) to be clustered, and NClusters is the number of desired
clusters.

-treefile=string vcluster & scluster
Specifies the name of the file onto which the hierarchical agglomerative tree should be written. This tree is
created either when -clmethod=agglo, or when -fulltree was specified. The format of this file is described in
Section 3.4.2. By default, the tree is written in the file MatrixFile.tree (GraphFile.tree), where MatrixFile
(GraphFile) is the name of the file storing the input matrix (graph).

-cltreefile=string vcluster & scluster
Specifies the name of the file onto which the hierarchical agglomerative tree build on top of the clustering
solution should be written. This tree is created either when -showtree, was specified. The format of
this file is described in Section 3.4.2. By default, the tree is written in the file MatrixFile.cltree.NClusters
(GraphFile.cltree.NClusters) , where MatrixFile (GraphFile) is the name of the file storing the input matrix
(graph), and NClusters is the number of desired clusters.

-clabelfile=string vcluster
Specifies the name of the file that stores the labels of the columns. The labels of the columns are used
for reporting purposes when the -showfeatures or the -labeltree options are specified. The format of this
file is described in Section 3.3.4. If this parameter is not specified, vcluster looks to see if a file called
MatrixFile.clabel exists, and if it does, reads this file, instead. If no file is provided or the default file does
not exist, then the label of the j th column becomes “colj” (i.e., it is labeled by its corresponding column-id).

15

-rlabelfile=string vcluster & scluster
Specifies the name of the file that stores the labels of the rows (vertices). The labels of the rows (vertices)
are used for reporting purposes when the -plotmatrix or the -plotsmatrix options are specified. The format
of this file is described in Section 3.3.3. If this parameter is not specified, vcluster (scluster) looks to see
if a file called MatrixFile.rlabel (GraphFile.rlabel) exists, and if it does, reads this file, instead. If no file is
provided or the default file does not exist, then the label of the j th row or vertex becomes “rowj” (i.e., it is
labeled by its corresponding row-id).

-rclassfile=string vcluster & scluster
Specifies the name of the file that stores the class-labels of the rows (vertices) (i.e., the objects to be
clustered). This is used by vcluster (scluster) to compute the quality of the clustering solution using
external quality measures and to output how the objects of different classes are distributed among clusters.
The format of this file is described in Section 3.3.5. If this parameter is not specified, vcluster (scluster)
looks to see if a file called MatrixFile.rlabel (GraphFile.rlabel) exists, and if it does, reads this file, instead.
If no file is provided or the default file does not exist, vcluster and scluster assume that the class labels of
the objects are not known and do not perform any cluster-quality analysis based on external measures.

-showfeatures vcluster
This parameter instructs vcluster to analyze the discovered clusters and identify the set of features (i.e.,
columns of the matrix) that are most descriptive of each cluster and the set of features that best discriminate
each cluster from the rest of the objects. The set of descriptive features is determined by selecting the
columns that contribute the most to the average similarity between the objects of each cluster. On the other
hand, the set of discriminating features is determined by selecting the columns that are more prevalent in the
cluster compared to the rest of the objects. In general, there will be a large overlap between the descriptive
and discriminating features. However, in some cases there may be certain differences, especially when
-colmodel=none. This analysis can only be performed when the similarity between objects is computed
using the cosine or correlation coefficient.

-nfeatures=int vcluster
Specifies the number of descriptive and discriminating features to display for each cluster when the
-showfeatures or -labeltree options are used. The default value for this parameter is five (5).

-showtree vcluster & scluster
This parameter instructs vcluster and scluster to build and display a hierarchical agglomerative tree on top
of the clustering solution that was obtained. This tree will have NClusters leaves, each one corresponding
to one of the discovered clusters, and provides a way of visualizing how the different clusters are related
to each other. The criterion function used in building this tree is controlled by the -agglocrfun parameter.
If this parameter is not specified then the criterion function used to build the clustering solution is used for
all method except -clmethod=graph, for which the wslink is used.

-labeltree vcluster & scluster
This parameter instructs vcluster and scluster to label the nodes of the tree with the set of features that
best describe the corresponding clusters. The method used for determining these features is identical to
that used in -showfeatures. Note that the descriptive features for both the leaves (i.e., original clusters), as
well as, the internal nodes of the tree are displayed. The number of features that is displayed is controlled
by the -nfeatures parameter. This analysis can only be performed when the similarity between objects is
computed using the cosine or correlation coefficient.

-zscores vcluster & scluster
This parameter instructs vcluster and scluster to analyze each cluster and for each object to output the
z-score of its similarity to the other objects in its own cluster (internal z-score), as well as, the objects of
the different clusters (external z-score). The various z-score values are stored in the clustering file whose
format is described in Section 3.4.1.

16

The internal z-score of an object j that is part of the lth cluster is given by (s I
j − µI

l)/σ I
l , where s I

j is the

average similarity between the j th object and the rest of the objects in its cluster, µI
l is the average of the

various s I
j values over all the objects in the lth, and σ I

l is the standard deviation of these similarities.

The external z-score of an object j that is part of the lth cluster is given by (s E
j − µE

l)/σ E
l , where s E

j

is the average similarity between the j th object and the objects in the other clusters, µE
l is the average

of the various s E
j values over all the objects in the lth cluster, and σ E

l is the standard deviation of these
similarities.

Objects that have large values of the internal z-score and small values of the external z-score will tend to
form the core of their clusters.

-help vcluster & scluster
This options instructs vcluster to print a short description of the various command line parameters.

3.1.3 Cluster Visualization Parameters

The vcluster and scluster clustering programs can also produce visualizations of the computed clustering solutions.
These visualizations are relatively simple plots of the original input matrix that show how the different objects (i.e.,
rows) and features (i.e., columns) are clustered together.

There are a total of nine optional parameters that control the type of visualization that vcluster performs. The name
and function of these parameters is as follows:

-plotformat=string vcluster & scluster
Selects the format of the graphics files produced by the visualizations. The possible values for this option
are:

ps Outputs an encapsulated postscript1 file. This is the default option.

fig Outputs the visualization in a format that is compatible with the Unix XFig program. This file
can then be edited with XFig.

ai Outputs the visualization in a format that is compatible with the Adobe Illustrator program. This
file can then be edited with Illustrator or other programs that understand this format (e.g., Visio).

svg Outputs the visualization in the XML-based Scalable Vector Format that can be viewed by mod-
ern web-browsers (if the appropriate plug-in is installed).

cgm Outputs the visualization in the WebCGM format.

pcl Outputs the visualization in HP’s PCL 5 format used by many laserjet or compatible printers.

gif Outputs the visualization in widely used GIF bitmap format.

-plottree=string vcluster & scluster
Produces a graphic representation of the entire hierarchical tree produced when -clmethod=agglo or when
the -fulltree option was specified. The leaves of this tree are labeled based on the supplied row labels (i.e.,
via the -rlabelfile parameter).

-plotmatrix=string vcluster
Produces a visualization that shows how the rows of the original matrix are clustered together. This is done
by showing an appropriate row- and possibly a column-permutation of the original matrix, along with a
color-intensity plot of the various values of the matrix. The actual visualization is stored in the file whose
name is supplied as an option to -plotmatrix.

1Sometimes, while trying to convert the postscript files generated by CLUTO into PDF format using Adobe’s distiller you may notice that the
text is not included in the PDF file. To correct this problem reconfigure your distiller not to include truetype fonts when the required text font is part
of the standard postscript fonts.

17

In this matrix permutation, the rows of the matrix assigned to the same cluster are re-ordered to be at
consecutive rows, followed by a reordering of the clusters. The actual ordering of the rows and clusters
depends on whether the -fulltree parameter was specified. If it was not specified, then the clusters are
ordered according to their cluster-id number, and within each cluster the rows are numbered according
to the row-id number. However, if -fulltree was specified, both the rows and the clusters are re-ordered
according the hierarchical tree computed by -fulltree. In addition to that, the actual tree is drawn along the
side of the matrix.

If the input matrix is in dense format, then -plotmatrix displays the columns, in column-id order. If the -
clustercolumns option was specified, then the columns are re-ordered according to a hierarchical clustering
solution of the columns.

If the matrix is sparse, only a subset of the columns is displayed, that corresponds to the union of the
descriptive and discriminating features of each cluster computed by -showfeatures. The number of features
from each cluster that is included in that union can be controlled by the -nfeatures parameter. Again, the
columns can be displayed in either the column-id order or if the -clustercolumns option was specified, then
the columns are re-ordered according to a hierarchical clustering solution of the columns.

The labels printed along each row and column of the matrix can be specified by using the -rlabelfile and
-clabelfile, respectively.

The plot uses red to denote positive values and green to denote negative values. Bright red/green indicate
large positive/negative values, whereas colors close to white indicate values close to zero.

-plotsmatrix=string vcluster & scluster
This visualization is similar to that produced by -plotmatrix but was designed to visualize the similarity
graph. In this plot, both the rows and columns of the displayed visualization correspond to the vertices of
the graph.

-plotclusters=string vcluster
Produces a visualization that shows how the clusters are related to each other, by showing a color-intensity
plot of the various values in the various cluster centroid vectors. The actual visualization is stored in the
file whose name is supplied as an option to -plotclusters.

The produced visualization is similar to that produced by -plotmatrix, but now only NClusters rows are
shown, one for each cluster. The height of each row is proportional to the log of the corresponding cluster’s
size. The ordering of the clusters is determined by computing a hierarchical clustering (similar to that
produced via -showtree), and the ordering of the columns is controlled by the -clustercolumns parameter.

The column selection mechanism and color-scheme are identical to that used by -plotmatrix.

-plotsclusters=string vcluster & scluster
This visualization is similar to that produced by -plotclusters but was designed to visualize the similarity
between the clusters. In this plot, both the rows and columns of the displayed visualization correspond to
the graph clusters.

-clustercolumns vcluster
Instructs vcluster to compute a hierarchical clustering of the columns and to reorder them when -plotmatrix
and -plotclusters is specified. This can be used to generate a visualization in which the features are clustered
together.

-noreorder vcluster & scluster
Instructs vcluster and scluster not to try to produce a visually pleasing reordering of the various hierar-
chical trees that is drawing. This option is turned off by default if the number of objects that are clustered
is greater than 4000.

-zeroblack vcluster & scluster
Instructs vcluster and scluster to use black color for denoting zero (or small values) in the matrix.

18

3.2 Understanding the Information Produced by CLUTO’s Clustering Programs

From the description of vcluster’s and scluster’s parameters we can see that they can output a wide-range of infor-
mation and statistics about the clusters that they find. In the rest of this section we describe the format and meaning of
these statistics. Most of our discussion will focus on vcluster’s output, since it is similar to that produced by scluster.

3.2.1 Internal Cluster Quality Statistics

The simpler statistics reported by vcluster & scluster have to do with the quality of each cluster as measured by the
criterion function that it uses and the similarity between the objects in each cluster. In particular, as the example in
Figure 1 shows, the “Solution” section of vcluster’s output displays information about the clustering solution.

The first statistic that it reports is the overall value of the criterion function for the computed clustering solution.
In our example, this is reported as “I2=2.29e+03”, which is the value of the �2 criterion function of the resulting
solution. If a different criterion function is specified (by using the -crfun option), then the overall cluster quality
information will be displayed with respect to that criterion function. In the same line, both programs also display how
many of the original objects they were able to cluster (i.e., “[8204 of 8204]”). In general, both vcluster and
scluster try to cluster all objects. However, when some of the objects (vertices) do not share any dimensions (edges)
with the rest of the objects, or when the various edge- and vertex-pruning parameters are used, both programs may end
up clustering fewer than the total number of input objects.

After that, vcluster then displays a table in which each row contains various statistics for each one of the clusters.
The meaning of the columns of this table is as follows. The column labeled “cid” corresponds to the cluster number
(or cluster id). The column labeled “Size” displays the number of objects that belongs to each cluster. The column
labeled “ISim” displays the average similarity between the objects of each cluster (i.e., internal similarities). The
column labeled “ISdev” displays the standard deviation of these average internal similarities (i.e., internal standard
deviations). The column labeled “ESim” displays the average similarity of the objects of each cluster and the rest
of the objects (i.e., external similarities). Finally, the column labeled “ESdev” display the standard deviation of the
external similarities (i.e., external standard deviations).

Note that the discovered clusters are ordered in increasing (ISIM-ESIM) order. In other words, clusters that are
tight and far away from the rest of the objects have smaller cid values.

3.2.2 External Cluster Quality Statistics

In addition to the internal cluster quality measures, vcluster & scluster can also take into account information about
the classes that the various objects belong to (via the -rclassfile option) and compute various statistics that determine
the quality of the clusters using that information. These statistics are usually referred to as external quality measures
as the quality is determined by looking at information that was not used while finding the clustering solution.

Figure 5 shows the output of vcluster when such a class file is provided for our example sports.mat dataset.
This dataset contains various documents that talk about seven different sports (baseball, basketball, football, hockey,
boxing, bicycling, and golfing), and each document (i.e., object to be clustered) belongs to one of these topics. Once
vcluster finds the 10-way clustering solution, it then uses this class information to analyze both the quality of the
overall clustering solution as well as the quality of each cluster.

Looking at Figure 5 we can see that vcluster, in addition to the overall value of the criterion function, now prints
the entropy and the purity of the clustering solution. For the exact formula of how the entropy and purity of the clus-
tering solution is computed, please refer to [6]. Small entropy values and large purity values indicate good clustering
solutions.

In addition to these measures, the cluster information table now contains two additional sets of information. The
first set is the entropy and purity of each cluster and is displayed in the columns labeled “Entpy” and “Purty”, re-
spectively. The second set is information about how the different classes are distributed in each one of the clusters.
This information is displayed in the last seven columns of this table, whose column labels are derived from the first
four characters if the class names. That is “base” corresponds to baseball, “bask” corresponds to basketball, and so
on. Each column shows the number of documents of this class that are in each cluster. For example, the first cluster

19

�

�

�

�

prompt% vcluster -rclassfile=sports.rclass sports.mat 10

vcluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Matrix Information ---
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options --
CLMethod=RB, CRfun=I2, SimFun=Cosine, #Clusters: 10
RowModel=None, ColModel=IDF, GrModel=SY-DIR, NNbrs=40
Colprune=1.00, EdgePrune=-1.00, VtxPrune=-1.00, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=I2, NTrials=10, NIter=10

Solution ---

10-way clustering: [I2=2.29e+03] [8580 of 8580], Entropy: 0.164, Purity: 0.874

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 364 +0.166 +0.050 +0.020 +0.005 0.018 0.995 | 0 362 2 0 0 0 0
1 628 +0.106 +0.041 +0.022 +0.007 0.006 0.998 | 627 0 1 0 0 0 0
2 793 +0.102 +0.036 +0.018 +0.006 0.020 0.995 | 1 1 1 789 0 0 1
3 754 +0.100 +0.034 +0.021 +0.006 0.010 0.997 | 0 1 752 0 0 0 1
4 845 +0.095 +0.035 +0.023 +0.007 0.023 0.993 | 839 0 5 0 1 0 0
5 637 +0.079 +0.036 +0.022 +0.008 0.012 0.997 | 0 635 1 1 0 0 0
6 1724 +0.059 +0.026 +0.022 +0.007 0.016 0.996 | 1717 3 3 1 0 0 0
7 703 +0.049 +0.018 +0.016 +0.006 0.767 0.458 | 30 24 122 4 118 83 322
8 1025 +0.054 +0.016 +0.021 +0.006 0.026 0.992 | 6 2 1017 0 0 0 0
9 1107 +0.029 +0.010 +0.017 +0.006 0.678 0.399 | 192 382 442 14 3 62 12

Timing Information ---
I/O: 1.500 sec
Clustering: 12.540 sec
Reporting: 0.230 sec

Figure 5: Output of vcluster for matrix sports.mat and a 10-way clustering that uses external quality measures.

contains 360 documents about basketball, and two documents about football. Looking at this class-distribution table,
we can easily determine the quality of the different clusters.

3.2.3 Looking at each Cluster’s Features

By specifying the -showfeatures option, vcluster will analyze each one of the clusters and determine the set of features
(i.e., columns of the matrix) that best describe and discriminate each one of the clusters. Figure 6 shows the output
produced by vcluster when -showfeatures was specified and when a file was provided with the labels of each one of
the columns (via the -clabelfile option).

Looking at this figure, we can see that the set of descriptive and discriminating features are displayed right after
the table that provides statistics for the various clusters. For each cluster, vcluster displays three lines of information.
The first line contains some basic statistics for each cluster (e.g., cid, Size, ISim, ESim), whose meaning is identical
to those displayed in the earlier table. The second line contains the five most descriptive features, whereas the third
line contains the five most discriminating features. The features in these lists are sorted in decreasing descriptive or
discriminating order. The reason that five features are printed is because this is the default value for the -nfeatures
parameter; fewer or more features can be displayed by setting this parameter appropriately.

Right next to each feature, vcluster displays a number that in the case of the descriptive features is the percentage of
the within cluster similarity that this particular feature can explain. For example, for the 0th cluster, the feature “war-
rior” explains 38.4% of the average similarity between the objects of the 0th cluster. A similar quantity is displayed
for each one of the discriminating features, and is the percentage of the dissimilarity between the cluster and the rest
of the objects which this feature can explain. In general there is a large overlap between descriptive and discriminating
features, with the only difference being that the percentages associated with the discriminating features are typically
smaller than the corresponding percentages of the descriptive features. This is because some of the descriptive features
of a cluster may also be present in a small fraction of the objects that do not belong to this cluster.

If no labels for the different columns are provided, vcluster outputs the column number of each feature instead
of its label. This is illustrated in Figure 7 for the same problem in which -clabelfile was not specified. Note that the
columns are numbered from one.

20

�

�

�

�

prompt% vcluster -rclassfile=sports.rclass -clabelfile=sports.clabel -showfeatures sports.mat 10

vcluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Matrix Information ---
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options --
CLMethod=RB, CRfun=I2, SimFun=Cosine, #Clusters: 10
RowModel=None, ColModel=IDF, GrModel=SY-DIR, NNbrs=40
Colprune=1.00, EdgePrune=-1.00, VtxPrune=-1.00, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=I2, NTrials=10, NIter=10

Solution ---

10-way clustering: [I2=2.29e+03] [8580 of 8580], Entropy: 0.164, Purity: 0.874

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 364 +0.166 +0.050 +0.020 +0.005 0.018 0.995 | 0 362 2 0 0 0 0
1 628 +0.106 +0.041 +0.022 +0.007 0.006 0.998 | 627 0 1 0 0 0 0
2 793 +0.102 +0.036 +0.018 +0.006 0.020 0.995 | 1 1 1 789 0 0 1
3 754 +0.100 +0.034 +0.021 +0.006 0.010 0.997 | 0 1 752 0 0 0 1
4 845 +0.095 +0.035 +0.023 +0.007 0.023 0.993 | 839 0 5 0 1 0 0
5 637 +0.079 +0.036 +0.022 +0.008 0.012 0.997 | 0 635 1 1 0 0 0
6 1724 +0.059 +0.026 +0.022 +0.007 0.016 0.996 | 1717 3 3 1 0 0 0
7 703 +0.049 +0.018 +0.016 +0.006 0.767 0.458 | 30 24 122 4 118 83 322
8 1025 +0.054 +0.016 +0.021 +0.006 0.026 0.992 | 6 2 1017 0 0 0 0
9 1107 +0.029 +0.010 +0.017 +0.006 0.678 0.399 | 192 382 442 14 3 62 12

--
10-way clustering solution - Descriptive & Discriminating Features...
--
Cluster 0, Size: 364, ISim: 0.166, ESim: 0.020

Descriptive: warrior 38.4%, hardawai 6.8%, mullin 6.1%, nelson 4.3%, richmond 4.1%
Discriminating: warrior 26.9%, hardawai 4.9%, mullin 4.3%, richmond 2.8%, g 2.7%

Cluster 1, Size: 628, ISim: 0.106, ESim: 0.022
Descriptive: canseco 9.0%, henderson 7.5%, russa 6.3%, la 3.8%, mcgwire 3.2%

Discriminating: canseco 7.5%, henderson 5.9%, russa 5.3%, la 2.6%, mcgwire 2.6%

Cluster 2, Size: 793, ISim: 0.102, ESim: 0.018
Descriptive: shark 22.4%, goal 9.4%, nhl 4.4%, period 3.4%, penguin 1.6%

Discriminating: shark 17.1%, goal 6.0%, nhl 3.4%, period 2.3%, giant 1.5%

Cluster 3, Size: 754, ISim: 0.100, ESim: 0.021
Descriptive: yard 35.9%, pass 7.7%, touchdown 6.4%, td 2.6%, kick 2.0%

Discriminating: yard 28.2%, pass 5.3%, touchdown 5.0%, td 2.2%, kick 1.5%

Cluster 4, Size: 845, ISim: 0.095, ESim: 0.023
Descriptive: giant 20.7%, mitchell 4.8%, craig 3.3%, mcgee 2.4%, clark 2.0%

Discriminating: giant 15.6%, mitchell 4.3%, craig 2.5%, mcgee 2.2%, yard 1.9%

Cluster 5, Size: 637, ISim: 0.079, ESim: 0.022
Descriptive: score 4.2%, laker 4.1%, rebound 3.5%, nba 2.5%, bull 2.2%

Discriminating: laker 3.5%, rebound 2.7%, nba 2.1%, bull 2.0%, giant 1.9%

Cluster 6, Size: 1724, ISim: 0.059, ESim: 0.022
Descriptive: in 5.6%, hit 5.2%, homer 2.6%, run 2.4%, sox 2.2%

Discriminating: in 4.1%, hit 3.4%, yard 2.8%, sox 2.1%, homer 1.8%

Cluster 7, Size: 703, ISim: 0.049, ESim: 0.016
Descriptive: box 27.6%, golf 4.5%, hole 3.4%, round 2.9%, par 2.5%

Discriminating: box 19.3%, golf 3.8%, hole 2.8%, par 2.1%, round 1.8%

Cluster 8, Size: 1025, ISim: 0.054, ESim: 0.021
Descriptive: seifert 3.9%, montana 3.6%, raider 2.6%, quarterback 1.9%, lott 1.9%

Discriminating: seifert 4.4%, montana 3.9%, raider 2.5%, lott 2.1%, in 1.7%

Cluster 9, Size: 1107, ISim: 0.029, ESim: 0.017
Descriptive: school 2.5%, santa 2.4%, football 1.8%, coach 1.6%, clara 1.6%

Discriminating: school 2.5%, santa 2.4%, yard 1.7%, in 1.6%, clara 1.6%
--

Timing Information ---
I/O: 1.670 sec
Clustering: 12.840 sec
Reporting: 0.710 sec

Figure 6: Output of vcluster for matrix sports.mat and a 10-way clustering that shows the descriptive and discriminating features
of each cluster.

21

�

�

�

�

prompt% vcluster -rclassfile=sports.rclass -showfeatures sports.mat 10

vcluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Matrix Information ---
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options --
CLMethod=RB, CRfun=I2, SimFun=Cosine, #Clusters: 10
RowModel=None, ColModel=IDF, GrModel=SY-DIR, NNbrs=40
Colprune=1.00, EdgePrune=-1.00, VtxPrune=-1.00, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=I2, NTrials=10, NIter=10

Solution ---

10-way clustering: [I2=2.29e+03] [8580 of 8580], Entropy: 0.164, Purity: 0.874

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 364 +0.166 +0.050 +0.020 +0.005 0.018 0.995 | 0 362 2 0 0 0 0
1 628 +0.106 +0.041 +0.022 +0.007 0.006 0.998 | 627 0 1 0 0 0 0
2 793 +0.102 +0.036 +0.018 +0.006 0.020 0.995 | 1 1 1 789 0 0 1
3 754 +0.100 +0.034 +0.021 +0.006 0.010 0.997 | 0 1 752 0 0 0 1
4 845 +0.095 +0.035 +0.023 +0.007 0.023 0.993 | 839 0 5 0 1 0 0
5 637 +0.079 +0.036 +0.022 +0.008 0.012 0.997 | 0 635 1 1 0 0 0
6 1724 +0.059 +0.026 +0.022 +0.007 0.016 0.996 | 1717 3 3 1 0 0 0
7 703 +0.049 +0.018 +0.016 +0.006 0.767 0.458 | 30 24 122 4 118 83 322
8 1025 +0.054 +0.016 +0.021 +0.006 0.026 0.992 | 6 2 1017 0 0 0 0
9 1107 +0.029 +0.010 +0.017 +0.006 0.678 0.399 | 192 382 442 14 3 62 12

--
10-way clustering solution - Descriptive & Discriminating Features...
--
Cluster 0, Size: 364, ISim: 0.166, ESim: 0.020

Descriptive: col02843 38.4%, col06054 6.8%, col03655 6.1%, col01209 4.3%, col11248 4.1%
Discriminating: col02843 26.9%, col06054 4.9%, col03655 4.3%, col11248 2.8%, col20475 2.7%

Cluster 1, Size: 628, ISim: 0.106, ESim: 0.022
Descriptive: col18174 9.0%, col11733 7.5%, col18183 6.3%, col01570 3.8%, col26743 3.2%

Discriminating: col18174 7.5%, col11733 5.9%, col18183 5.3%, col01570 2.6%, col26743 2.6%

Cluster 2, Size: 793, ISim: 0.102, ESim: 0.018
Descriptive: col04688 22.4%, col00134 9.4%, col04423 4.4%, col02099 3.4%, col04483 1.6%

Discriminating: col04688 17.1%, col00134 6.0%, col04423 3.4%, col02099 2.3%, col01536 1.5%

Cluster 3, Size: 754, ISim: 0.100, ESim: 0.021
Descriptive: col00086 35.9%, col00091 7.7%, col00084 6.4%, col01091 2.6%, col00132 2.0%

Discriminating: col00086 28.2%, col00091 5.3%, col00084 5.0%, col01091 2.2%, col00132 1.5%

Cluster 4, Size: 845, ISim: 0.095, ESim: 0.023
Descriptive: col01536 20.7%, col04716 4.8%, col04640 3.3%, col03838 2.4%, col01045 2.0%

Discriminating: col01536 15.6%, col04716 4.3%, col04640 2.5%, col03838 2.2%, col00086 1.9%

Cluster 5, Size: 637, ISim: 0.079, ESim: 0.022
Descriptive: col00085 4.2%, col10737 4.1%, col00541 3.5%, col03412 2.5%, col00597 2.2%

Discriminating: col10737 3.5%, col00541 2.7%, col03412 2.1%, col00597 2.0%, col01536 1.9%

Cluster 6, Size: 1724, ISim: 0.059, ESim: 0.022
Descriptive: col04265 5.6%, col00281 5.2%, col13856 2.6%, col00340 2.4%, col01362 2.2%

Discriminating: col04265 4.1%, col00281 3.4%, col00086 2.8%, col01362 2.1%, col13856 1.8%

Cluster 7, Size: 703, ISim: 0.049, ESim: 0.016
Descriptive: col00351 27.6%, col01953 4.5%, col00396 3.4%, col00532 2.9%, col16968 2.5%

Discriminating: col00351 19.3%, col01953 3.8%, col00396 2.8%, col16968 2.1%, col00532 1.8%

Cluster 8, Size: 1025, ISim: 0.054, ESim: 0.021
Descriptive: col02393 3.9%, col10761 3.6%, col00031 2.6%, col00064 1.9%, col13276 1.9%

Discriminating: col02393 4.4%, col10761 3.9%, col00031 2.5%, col13276 2.1%, col04265 1.7%

Cluster 9, Size: 1107, ISim: 0.029, ESim: 0.017
Descriptive: col00616 2.5%, col01186 2.4%, col00263 1.8%, col00057 1.6%, col01187 1.6%

Discriminating: col00616 2.5%, col01186 2.4%, col00086 1.7%, col04265 1.6%, col01187 1.6%
--

Timing Information ---
I/O: 1.680 sec
Clustering: 12.700 sec
Reporting: 0.700 sec

Figure 7: Output of vcluster for matrix sports.mat and a 10-way clustering that shows the descriptive and discriminating features
of each cluster.

22

3.2.4 Looking at the Hierarchical Agglomerative Tree

The vcluster & scluster programs can also produce a hierarchical agglomerative tree in which the discovered clusters
form the leaf nodes of this tree. This is done by specifying the -showtree parameter. In constructing this tree, the
algorithms repeatedly merge a particular pair of clusters, and the pair of clusters to be merged is selected so that the
resulting clustering solution at that point optimizes the specified clustering criterion function.

The format of the produced tree for the sports.mat data set is shown in Figure 8. This result was obtained by
specifying both -showtree as well as the -rclassfile parameter that provides the class labels for each object in the
matrix.

�

�

�

�

prompt% vcluster -rclassfile=sports.rclass -showtree sports.mat 10

vcluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Matrix Information ---
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options --
CLMethod=RB, CRfun=I2, SimFun=Cosine, #Clusters: 10
RowModel=None, ColModel=IDF, GrModel=SY-DIR, NNbrs=40
Colprune=1.00, EdgePrune=-1.00, VtxPrune=-1.00, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=I2, NTrials=10, NIter=10

Solution ---

10-way clustering: [I2=2.29e+03] [8580 of 8580], Entropy: 0.164, Purity: 0.874

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 364 +0.166 +0.050 +0.020 +0.005 0.018 0.995 | 0 362 2 0 0 0 0
1 628 +0.106 +0.041 +0.022 +0.007 0.006 0.998 | 627 0 1 0 0 0 0
2 793 +0.102 +0.036 +0.018 +0.006 0.020 0.995 | 1 1 1 789 0 0 1
3 754 +0.100 +0.034 +0.021 +0.006 0.010 0.997 | 0 1 752 0 0 0 1
4 845 +0.095 +0.035 +0.023 +0.007 0.023 0.993 | 839 0 5 0 1 0 0
5 637 +0.079 +0.036 +0.022 +0.008 0.012 0.997 | 0 635 1 1 0 0 0
6 1724 +0.059 +0.026 +0.022 +0.007 0.016 0.996 | 1717 3 3 1 0 0 0
7 703 +0.049 +0.018 +0.016 +0.006 0.767 0.458 | 30 24 122 4 118 83 322
8 1025 +0.054 +0.016 +0.021 +0.006 0.026 0.992 | 6 2 1017 0 0 0 0
9 1107 +0.029 +0.010 +0.017 +0.006 0.678 0.399 | 192 382 442 14 3 62 12

--
Hierarchical Tree that optimizes the I2 criterion function...
--

base bask foot hock boxi bicy golf

18
|-----15
| |---13
| | |---------1 627 0 1 0 0 0 0
| | |---------4 839 0 5 0 1 0 0
| |-------------6 1717 3 3 1 0 0 0
|-17
|-16
| |---------------2 1 1 1 789 0 0 1
| |---------11
| |-----0 0 362 2 0 0 0 0
| |-----5 0 635 1 1 0 0 0
|-----14

|---12
| |-------3 0 1 752 0 0 0 1
| |-------8 6 2 1017 0 0 0 0
|-------10

|---9 192 382 442 14 3 62 12
|---7 30 24 122 4 118 83 322

--

Timing Information ---
I/O: 1.520 sec
Clustering: 12.960 sec
Reporting: 0.610 sec

Figure 8: Output of vcluster for matrix sports.mat that also shows the hierarchical tree built on top of the discovered clusters.

Looking at this figure we can see that vcluster displays the tree in a rotated fashion, i.e., the root of the tree is at the
first column, and the tree grows from left to right. The leaves of this tree are numbered from 0 to NClusters-1, and each
one represents the corresponding cluster discovered by vcluster. The internal nodes are numbered from NClusters to
2*NClusters-2, with the root being the highest numbered node. The numbering of the internal nodes is done so that
nodes that were obtained by merging a pair of clusters at an earlier stage of the agglomerative process have lower

23

numbers compared to nodes obtained at later stages. For example, in Figure 8 the node numbered 10 represents the
first pair of clusters (9 and 7) that were merged, the node numbered 11 represents the second pair of clusters (0 and 5)
that were merged, and so on.

In addition to the tree itself, vcluster also prints information about how the objects of the various classes are
distributed in each cluster. This information is identical to that presented in the earlier table, and are replicated here to
provide a better understanding on the content of the clusters that are merged together. Thus, looking at the tree we can
see that the subtree rooted at node 14, contains clusters that primarily contain documents about baseball, whereas the
subtree rooted at 12 primarily contain clusters whose documents are about football. If the -rclassfile was not specified,
this information is omitted.

�

�

�

�

prompt% vcluster -rclassfile=sports.rclass -clabelfile=sports.clabel -showtree -labeltree sports.mat 10

vcluster (CLUTO 2.0) Copyright 2001-02, Regents of the University of Minnesota

Matrix Information ---
Name: sports.mat, #Rows: 8580, #Columns: 126373, #NonZeros: 1107980

Options --
CLMethod=RB, CRfun=I2, SimFun=Cosine, #Clusters: 10
RowModel=None, ColModel=IDF, GrModel=SY-DIR, NNbrs=40
Colprune=1.00, EdgePrune=-1.00, VtxPrune=-1.00, MinComponent=5
CSType=Best, AggloFrom=0, AggloCRFun=I2, NTrials=10, NIter=10

Solution ---

10-way clustering: [I2=2.29e+03] [8580 of 8580], Entropy: 0.164, Purity: 0.874

cid Size ISim ISdev ESim ESdev Entpy Purty | base bask foot hock boxi bicy golf

0 364 +0.166 +0.050 +0.020 +0.005 0.018 0.995 | 0 362 2 0 0 0 0
1 628 +0.106 +0.041 +0.022 +0.007 0.006 0.998 | 627 0 1 0 0 0 0
2 793 +0.102 +0.036 +0.018 +0.006 0.020 0.995 | 1 1 1 789 0 0 1
3 754 +0.100 +0.034 +0.021 +0.006 0.010 0.997 | 0 1 752 0 0 0 1
4 845 +0.095 +0.035 +0.023 +0.007 0.023 0.993 | 839 0 5 0 1 0 0
5 637 +0.079 +0.036 +0.022 +0.008 0.012 0.997 | 0 635 1 1 0 0 0
6 1724 +0.059 +0.026 +0.022 +0.007 0.016 0.996 | 1717 3 3 1 0 0 0
7 703 +0.049 +0.018 +0.016 +0.006 0.767 0.458 | 30 24 122 4 118 83 322
8 1025 +0.054 +0.016 +0.021 +0.006 0.026 0.992 | 6 2 1017 0 0 0 0
9 1107 +0.029 +0.010 +0.017 +0.006 0.678 0.399 | 192 382 442 14 3 62 12

--
Hierarchical Tree that optimizes the I2 criterion function...
--

Size ISim XSim Gain
18 [8580, 2.57e-02, 0.00e+00, -2.30e+02] [giant 1.7%, yard 1.6%, hit 1.3%, box 1.2%, in 1.2%]
|-----15 [3197, 4.95e-02, 1.71e-02, -9.17e+01] [in 4.4%, giant 3.7%, hit 3.6%, pitch 2.4%, homer 2.2%]
| |---13 [1473, 6.80e-02, 3.60e-02, -8.10e+01] [giant 9.8%, canseco 2.6%, pitch 2.4%, mitchell 2.3%, henderson 2.2%]
| | |---------1 [628, 1.06e-01, 3.56e-02, +0.00e+00] [canseco 9.0%, henderson 7.5%, russa 6.3%, la 3.8%, mcgwire 3.2%]
| | |---------4 [845, 9.52e-02, 3.56e-02, +0.00e+00] [giant 20.7%, mitchell 4.8%, craig 3.3%, mcgee 2.4%, clark 2.0%]
| |-------------6 [1724, 5.91e-02, 3.60e-02, +0.00e+00] [in 5.6%, hit 5.2%, homer 2.6%, run 2.4%, sox 2.2%]
|-17 [5383, 2.76e-02, 1.71e-02, -1.46e+02] [yard 3.8%, shark 1.8%, box 1.8%, goal 1.6%, warrior 1.3%]
|-16 [1794, 5.49e-02, 1.85e-02, -1.07e+02] [shark 8.2%, warrior 5.4%, goal 4.1%, score 2.6%, period 1.8%]
| |---------------2 [793, 1.02e-01, 2.36e-02, +0.00e+00] [shark 22.4%, goal 9.4%, nhl 4.4%, period 3.4%, penguin 1.6%]
| |---------11 [1001, 7.46e-02, 2.36e-02, -5.39e+01] [warrior 12.7%, laker 3.5%, rebound 2.5%, score 2.3%, hardawai 2.1%]
| |-----0 [364, 1.66e-01, 4.47e-02, +0.00e+00] [warrior 38.4%, hardawai 6.8%, mullin 6.1%, nelson 4.3%, richmond 4.1%]
| |-----5 [637, 7.88e-02, 4.47e-02, +0.00e+00] [score 4.2%, laker 4.1%, rebound 3.5%, nba 2.5%, bull 2.2%]
|-----14 [3589, 3.00e-02, 1.85e-02, -8.85e+01] [yard 7.9%, box 3.1%, pass 2.1%, touchdown 1.5%, bowl 1.2%]

|---12 [1779, 5.43e-02, 1.97e-02, -6.11e+01] [yard 15.9%, pass 4.2%, touchdown 3.1%, quarterback 1.8%, seifert 1.5%]
| |-------3 [754, 9.99e-02, 3.80e-02, +0.00e+00] [yard 35.9%, pass 7.7%, touchdown 6.4%, td 2.6%, kick 2.0%]
| |-------8 [1025, 5.36e-02, 3.80e-02, +0.00e+00] [seifert 3.9%, montana 3.6%, raider 2.6%, quarterback 1.9%, lott 1.9%]
|-------10 [1810, 2.66e-02, 1.97e-02, -5.00e+01] [box 9.0%, tournam 1.8%, golf 1.4%, round 1.3%, school 1.3%]

|---9 [1107, 2.95e-02, 1.73e-02, +0.00e+00] [school 2.5%, santa 2.4%, football 1.8%, coach 1.6%, clara 1.6%]
|---7 [703, 4.87e-02, 1.73e-02, +0.00e+00] [box 27.6%, golf 4.5%, hole 3.4%, round 2.9%, par 2.5%]

--

Timing Information ---
I/O: 1.670 sec
Clustering: 12.840 sec
Reporting: 1.060 sec

Figure 9: Output of vcluster for matrix sports.mat that shows the hierarchical tree built on top of the discovered clusters as well as
the descriptive features of each cluster.

Besides showing the agglomerative tree, vcluster can also analyze each of the clusters produced during this ag-
glomerative process, displaying statistics regarding their quality and a set of descriptive features. This is done by
specifying the -labeltree option. The output of vcluster in this case is shown in Figure 9.

Looking at this figure we can see that in addition to the tree itself, vcluster prints a number of statistics for each
cluster. In particular, it displays the cluster’s “Size” which is the number of objects in that cluster, the cluster’s “ISim”

24

which is the average similarity between the objects of each cluster, the cluster’s “XSim” which is the average similarity
between the objects of each pair of clusters that are the children of the same node of the tree, and the “Gain” which
is the change in the value of the particular clustering criterion function as a result of combining the two child clusters.
For example, the cluster corresponding to node 13, contains 1473 documents, whose average similarity is 6.80e-02,
the average similarity between the documents in this cluster and the documents in the cluster corresponding to node 10
is 3.60e-02, and as the result of this merging, the value of the criterion function (i.e., �2 in this example) was decreased
by 8.10e+01. Note that since in case of �2 the goal is to maximize its value, the fact that the gain is negative means
that with respect to the criterion function the resulting clustering solution is worse (which was expected).

Next to these statistics, it prints the set of features that best describe each cluster. The method used to derive these
features and the information that is displayed are identical to those used by the -showfeatures option.

3.2.5 Looking at the Visualizations

As discussed in Section 3.1 both vcluster and scluster can produce a number of graphical visualizations showing the
relation between the different objects, features, and clusters. Our goal in this section is to provide some illustrative
examples of what the various -plotXXX commands can do.

Figure 10 shows the type of visualizations that can be produced when -plotmatrix is specified for a sparse matrix.
In particular, Figure 10(a) shows the visualization produced by executing the following command:

vcluster -plotmatrix=fig1.ps tr23.mat 10.

As we can see from that plot, vcluster shows the rows of the input matrix re-ordered in such a way so that the rows
assigned to each one of the ten clusters are numbered consecutively. The columns of the displayed matrix are selected
to be the union of the nfeatures most descriptive and discriminating features of each cluster, and are ordered according
their column-id. Also, at the top of each column, the label of each feature is shown (if you enlarge the postscript or
PDF file of the manual you will be able to see the names of the words that these columns correspond to). Each non-
zero positive element of the matrix is displayed by a different shade of red. Entries that are bright red correspond to
large values and the brightness of the entries decreases as their value decrease. The values that are plotted correspond
to the values obtained after applying the particular -rowmodel and -colmodel, and normalizing each row to be of unit
length. Figure 10(b) shows a visualization of the same clustering solution in which the rows and the columns are
also re-ordered according to a hierarchical clustering solution. In particular, this plot was obtained by executing the
following command:

vcluster -fulltree -clustercolumns -plotmatrix=fig2.ps tr23.mat 10.

As we can see from this plot, vcluster now re-orders the rows and the columns so that rows/columns that are part of
the same subtree are closer to each other in the final output. Also, along the rows and the columns of the displayed
matrix, vcluster draws the actual hierarchical tree that was computed. Finally, Figure 10(c) shows a visualization of
the 10-way clustering solution obtained by scluster. In particular, this plot was obtained by executing the following
command:

vcluster -clmethod=agglo -clustercolumns -plotmatrix=fig3.ps tr23.mat 10.

Figure 11 shows the type of visualizations that can be produced when -plotmatrix is specified for a dense matrix,
for a particular micro-array gene expression data set. The three different visualizations were produced by executing
the following commands, respectively:

vcluster -sim=corr -plotmatrix=fig4.ps genes1.mat 5
vcluster -sim=corr -fulltree -clustercolumns -plotmatrix=fig5.ps genes1.mat 5
vcluster -sim=corr -clmethod=agglo -clustercolumns -plotmatrix=fig6.ps genes1.mat 5

These plots are similar in nature to those produced for sparse matrices and the only difference is that they show all
the columns (and not just the union of the descriptive and discriminating features). Also note that each row now has a
label (corresponding to the name of the particular gene) that is read by default from the file name “genes.mat.rlabel”.
Finally, note that the plots contain both red and green boxes, representing positive and negative values, respectively.

25

row00001

row00002

row00003

row00004

row00005

row00006

row00007

row00008

row00009

row00010

row00011

row00012

row00013

row00014

row00015

row00016

row00017

row00018

row00019

row00020

row00021

row00022

row00023

row00024

row00025

row00026

row00027

row00028

row00029

row00030

row00031

row00032

row00033

row00034

row00035

row00036

row00037

row00038

row00039

row00040

row00041

row00042

row00043

row00044

row00045

row00046

row00047

row00048

row00049

row00050

row00051

row00052

row00053

row00054

row00055

row00056

row00057

row00058

row00059

row00060

row00061

row00062

row00063

row00064

row00065

row00066

row00067

row00068

row00069

row00070

row00071

row00072

row00073

row00074

row00075

row00076

row00077

row00078

row00079

row00080

row00081

row00082

row00083

row00084

row00085

row00086

row00087

row00088

row00089

row00090

row00091

row00092

row00093

row00094

row00095

row00096

row00097

row00098

row00099

row00100

row00101

row00102

row00103

row00104

row00105

row00106

row00107

row00108

row00109

row00110

row00111

row00112

row00113

row00114

row00115

row00116

row00117

row00118

row00119

row00120

row00121

row00122

row00123

row00124

row00125

row00126

row00127

row00128

row00129

row00130

row00131

row00132

row00133

row00134

row00135

row00136

row00137

row00138

row00139

row00140

row00141

row00142

row00143

row00144

row00145

row00146

row00147

row00148

row00149

row00150

row00151

row00152

row00153

row00154

row00155

row00156

row00157

row00158

row00159

row00160

row00161

row00162

row00163

row00164

row00165

row00166

row00167

row00168

row00169

row00170

row00171

row00172

row00173

row00174

row00175

row00176

row00177

row00178

row00179

row00180

row00181

row00182

row00183

row00184

row00185

row00186

row00187

row00188

row00189

row00190

row00191

row00192

row00193

row00194

row00195

row00196

row00197

row00198

row00199

row00200

row00201

row00202

row00203

row00204

car

new

uk solar

relief

speaker
center

energi

batteri

qtag

frnew
lin

am
end

pjg

volcano

itag

xnec

insur
loss

ban

cn tpeleph

patient

anim

electr

abort

gentlem
an

rep

poach

m
ine

disast

ti earthquak

alum
inium

ivori

quake
brief

reinsur

erupt

chairm
an

care

dollar

renew
fuel

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4
cl

us
te

r
5

cl
us

te
r

6
cl

us
te

r
7

cl
us

te
r

8
cl

us
te

r
9

row00001

row00002

row00003

row00004

row00005

row00006

row00007

row00008

row00009

row00010

row00011

row00012

row00013

row00014

row00015

row00016
row00017
row00018

row00019

row00020

row00021

row00022

row00023

row00024

row00025

row00026

row00027

row00028

row00029

row00030

row00031

row00032

row00033

row00034

row00035

row00036

row00037

row00038

row00039
row00040

row00041

row00042

row00043

row00044

row00045

row00046

row00047

row00048

row00049

row00050

row00051

row00052

row00053

row00054
row00055
row00056

row00057

row00058
row00059

row00060

row00061

row00062

row00063

row00064

row00065

row00066

row00067

row00068

row00069

row00070
row00071

row00072

row00073

row00074

row00075

row00076

row00077

row00078

row00079

row00080

row00081

row00082

row00083

row00084

row00085

row00086

row00087

row00088

row00089

row00090

row00091

row00092

row00093

row00094

row00095

row00096

row00097
row00098

row00099

row00100

row00101

row00102

row00103

row00104

row00105

row00106

row00107

row00108

row00109

row00110

row00111

row00112

row00113

row00114

row00115

row00116

row00117

row00118

row00119

row00120

row00121

row00122

row00123

row00124

row00125

row00126

row00127

row00128

row00129

row00130

row00131

row00132

row00133

row00134

row00135

row00136

row00137

row00138

row00139

row00140

row00141

row00142
row00143
row00144

row00145

row00146

row00147

row00148

row00149

row00150

row00151

row00152

row00153

row00154

row00155

row00156

row00157

row00158

row00159

row00160

row00161

row00162

row00163

row00164

row00165

row00166

row00167

row00168

row00169

row00170

row00171
row00172

row00173

row00174

row00175

row00176
row00177

row00178

row00179

row00180

row00181

row00182

row00183
row00184

row00185

row00186

row00187

row00188

row00189
row00190

row00191

row00192

row00193

row00194

row00195

row00196
row00197

row00198

row00199

row00200

row00201

row00202

row00203

row00204

car

new

ukpow
er

solar

relief

speaker
pre
center

energi

batteri

qtag

frnew
lin

am
end

pjg

volcano

itag

x insur
loss

ban

cn tpeleph

satellit

electr

m
ount

gentlem
an

leo

rep

ash

m
ine

disast

tirichter

earthquak

alum
inium

ivori

quake

brief

pinatubo

reinsur

erupt

chairm
an

dollar

vehicl

fuel

cl
us

te
r 0

cl
us

te
r 1

cl
us

te
r 2

cl
us

te
r 3

cl
us

te
r 4

cl
us

te
r 5

cl
us

te
r 6

cl
us

te
r 7

cl
us

te
r 8

cl
us

te
r 9

row00001

row00002

row00003

row00004

row00005

row00006

row00007

row00008

row00009

row00010

row00011

row00012

row00013

row00014

row00015

row00016
row00017
row00018

row00019

row00020

row00021

row00022

row00023

row00024

row00025

row00026

row00027

row00028

row00029

row00030

row00031

row00032

row00033

row00034

row00035

row00036

row00037

row00038

row00039
row00040

row00041

row00042

row00043

row00044

row00045

row00046

row00047

row00048

row00049

row00050

row00051

row00052

row00053

row00054
row00055
row00056

row00057

row00058
row00059

row00060

row00061

row00062

row00063

row00064

row00065

row00066

row00067

row00068

row00069

row00070
row00071

row00072

row00073

row00074

row00075

row00076

row00077

row00078

row00079

row00080

row00081

row00082

row00083

row00084

row00085

row00086

row00087

row00088

row00089

row00090

row00091

row00092

row00093

row00094

row00095

row00096

row00097
row00098

row00099

row00100

row00101

row00102

row00103

row00104

row00105

row00106

row00107

row00108

row00109

row00110

row00111

row00112

row00113

row00114

row00115

row00116

row00117

row00118

row00119

row00120

row00121

row00122

row00123

row00124

row00125

row00126

row00127

row00128

row00129

row00130

row00131

row00132

row00133

row00134

row00135

row00136

row00137

row00138

row00139

row00140

row00141

row00142
row00143
row00144

row00145

row00146

row00147

row00148

row00149

row00150

row00151

row00152

row00153

row00154

row00155

row00156

row00157

row00158

row00159

row00160

row00161

row00162

row00163

row00164

row00165

row00166

row00167

row00168

row00169

row00170

row00171
row00172

row00173

row00174

row00175

row00176
row00177

row00178

row00179

row00180

row00181

row00182

row00183
row00184

row00185

row00186

row00187

row00188

row00189
row00190

row00191

row00192

row00193

row00194

row00195

row00196
row00197

row00198

row00199

row00200

row00201

row00202

row00203

row00204

car
new
uk pow

er
solar
relief
speaker
pre
center
energi
batteri
qtag
frnew

lin
am

end
pjg
volcano
itag
x insur
loss
ban
cn tp eleph
satellit
electr
m

ount
gentlem

an
leo
rep
ash
m

ine
disast
ti richter
earthquak
alum

inium
ivori
quake
brief
pinatubo
reinsur
erupt
chairm

an
dollar
vehicl
fuel

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4
cl

us
te

r
5

cl
us

te
r

6
cl

us
te

r
7

cl
us

te
r

8
cl

us
te

r
9

(a) (b) (c)

Figure 10: Various visualizations generated by the -plotmatrix parameter. (a) Shows the clustering solution produced by vcluster;
(b) Shows the same clustering solution but the rows and columns have been re-ordered. (c) Shows the clustering solution produced
by scluster.

26

The values used to derive the colors correspond to those used internally by CLUTO. In this particular example, since
the clusters were obtained using the correlation coefficient, the values correspond to the mean-subtracted original row
vectors, normalized to be of unit length.

5HT1b
5HT2

5HT3

ACHE

actin

aFGF
BDNF
bFGF

Brm

CCO1

CCO2

cellubrevin

cjun

CNTF

CNTFR

CX43

cyclinA
cyclinB

EGF

FABP

G67I8086
G67I86
GAD65

GAD67

GAP43

GFAP

GMFb

GRa1
GRa2
GRa3
GRa4
GRa5
GRb1
GRb2
GRb3
GRg1

GRg2

GRg3

H4
IGF1

IGF2
IGFR1
IGFR2
InsR

IP3R2

IP3R3

mAChR1

mAChR2
mGluR3
mGluR8

MK2

MOG

nAChRa3

nAChRa5

nAChRa7
neno

nestin

NFH
NFL
NFM

NT3

ODC

PDGFb
PDGFR
preGAD67
S100beta

synaptophysin

TCP

TH

trkC

col00001
col00002
col00003
col00004
col00005
col00006
col00007
col00008
col00009
col00010
col00011
col00012
col00013
col00014
col00015
col00016
col00017
col00018
col00019
col00020

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4

5HT1b

5HT2

5HT3

ACHE

actin

aFGF

BDNF

bFGF

Brm

CCO1

CCO2

cellubrevin

cjun

CNTF

CNTFR

CX43

cyclinA
cyclinB

EGF

FABP

G67I8086
G67I86

GAD65

GAD67

GAP43

GFAP

GMFb

GRa1

GRa2

GRa3

GRa4

GRa5
GRb1

GRb2
GRb3

GRg1

GRg2

GRg3

H4

IGF1

IGF2

IGFR1

IGFR2
InsR

IP3R2

IP3R3

mAChR1

mAChR2

mGluR3

mGluR8

MK2

MOG

nAChRa3

nAChRa5

nAChRa7

neno

nestin

NFH

NFL
NFM

NT3

ODC

PDGFb
PDGFR

preGAD67

S100beta

synaptophysin

TCP

TH

trkC

col00001
col00002

col00003

col00004
col00005

col00006
col00007

col00008
col00009

col00010
col00011
col00012
col00013
col00014
col00015
col00016
col00017

col00018
col00019
col00020

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4

5HT1b

5HT2

5HT3

ACHE

actin

aFGF

BDNF

bFGF

Brm

CCO1

CCO2

cellubrevin

cjun

CNTF

CNTFR

CX43

cyclinA
cyclinB

EGF

FABP

G67I8086
G67I86

GAD65

GAD67

GAP43

GFAP

GMFb

GRa1

GRa2

GRa3

GRa4

GRa5
GRb1

GRb2
GRb3

GRg1

GRg2

GRg3

H4

IGF1

IGF2

IGFR1

IGFR2
InsR

IP3R2

IP3R3

mAChR1

mAChR2

mGluR3

mGluR8

MK2

MOG

nAChRa3

nAChRa5

nAChRa7

neno

nestin

NFH

NFL

NFM

NT3

ODC

PDGFb
PDGFR

preGAD67

S100beta
synaptophysin

TCP

TH

trkC

col00001
col00002

col00003

col00004
col00005

col00006
col00007

col00008
col00009

col00010
col00011
col00012
col00013
col00014
col00015
col00016
col00017

col00018
col00019
col00020

cl
us

te
r

0
cl

us
te

r
1

cl
us

te
r

2
cl

us
te

r
3

cl
us

te
r

4

(b) (c)(a)

Figure 11: Various visualizations generated by the -plotmatrix parameter. (a) Shows the clustering solution produced by the
“rb” method of vcluster; (b) Shows the same clustering solution but the rows and columns have been re-ordered. (c) Shows the
clustering solution produced by the agglomerative method for vcluster.

A similar dense-matrix visualization is shown in Figure 12 for another micro-array gene expression data set. The
different visualizations were produced by executing the following commands:

vcluster -clmethod=agglo -plotmatrix=fig7.ps genes2.mat 1
vcluster -clmethod=agglo -zeroblack -plotmatrix=fig8.ps genes2.mat 1

Figure 13 shows the type of visualization that can be produced when -plotcluster is specified for a sparse matrix.
This plot was obtained by executing the following command:

vcluster -clustercolumns -plotclusters=fig9.ps tr23.mat 10
vcluster -clustercolumns -plotclusters=fig10.ps -nfeatures=10 sports.mat 20

This plot shows the clustering solution shown at Figure 10(b) by replacing the set of rows in each cluster by a single
row that corresponds to the centroid vector of the cluster. The -plotcluster option is particularly useful for displaying
very large data sets, as the number of rows in the plot is only equal to the number of clusters.

Finally, Figure 14 shows the type of visualization that can be produced when -plottree is specified. This plot was
obtained by executing the following command:

vcluster -clmethod=agglo -plottree=fig11.ps tr23.mat 10.

This plot shows the entire hierarchical tree for the tr23.mat data set. The leaves of the tree are labeled with the
particular row-id (or row label if available). You can see the labels by properly magnifying the figure.

27

E
F

B
1

Y
A

L004W
S

S
A

1

M
D

M
10

C
Y

S
3

N
T

G
1

Y
A

L018C

M
A

K
16

F
U

N
19

F
U

N
12

F
U

N
11

C
D

C
19

C
LN

3

A
C

S
1

Y
A

L055W

G
D

H
3

S
E

O
1

Y
A

R
003W

R
F

A
1

A
D

E
1

Y
A

R
027W

Y
B

L009W
Y

B
L010C

A
C

H
1

R
P

L19A

U
R

A
7

Y
B

L042C

E
C

M
13

Y
B

L054W

U
B

P
13

R
P

S
8A

Y
B

L078C

C
D

C
27

A
T

P
1

Y
B

L108W

N
T

H
2

Y
B

R
005W

Y
B

R
025C

C
D

S
1

Y
B

R
030W

R
P

L2A
Y

B
R

032W

G
IP

1

Y
B

R
059C

Y
B

R
063C

Y
B

R
064W

Y
B

R
066C

H
S

P
26

E
C

M
33

R
P

G
1

U
B

C
4

R
P

L19B

Y
B

R
086C

P
O

L30

Y
B

R
101C

A
G

P
2

A
D

H
5

Y
S

W
1

R
P

B
5

Y
B

R
168W

S
M

Y
2

Y
B

R
177C

Y
B

R
178W

R
P

S
10A

M
E

L1

P
C

H
2

P
G

I1

Y
B

R
214W

F
A

T
2

Y
B

R
231C

Y
B

R
232C

Y
B

R
233W

E
N

P
1

Y
B

R
250W

P
O

P
4

M
R

P
L37

Y
B

R
285W

Y
B

R
287W

G
LK

1
Y

C
L042W

Y
C

L048W

K
R

R
1

C
H

A
1

Y
C

LX
02C

Y
C

LX
03C

C
D

C
10

C
IT

2

Y
C

R
007C

Y
C

R
010C

P
G

K
1

Y
C

R
013C

H
S

P
30

C
R

Y
1

A
R

E
1

P
W

P
2

Y
C

R
056W

P
W

P
2

Y
C

R
061W

Y
C

R
062W

spo0
spo30
spo2
spo5
spo7
spo9
spo11

cluster 0

E
F

B
1

Y
A

L004W
S

S
A

1

M
D

M
10

C
Y

S
3

N
T

G
1

Y
A

L018C

M
A

K
16

F
U

N
19

F
U

N
12

F
U

N
11

C
D

C
19

C
LN

3

A
C

S
1

Y
A

L055W

G
D

H
3

S
E

O
1

Y
A

R
003W

R
F

A
1

A
D

E
1

Y
A

R
027W

Y
B

L009W
Y

B
L010C

A
C

H
1

R
P

L19A

U
R

A
7

Y
B

L042C

E
C

M
13

Y
B

L054W

U
B

P
13

R
P

S
8A

Y
B

L078C

C
D

C
27

A
T

P
1

Y
B

L108W

N
T

H
2

Y
B

R
005W

Y
B

R
025C

C
D

S
1

Y
B

R
030W

R
P

L2A
Y

B
R

032W

G
IP

1

Y
B

R
059C

Y
B

R
063C

Y
B

R
064W

Y
B

R
066C

H
S

P
26

E
C

M
33

R
P

G
1

U
B

C
4

R
P

L19B

Y
B

R
086C

P
O

L30

Y
B

R
101C

A
G

P
2

A
D

H
5

Y
S

W
1

R
P

B
5

Y
B

R
168W

S
M

Y
2

Y
B

R
177C

Y
B

R
178W

R
P

S
10A

M
E

L1

P
C

H
2

P
G

I1

Y
B

R
214W

F
A

T
2

Y
B

R
231C

Y
B

R
232C

Y
B

R
233W

E
N

P
1

Y
B

R
250W

P
O

P
4

M
R

P
L37

Y
B

R
285W

Y
B

R
287W

G
LK

1
Y

C
L042W

Y
C

L048W

K
R

R
1

C
H

A
1

Y
C

LX
02C

Y
C

LX
03C

C
D

C
10

C
IT

2

Y
C

R
007C

Y
C

R
010C

P
G

K
1

Y
C

R
013C

H
S

P
30

C
R

Y
1

A
R

E
1

P
W

P
2

Y
C

R
056W

P
W

P
2

Y
C

R
061W

Y
C

R
062W

spo0
spo30
spo2
spo5
spo7
spo9
spo11

cluster 0

(b)
(a)

Figure 12: Various visualizations generated by the -plotmatrix parameter. (a) Shows the clustering solution produced by the
agglomerative method of vcluster; (b) Shows the same clustering solution but the color scheme has been changed.

3.3 Input File Formats

The vcluster and scluster programs require an input file that stores the objects to be clustered in a matrix or graph
format, as well as, various optional files containing the column labels and the class labels of the various objects. The
format of these files are described in the following sections.

3.3.1 Matrix File

The primary input of CLUTO’s vcluster program is a matrix storing the objects to be clustered. Each row of this
matrix represent a single object, and its various columns correspond to the dimensions (i.e., features) of the objects.
This matrix is stored in a file and is supplied to the various programs as one of the command line parameters.

CLUTO understands two different input matrix formats. The first format is suitable for sparse matrices and the
second format is suitable for storing dense matrices. Note that CLUTO, automatically detects the format of the input
file based on the first line of the file (i.e., the sparse matrix format has three numbers whereas the dense matrix format
has two numbers).

Sparse Matrix Format A sparse matrix A with n rows and m columns is stored in a plain text file that contains
n + 1 lines. The first line contains information about the size of the matrix, while the remaining n lines contain
information for each row of A. In CLUTO’s sparse matrix format only the non-zero entries of the matrix are stored.

The first line of the matrix file contains exactly three numbers, all of which are integers. The first integer is the
number of rows in the matrix (n), the second integer is the number of columns in the matrix (m), and the third integer
is the total number of non-zeros entries in the n × m matrix.

The remaining n lines store information about the actual non-zero structure of the matrix. In particular, the (i +
1)st line of the file contains information about the non-zero entries of the i th row of the matrix. Since the i th row
corresponds to the i th object to be clustered, this is nothing more than the non-zero entries of the i th object’s feature
vector. The non-zero entries of each row are specified as a space-separated list of pairs. Each pair contains the column
number followed by the value for that particular column (i.e., feature). The column numbers are assumed to be integers
and their corresponding values are assumed to be floating point numbers. The meaning of the values associated with
each entry of the object’s vector is problem dependent.

Note that the columns are numbered starting from 1 (not from 0 as is often done in C). Furthermore, CLUTO’s
matrix format does not require the column-pairs (column-number — column-value) to be sorted in any order.

An example of CLUTO’s matrix format is shown in Figure 15. This figure shows an example 7 × 8 matrix and its
corresponding representation in CLUTO’s matrix format.

Dense Matrix Format A dense matrix A with n rows and m columns is stored in a plain text file that contains n+1
lines. The first line stores information about the size of the matrix, while the remaining n lines contain information
for each row of A. The first line of the matrix file contains exactly two numbers, all of which are integers. The first
integer is the number of rows in the matrix (n) and the second integer is the number of columns in the matrix (m). The
remaining n lines store the values of the m columns for each one of the rows. In particular, each line contains exactly

28

0 (2
7)

1 (2
7)

2 (8
)

3 (8
)

4 (1
9)

5 (1
3)

6 (2
9)

7 (1
7)

8 (2
9)

9 (2
7)

car

new

ukpow
er

solar

relief

speaker
pre
center

energi

batteri

qtag

frnew
lin

am
end

pjg

volcano

itag

x insur
loss

ban

cn tpeleph

satellit

electr

m
ount

gentlem
an

leo

rep

ash

m
ine

disast

tirichter

earthquak

alum
inium

ivori

quake

brief

pinatubo

reinsur

erupt

chairm
an

dollar

vehicl

fuel

0
(2

63
)

1
(3

64
)

2
(4

08
)

3
(3

85
)

4
(2

37
)

5
(4

40
)

6
(6

08
)

7
(4

08
)

8
(4

27
)

9
(1

97
)

10 (7
54

)

11 (2
10

)

12 (3
30

)

13 (3
65

)

14 (3
73

)

15 (4
77

)

16 (5
48

)

17 (5
40

)

18 (6
79

)

19 (5
67

)

col00017

col00021

col00024

col00026

col00027

col00031

col00042

col00049

col00057

col00064

col00066

col00082
col00084

col00085

col00086
col00091

col00094

col00111

col00132

col00134

col00136

col00147

col00162

col00169

col00255

col00263

col00267

col00281

col00312

col00340

col00351

col00363

col00370

col00396

col00428

col00471

col00474

col00492

col00532

col00536

col00541

col00555

col00558

col00577

col00597

col00606

col00616

col00621
col00622

col00659

col00670

col00710
col00711

col00718

col00910

col01001

col01020

col01045

col01056

col01077

col01082

col01090

col01091
col01101

col01108

col01186
col01187

col01209

col01244

col01343

col01362

col01364

col01367

col01380
col01391

col01399

col01536

col01537

col01570

col01641

col01642

col01646

col01953

col02033

col02099

col02142

col02155
col02156

col02393

col02483

col02521

col02573

col02594
col02606

col02779

col02836

col02843

col03074

col03253

col03265

col03268

col03412

col03441

col03655

col03828

col03838

col04179

col04265

col04423

col04428

col04483

col04484

col04640

col04688
col04691

col04716

col04988

col05078

col05377

col06054

col06173

col06377

col06527

col06541

col06585

col06920

col06934

col07300

col07519

col07926

col10638

col10713

col10736

col10737

col10761

col10891

col11248

col11384

col11457

col11733

col13190

col13276

col13354

col13809

col13856

col14008

col15562

col16142

col16158

col16212

col16245

col16349

col16967
col16968

col17437

col17803

col18163

col18174

col18175

col18183

col18192

col18219
col18920

col18926

col19048

col20475

col20530

col22521

col26743

col27586

col27592

col27828

col32897

col35773
col36125

col36130

col42340

col51202

col73825

(a)

(b)

Figure 13: Various visualizations generated by the -plotcluster parameter.

29

40
6

34
1

23
7

22
4

21
8

21
7

21
6

20
8

20
6 20

5

21
2

21
1

21
4

30
8

26
3

24
9

21
9

24
4

22
1

22
8

22
6

22
3

22
0

20
7

21
0

20
9

22
2

40
5

40
1

39
1

38
4

37
4

23
8

35
3

33
9

36
5

33
8

31
7

36
0

32
4

30
9

26
2

26
8

27
5

27
1

23
5

23
1

26
1

22
7

23
4

25
0

24
0

23
6

34
6

25
4

24
5

23
3

39
8

38
5

37
2

31
0 28

7

35
1

31
8 29

0

33
0

27
8

36
9

29
1

35
4

32
2

29
3

39
4

38
1

36
4

32
8

30
7

31
1

33
7

30
2

37
3

27
6

35
6

32
9

30
3 25

9

40
4

40
3

38
7

31
5

28
6 25

5

26
7

35
8

31
2

25
8

28
8

28
5

26
5 25

2

29
2

24
8 21

5

40
0

39
3

38
8

36
6

35
2

33
1

30
4

32
6

38
0

36
2

32
1

28
2

34
7

29
5

32
7

37
9

34
5

28
9

23
9

36
8

34
9

31
3

25
6

30
0

22
9

25
7

39
7

37
8

35
7

34
3

29
9

29
8

28
3

34
8

24
6

30
5

37
0

35
0

32
5

26
4

34
0

31
6 26

9

26
0

40
2

39
5

38
6

37
1

34
2

31
4

28
0

24
3

37
5

31
9

27
4

23
0

25
1

33
3

30
1 27

9

28
4

39
0

26
6

24
7

22
5

37
6

36
3

27
7

33
2

20
4

39
9

39
6

39
2

38
2

35
5

29
4

32
0

33
4 27

0

38
3

21
3

24
2

38
9

36
7

35
9

33
6

29
7

34
4

25
3

28
1

37
7

30
6

27
3

36
1

33
5

32
3

29
6

27
2

24
1 23

2

row00001

row00002

row00003

row00004

row00005

row00006

row00007

row00008

row00009

row00010

row00011

row00012

row00013

row00014

row00015

row00016

row00017

row00018

row00019

row00020

row00021

row00022

row00023

row00024

row00025

row00026

row00027

row00028

row00029

row00030

row00031

row00032

row00033

row00034

row00035

row00036

row00037

row00038

row00039

row00040

row00041

row00042

row00043

row00044

row00045

row00046

row00047

row00048

row00049

row00050

row00051

row00052

row00053

row00054

row00055

row00056

row00057

row00058

row00059

row00060

row00061

row00062

row00063

row00064

row00065

row00066

row00067

row00068

row00069

row00070

row00071

row00072

row00073

row00074

row00075

row00076

row00077

row00078

row00079

row00080

row00081

row00082

row00083

row00084

row00085

row00086

row00087

row00088

row00089

row00090

row00091

row00092

row00093

row00094

row00095

row00096

row00097

row00098

row00099

row00100

row00101

row00102

row00103

row00104

row00105

row00106

row00107

row00108

row00109

row00110

row00111

row00112

row00113

row00114

row00115

row00116

row00117

row00118

row00119

row00120

row00121

row00122

row00123

row00124

row00125

row00126

row00127

row00128

row00129

row00130

row00131

row00132

row00133

row00134

row00135

row00136

row00137

row00138

row00139

row00140

row00141

row00142

row00143

row00144

row00145

row00146

row00147

row00148

row00149

row00150

row00151

row00152

row00153

row00154

row00155

row00156

row00157

row00158

row00159

row00160

row00161

row00162

row00163

row00164

row00165

row00166

row00167

row00168

row00169

row00170

row00171

row00172

row00173

row00174

row00175

row00176

row00177

row00178

row00179

row00180

row00181

row00182

row00183

row00184

row00185

row00186

row00187

row00188

row00189

row00190

row00191

row00192

row00193

row00194

row00195

row00196

row00197

row00198

row00199

row00200

row00201

row00202

row00203

row00204

Figure 14: Various visualizations generated by the -plottree parameter.

30

0.41.4 -0.4

-0.5 0.2

1.8 2.0 3.0

1.0

5.5 3.0 8.0

1.0 -1.0 2.0

3.5 4.0 8.0-1.0 2.0

1.1

3 1.8 6 2.0 8 3.0
1 1.0

1 1.4 2 0.4 4 -0.4
2 1.1 5 -0.5 8 0.2
7 8 21

2 5.5 4 3.0 7 8.0
3 1.0 5 -1.0 6 2.0
2 3.5 4 -1.0 5 4.0 7 2.0 8 8.0

Matrix Input File

Figure 15: Storage format of a sample matrix.

m space-separated floating point values, such that the i th value corresponds to the i th column of A.

3.3.2 Graph File

The primary input of CLUTO’s scluster program is the adjacency matrix of the graph that specifies the similarity
between the objects to be clustered. Each row/column of this matrix represents a single object, and a value at the (i, j)
location of this matrix indicates the similarity between the i th and the j th object.

CLUTO understands two different input graph formats. The first format is suitable for sparse graphs and the second
format is suitable for storing dense graphs (i.e., graphs whose adjacency matrix contain mostly non-zeros). The format
of these files are very similar to the corresponding formats for matrices, and the only difference is that they now store
adjacency matrices which are square.

Note that CLUTO, automatically detects the format of the input file based on the first line of the file (i.e., the sparse
graph format has two numbers whereas the dense graph format has one number).

Sparse Graph Format The adjacency matrix A of a sparse graph with n vertices is stored in a plain text file that
contains n +1 lines. The first line contains information about the size of the graph, while the remaining n lines contain
information for each row of A (i.e., adjacency structure of the corresponding vertex). In CLUTO’s sparse graph format
only the non-zero entries of the adjacency matrix are stored.

The first line of the file contains exactly two numbers, all of which are integers. The first integer is the number of
vertices in the graph (n) and the second integer is the number of edges in the graph (i.e., the total number of non-zeros
entries in A).

The remaining n lines store information about the actual non-zero structure of A. In particular, the (i + 1)st line of
the file contains information about the adjacency structure of the i th vertex (i.e., the non-zero entries of the i th row of
the adjacency matrix). The adjacency structure of each vertex is specified as a space-separated list of pairs. Each pair
contains the number of the adjacent vertex followed by the similarity of the corresponding edge. The vertex numbers
are assumed to be integers and their similarity values are assumed to be floating point numbers.

Note that the vertices are numbered starting from 1 (not from 0 as is often done in C). Furthermore, CLUTO’s graph
format does not require the vertex-pairs (vertex-number — similarity-value) to be sorted in any order.

Dense Graph Format The adjacency matrix of a dense graph with n vertices is stored in a plain text file that
contains n + 1 lines. The first line stores information about the size of the graph, while the remaining n lines contain
information for each row of the adjacency matrix. The first line of the file contains exactly one number, which is the
number of vertices n of the graph. The remaining n lines store the values of the n columns of the adjacency matrix for
each one of the vertices. In particular, each line contains exactly n space-separated floating point values, such that the
i th value corresponds to the similarity to the i th vertex of the graph.

3.3.3 Row Label File

As discussed in Section 3, when the -rlabelfile parameter is used, CLUTO’s stand-alone programs read a file that stores
the label for each one of the rows (i.e., objects) of the matrix. The format of this file is as follows. If n is the total
number of rows in the matrix, then the row-label file contains exactly n lines. The information stored in each line

31

is treated as a string and becomes the label of the corresponding row of the matrix. That is, the i th line of this file
contains the label of the i th row of the matrix.

3.3.4 Column Label File

As discussed in Section 3.1, when the -clabelfile parameter is used, the vcluster program reads a file that stores the
label for each one of the columns (i.e., features) of the matrix. The format of this file is as follows. If m is the total
number of columns in the matrix, then the column-label file contains exactly m lines. The information stored in each
line is treated as a string and becomes the label of the corresponding column of the matrix. That is, the i th line of this
file contains the label of the i th column of the matrix.

3.3.5 Row Class Label File

As discussed in Section 3.1, when the -rclassfile parameter is used, the vcluster program reads a file that stores the
class labels for each one of the rows (i.e., objects) of the matrix. The format of this file is as follows. If n is the total
number of rows in the matrix, then the class-label file contains exactly n lines. The information stored in each line is
treated as a string and becomes the class-label of the corresponding object of the matrix. That is, the i th line of this
file contains the label of the i th row of the matrix. In order to ensure that a set of objects belong to the same class,
their corresponding rows in the class-label file must contain identical strings.

3.4 Output File Formats

CLUTO’s clustering programs can generate two different types of output files that store information about the clustering
solution they have computed. The first file contains the clustering vector and the internal and external z-scores for each
object (when the -zscores option was specified), whereas the second file contains the entire hierarchical agglomerative
tree (when -clmethod=agglo or when the -fulltree option was specified(, or the agglomerative tree that was built on top
of the computed clustering solution (when the -showtree option was specified). The format of these files is described
in the following sections.

3.4.1 Clustering Solution File

The clustering file of a matrix with n rows consists of n lines with a single number per line. The i th line of the file
contains the cluster number that the i th object/row/vertex belongs to. Cluster numbers run from zero to the number of
clusters minus one.

In this case, CLUTO’s clustering algorithms will not be able to assign all the objects to any of the clusters. In
this case, the cluster number for that particular row/vertex will be set to -1. This usually happens for two reasons.
First, CLUTO’s vcluster program removes all the columns that occur in fewer than three rows before computing the
clustering solution. This is for performance reasons, and it does not affect the quality of the computed clustering
solution. However, as a result of this pruning step, some objects may loose all of their features, in which case they will
not be clustered. Second, in the case of the graph-partitioning-based clustering algorithm, certain vertices of the graph
may be pruned prior to clustering by using a combination of the -edgeprune, -vtxprune, or -mincomponent parameters.

If the -zscores is specified, each line of this file also contains two additional numbers right after the cluster number.
The first number is its internal z-score, and the second number is its external z-score.

3.4.2 Tree File

The tree produced by performing a hierarchical agglomerative clustering on top of the k-way clustering solution
produced by vcluster is stored in a file in the form of a parent array. In particular, if k is the number of clusters, then
the tree file contains 2k − 1 lines, such that the i th line contains the parent of the i th node of the tree. In the case of the
root node, that is stored in the last line of the file, the parent is set to -1. For example, the tree file for the tree shown
in Figure 9 will contain 19 lines, and each line will store the following numbers (one number per line): 16, 12, 13, 16,
13, 10, 11, 12, 11, 10, 14, 15, 15, 14, 18, 17, 17, 18, -1.

In addition to the parent of each node, CLUTO’s tree file also outputs two numbers for each internal node the tree.

32

The first number is the average similarity between the siblings of each tree node. Since this quantity is not defined
for the leaves, only the rows of the file corresponding to the interior nodes of the tree contain meaningful numbers.
The second number is the change in the value of the criterion function achieved by combining the particular pair of
clusters. Note that in the case of the traditional single-link, complete-link, and UPGMA agglomerative methods, the
gain of the agglomeration is considered to be the weight of the link used in making the merging decisions.

If for some reason, CLUTO’s clustering programs cannot produce an entire single hierarchical tree, then the parent
array will contain multiple subtrees. The subtrees can be re-constructed by traversing the parent array from the leaves
toward the root. When a “-1” is encountered as the parent of a node other than the root’s, then this particular subtree
ends.

4 Which Clustering Algorithm Should I Use?

If you have read CLUTO’s manual up to this point you may start to wondering about which clustering algorithm to
use for your application. Well, there is no correct answer, as it highly depends on the nature of your datasets and what
constitutes meaningful clusters in your application. Nevertheless, this section attempts to clarify some of the “sweet
spots” of CLUTO’s various clustering algorithms and provide some general usage guidelines.

4.1 Cluster Types

We start our discussion by describing two different types of clusters that often arise in different application domains.
What differentiates them is the relationship between the cluster’s objects and the dimensions of their feature space.
Note that this is by no means an exhaustive list of cluster types.

The first type of clusters contains objects that exhibit a strong pattern of conservation along a subset of their
dimensions. That is, there is a subset of the original dimensions in which a large fraction of the objects agree. For
example, if the dimensions correspond to words (or products), what that means is that a collection of documents (or
customers) will form a cluster, if there exist a subset of terms (or products) that are present (or purchased) in a large
fraction of the documents (or customers). You can actually see this type of clusters by looking at the visualization
examples shown in Figure 10, as well as, the weights associated with the descriptive features that were output using
the -showfeatures option in Figure 6. In the case of the visualizations, you can clearly see some of the dimensions
(i.e., columns) that are conserved in each cluster, and in the case of -showfeatures you can see that the top-5 terms in
each cluster accounts for a large fraction of the similarity between the objects of each cluster.

This subset of dimensions is often referred to as a subspace, and the above stated property can be viewed as
the cluster’s objects and its associated dimensions forming a dense subspace. Of course, the number of dimensions
in these dense subspaces, as well as, the density (i.e., how large is the fraction of the objects that share the same
dimensions) will be different from cluster to cluster. Exactly this variation in subspace size and density (and the fact
that an object can be part of multiple disjoint or overlapping dense subspaces) is what complicates the problem of
discovering this type of clusters. There are a number of application areas in which this type of clusters give rise
to meaningful grouping of the objects (i.e., domain experts will tend to agree that the clusters are correct). Such
areas includes clustering documents based on the terms they contain, clustering customers based on the products they
purchase, clustering genes based on their expression levels, clustering proteins based on the motifs they contain, etc.

The second type of clusters contains objects in which again there exist a subspace associated with that cluster.
However, unlike the earlier case, in these clusters there will be sub-clusters that share a very small number of the
subspace’s dimension, but there will be a strong path within that cluster that will connect them. By “strong path” we
mean that if A and B are two sub-clusters that share only a few dimensions, then there will be another set of sub-clusters
X1, X2, . . . , Xk , that belong to the cluster, such that each of the sub-cluster pairs (A, X1), (X1, X2), . . . , (Xk, B) will
share many of the subspace’s dimensions. What complicates cluster discovery in this setting is that the connections
(i.e., shared subspace dimensions) between sub-clusters within a particular cluster will tend to be of different strength.
Examples of such clusters are the spatial clusters present in the two-dimensional datasets of Figure 3. In this case, the
dimensions in our definition correspond to small ranges of the x and y-axis. With this in mind, we see that there are
groups of points in the �-shaped clusters that do not share either of the x or y ranges, However, there is a spatially

33

contiguous set of points that connect them.
Our discussion so far focused on the relationship between the objects and their feature space. However, these two

classes of clusters can also be understood in terms of the the object-to-object similarity graph. The first type of clusters
will tend to contain objects in which the similarity between all pairs of objects will be high. On the other hand, in
the second type of clusters there will be a lot of objects whose direct pairwise similarity will be quite low, but these
objects will be connected by many paths that stay within the cluster that traverse high similarity edges. The names of
these two cluster types were inspired by this similarity-based view, and they are referred to as globular and transitive
clusters, respectively.

Matching Algorithms to Cluster Types CLUTO provides clustering algorithms for finding both of these types
of clusters. In particular, the partitional clustering algorithms corresponding to “rb”, “rbr”, and “direct”, and the
agglomerative algorithm “agglo” that does not use the single-link criterion tend to find globular clusters. On the other
hand, the agglomerative scheme with the single-link criterion and the graph-partitioning-based clustering algorithms
tend to find transitive clusters. It should be noted that any of the algorithms can find either globular or transitive
clusters provided that these clusters are sufficiently far away from each other.

The different clustering criterion functions used by the partitional and agglomerative clustering algorithms impact
the extent to which the individual instance of the clustering algorithm is capable of finding globular clusters that
contain clusters with different size consensus, or clusters whose average pair-wise similarity is different, as well as,
the extent to which clusters can be of dramatically different sizes. The reader is referred to [6] for an analysis of these
criterion functions.

4.2 Similarity Measures Between Objects

CLUTO’s clustering algorithms implemented by vcluster treat the objects to be clustered as vectors in a high-dimensional
space and measure the degree of similarity between these objects using either the cosine function, the Pearson’s cor-
relation coefficient, or a similarity derived from the Euclidean distance of these vectors. By using the cosine and
correlation coefficient measures, then two objects are similar if their corresponding vectors2 point in the same direc-
tion (i.e., they have roughly the same set of features and in the same proportion), regardless of their actual length. On
the other hand, the Euclidean distance does take into account both direction and magnitude.

These cosine- and correlation-based similarity measures are well-suited for clustering high-dimensional (as well
as low-dimensional) datasets arising in many diverse applications areas, including information retrieval, customer
purchasing transactions, science, and biology. Moreover, for many criterion functions, clustering algorithms based on
the cosine similarity measure are equivalent with algorithms that use the Euclidean distance measure on vectors that
are scaled to be of unit-length [6]. On the other hand, the Euclidean distance based similarity function is well-suited
for finding clusters in the original feature space, as it is the case for the spatial clusters shown in Figure 3.

There are applications in which the provided similarity measures are not sufficient (e.g., clustering sequence
dataset). In such cases you have to use the scluster program in which you provide the pairwise similarities between
the objects (you need to provide only the non-zero similarities). It is critical to ensure that the supplied similarities are
reasonable, especially in the case of criterion driven partitional clustering (i.e., for “rb”, “rbr”, and “direct”), as these
approaches try to optimize the clustering criterion function, based only on these similarities. Some examples of bad
similarity functions will be the ones in which there is a wide-range between the various similarity values, with some
pairwise similarities being extremely large. In such cases, the optimal clustering solution (in terms of the criterion
function) may just contain individual clusters for each such highly-similar pair of objects, with the rest of the objects
assigned to one cluster.

2In the case of Pearson’s correlation coefficient the vectors are obtained by first subtracting their average value.

34

4.3 Scalability of CLUTO’s Clustering Algorithms

The various clustering algorithms provided with CLUTO have different scalability characteristics. Table 2 summarizes
the time- and space-complexity of some of the clustering algorithms.

vcluster
Algorithm Time Complexity Space Complexity
-clmethod=rb, -sim=cos O(NNZ ∗ log(k)) O(NNZ)

-clmethod=rb, -sim=corr O(n ∗ m ∗ log(k)) O(n ∗ m)

-clmethod=direct, -sim=cos O(NNZ ∗ k + m ∗ k) O(NNZ + m ∗ k)

-clmethod=direct, -sim=corr O(n ∗ m ∗ k) O(n ∗ m + m ∗ k)

-clmethod=agglo, O(n2 ∗ log(n)) O(n2)

-clmethod=agglo, -crfun=[�1,�2] O(n3) O(n2)

-clmethod=graph, O(n2 + n ∗ NNbrs ∗ log(k)) O(nNNbrs)

scluster
Algorithm Time Complexity Space Complexity
-clmethod=rb, -sim=cos O(NNZ ∗ log(k)) O(NNZ)

-clmethod=rb, -sim=corr O(n ∗ m ∗ log(k)) O(n ∗ m)

-clmethod=direct, -sim=cos O(NNZ ∗ k + m ∗ k) O(NNZ + m ∗ k)

-clmethod=direct, -sim=corr O(n ∗ m ∗ k) O(n ∗ m + m ∗ k)

-clmethod=agglo, O(n2 ∗ log(n)) O(n2)

-clmethod=agglo, -crfun=[�1,�2] O(n3) O(n2)

-clmethod=graph, O(n ∗ NNbrs ∗ log(k)) O(nNNbrs)

Table 2: The complexity of CLUTO’s clustering algorithms. The meaning of the various quantities are as follows: n is the number
of objects to be clustered, m is the number of dimensions, NNZ is the number of non-zeros in the input matrix or similarity matrix,
NNbrs is the number of neighbors in the nearest-neighbor graph.

Looking at these results we can see that in terms of time and memory, the most scalable method is vcluster’s
repeated-bisecting algorithm that uses the cosine similarity function (i.e., -clmethod=rb, -sim=cos). Our experiments
showed that it can compute a 10-way partitioning of a dataset with 140K documents and 83K terms in less than five
minutes on a Intel Xeon based workstation. The least scalable of the algorithms are the ones based on hierarchical
agglomerative clustering. The critical aspect of these algorithms is that their memory requirements scale quadratic
on the number of objects, and they cannot be used to cluster more than 5K-10K objects. However, if you do want to
obtain a tree for a large dataset you should then use the -fulltree option that combines partitional and agglomerative
clustering.

35

5 CLUTO’s Library Interface

The functionality provided by CLUTO’s vcluster and scluster programs can also be accessed directly from a C or
C++ program by using the provided stand-alone library. In the rest of this section we provide information about how
to link your program with CLUTO’s library, describe the data structures used to pass information into the routines and
give a detailed description of the calling sequence of the various routines.

5.1 Using CLUTO’s Library

In order to use CLUTO’s stand-alone library you must link your program with CLUTO’s pre-compiled library that is
provide in the software distribution. For Unix-based distributions, the name of the library is libcluto.a, and for
the Windows 32 distribution, the name of the library file is libcluto.lib. At this point no dynamic link libraries
are provided for either Unix- or Windows-based distributions; however, such libraries may be provided in the future.

The method by which an external library is linked to your program varies from system to system. In most Unix-
based systems you can link it by just specifying -lcluto at the end of “cc” or “ld” command line. Care must be taken
that CLUTO’s library is in the default library search path. In most cases this can be modified by using the “-L” option
to specify the directory where libcluto.a is stored. For Windows-based systems, the linking method depends on
the particular development environment, and you should consult its documentation.

Any program that uses CLUTO’s library must include the cluto.h header file that is provided with CLUTO’s
distribution. This file contains various constant definitions as well as function prototypes and allows C and C++
programs to access CLUTO’s functions.

5.2 Matrix and Graph Data Structure

Most of the routines in CLUTO’s library take, as input, the objects to be clustered in the form of a matrix. For some
routines this matrix corresponds to the feature-space representation of the objects, that is, the rows are the objects and
the columns are the features (just like the matrix-file for the vcluster program). Whereas for some other routines, this
matrix corresponds to the adjacency matrix of the similarity graph between the objects, that is, both the rows and the
columns of the matrix correspond to the vertices in the graph (just like the graph-file for the scluster program).

Even though these two type of matrices represent entirely different information, they are provided to CLUTO’s
routines using the same data structure. This is primarily because the adjacency matrix of a graph is, after all, a matrix
which just happens to have the same number of rows and columns.

CLUTO’s routines support both sparse and dense matrices using the same set of data structures.

Sparse Matrix and Graph Data Structure A sparse matrix is supplied to CLUTO’s routines using a row-based
compressed storage format (CSR). The CSR format is a widely used scheme for storing sparse matrices. In this format
a matrix with n rows, m columns, and nnz non-zero entries is represented using three arrays that are called rowptr,
rowind, and rowval. The array rowptr is of size n + 1 whereas the arrays rowind and rowval are of size nnz.

The array rowind stores the column-indices of the non-zero entries in the matrix, and the array rowval stores
their corresponding values. In particular, the array rowind stores the column-indices of the first row, followed by
the column-indices of the second row, and so on. Similarly, the array rowval stores the corresponding values of the
non-zero entries of the first row, followed by the corresponding values of the non-zero entries of the second row, and
so on. The array rowptr is used to determine where the storage of a row starts and ends in the arrays, rowind and
rowval. In particular, the column-indices of the i th row are stored starting at rowind[rowptr[i]] and ending at
(but not including) rowind[rowptr[i+1]]. Similarly, the values of the non-zero entries of the i th row are stored
starting at rowval[rowptr[i]] and ending at (but not including) rowval[rowptr[i+1]]. Also note that the
number of non-zero entries of the i th row is simply rowptr[i+1]-rowptr[i].

Figure 16 illustrates the CSR format for the sparse matrix used earlier to illustrated the format of the matrix file
used by vcluster. Note, that the numbering of the columns in the CSR format starts from zero and not from one.

36

0.41.4 -0.4

-0.5 0.2

1.8 2.0 3.0

1.0

5.5 3.0 8.0

1.0 -1.0 2.0

3.5 4.0 8.0-1.0 2.0

1.1

6

5

4

3

2

1

0

1.1 -0.5 0.2 1.4 0.4 -0.4 1.8 2.0 3.0 1.0 5.5 3.0 8.0 1.0 -1.0 2.0 3.5 -1.0 4.0 2.0 8.0

1 4 7 0 1 3 2 5 7 0 1 3 6 2 4 5 1 3 4 6 7

0 3 6 9 10 13 16 21

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

rowptr

rowind

rowval

0 1 2 3 4 5 6 7 CSR Data Structures

Figure 16: An example of the CSR format for storing sparse matrices.

Dense Matrix Data Structure A dense matrix is supplied to CLUTO’s routines by using only the rowval array
and setting the rowptr and rowind arrays to NULL. In fact, CLUTO’s routines determine the input matrix format
by checking to see if rowptr is NULL or not. A dense matrix with n rows and m columns is passed to CLUTO by
supplying in rowval the n × m values of the matrix, in row-major order format. That is, the m values of the i th row
(where i takes values from 0 . . . n − 1) is stored starting at location rowval[i*m] and ending at (but not including)
rowval[(i+1)*m].

5.3 Clustering Parameters

Most of CLUTO’s routines take, as input, two parameters that control the similarity function to be used while clustering
the objects and the clustering criterion function to be optimized in the process of clustering. These two parameters are
called simfun and crfun, respectively.

5.3.1 The simfun Parameter

This parameter specified the similarity function to be used for clustering the objects. This parameter is similar to the
-sim option of vcluster. The possible values for the simfun parameter are the following:

CLUTO SIM COSINE The similarity between the objects is computed using the cosine func-
tion of their vectors. This is the similarity function used by the default
settings of vcluster and scluster.

CLUTO SIM CORRCOEF The similarity between the objects is computed using the correlation
coefficient of their vectors.

CLUTO SIM EDISTANCE The similarity between the objects is computed to be inversely related
to their Euclidean distance. In particular, if di, j is the distance between
two objects, and dmax is the maximum distance between any two objects
in the dataset, the similarity between these objects is set to be

sim(i, j) = 1 − di, j

1.0 + dmax
.

5.3.2 The crfun Parameter

This parameter specifies the clustering criterion function to be used in finding the clusters. This parameter is similar
to the -crfun option of vcluster and scluster. The possible values for the crfun parameter are the following:

CLUTO CLFUN I1 Selects the I1 (�1) criterion function.

CLUTO CLFUN I2 Selects the I2 (�2) criterion function.

CLUTO CLFUN E1 Selects the E1 (�1) criterion function.

CLUTO CLFUN G1 Selects the G1 (�1) criterion function.

CLUTO CLFUN G1P Selects the G1’ (� ′
1) criterion function.

37

CLUTO CLFUN H1 Selects the H1 (�1) criterion function.

CLUTO CLFUN H2 Selects the H2 (�2) criterion function.

CLUTO CLFUN SLINK Selects the traditional single-link merging criterion.

CLUTO CLFUN SLINK W Selects the weighted single-link merging criterion, in which the initial
similarity between two clusters is scaled by the sum of the similarities between
the objects of the cluster.

CLUTO CLFUN CLINK Selects the traditional complete-link merging criterion.

CLUTO CLFUN CLINK W Selects the weighted complete-link merging criterion, in which the ini-
tial similarity between two clusters is scaled by the sum of the similarities be-
tween the objects of the cluster.

CLUTO CLFUN UPGMA Selects the traditional UPGMA merging criterion.

5.3.3 The cstype Parameter

This parameter specifies the method to be used for selecting the next cluster to be bisected by CLUTO’s repeated-
bisecting- and graph-partitioning-based clustering algorithms. This parameter is similar to the -cstype option of vclus-
ter and scluster. The possible values for the cstype parameter are the following:

CLUTO CSTYPE LARGE Selects to bisect the largest cluster from the current clustering solution.

CLUTO CSTYPE BEST Selects to bisect the cluster that will lead to the best value of the clustering
criterion function that is guides the clustering process.

5.4 Object Modeling Parameters

Most of CLUTO’s routines take as input three parameters that control how the rows and columns of the input matrix
will be modeled. These parameters are called rowmodel, colmodel, and colprune.

5.4.1 The rowmodel Parameter

This parameter specifies the model to be used for scaling the various columns of each row. This parameter is similar
to the -rowmodel option of vcluster. The possible values for this parameter are:

CLUTO ROWMODEL NONE The columns of each row are not scaled and used as supplied in the
rowval array.

CLUTO ROWMODEL MAXTF The columns of each row are scaled so their values are between 0.5
and 1.0.

CLUTO ROWMODEL SQRT The columns of each row are scaled to be equal to the square root
of their actual values.

CLUTO ROWMODEL LOG The columns of each row are scaled to be equal to the log of their
actual values.

5.4.2 The colmodel Parameter

This parameter specifies the model to be used for scaling the various columns globally across all the rows of the matrix.
This parameter is similar to the -colmodel option of vcluster. The possible values for this parameter are:

CLUTO COLMODEL NONE The columns of the matrix are not globally scaled and they are used as
is.

CLUTO COLMODEL IDF The columns of the matrix are scaled according to the inverse docu-
ment frequency paradigm (IDF), that was described in vcluster’s sec-
tion.

38

5.4.3 The grmodel Parameter

This parameter specifies the type of k-nearest neighbor graph that will be built by CLUTO’s graph-partitioning based
clustering algorithms. This parameter is similar to the -grmodel option of vcluster and scluster. The possible values
for this parameter are:

CLUTO GRMODEL SYMETRIC DIRECT An edge between two vertices u and v is included
if and only if they are in the nearest-neighbor list of
each other. The weight of this edge is set equal to the
similarity of the objects.

CLUTO GRMODEL ASSYMETRIC DIRECT An edge between two vertices u and v is included
as long as one of them is in the nearest-neighbor list
of the other. The weight of this edge is set equal to
the similarity of the objects.

CLUTO GRMODEL SYMETRIC LINK An edge between two vertices u and v is included
if and only if they are in the nearest-neighbor list of
each other. The weight of this edge was set equal to
the number of neighbors that vertices u and v have in
common.

CLUTO GRMODEL ASSYMETRIC LINK An edge between two vertices u and v is included as
long as one of them is in the nearest-neighbor list of
the other. The weight of this edge was set equal to
the number of neighbors that vertices u and v have in
common.

CLUTO GRMODEL NONE The supplied graph is used as is.

5.4.4 The colprune Parameter

This parameter specifies the factor by which the columns of the matrix will be pruned before performing the clustering.
Valid range of values are from (0.0, 1.0]. A value of 1.0 indicates no pruning and is the default setting for vcluster.

5.4.5 The edgeprune Parameter

This parameter controls how the edges in the graph-partitioning clustering algorithms will be pruned based on the
link-connectivity of their incident vertices. Please refer to the discussion of CLUTO’s -edgeprune for further details.
A value of -1 suppresses edge-pruning.

5.4.6 The vtxprune Parameter

This parameter controls how outlier vertices in the graph-partitioning clustering algorithms will be pruned based on
their degree. Please refer to the discussion of CLUTO’s -vtxprune for further details. A value of -1 suppresses vertex-
pruning.

5.5 Debugging Parameter

Most of CLUTO’s routines take as input a parameter called dbglvl that controls the amount of information to be printed.
This is used for internal purposes and should be set to 0, which suppresses any debugging output.

39

5.6 Clustering Routines

void CLUTO VP ClusterDirect (int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun,
int crfun, int rowmodel, int colmodel, float colprune, int ntrials, int niter,
int seed, int dbglvl, int nclusters, int *part)

Description
Used to cluster a matrix into a specified (k) number of clusters using a partitional clustering algorithm that
computes the k-way clustering directly. Provides the functionality of the -clmethod=direct clustering method of
the vcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

simfun, crfun
The clustering parameters whose meaning and possible values are described in Section 5.3.

rowmodel, colmodel, colprune
The object modeling parameters whose meaning and possible values are described in Section 5.4.

ntrials Specifies the number of different clustering solutions to be computed. The solution that achieves the
best value of the criterion function is the one that is returned. The value for ntrials must be greater
than zero, and vcluster’s default setting is 10.

niter Specifies the maximum number of iterations that are performed during each refinement cycle. The
value for niter has to be greater than zero.

seed The seed to be used by the random number generator.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

Note

40

void CLUTO VP ClusterRB (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int crfun, int rowmodel, int colmodel, float colprune,
int ntrials, int niter, int seed, int cstype, int kwayrefine,
int dbglvl, int nclusters, int *part)

Description
Used to cluster a matrix into a specified (k) number of clusters using a partitional clustering algorithm that com-
putes the k-way by performing a sequence of repeated bisections. Provides the functionality of the -clmethod=rb
and -clmethod=rbr clustering methods of the vcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

simfun, crfun, cstype
The clustering parameters whose meaning and possible values are described in Section 5.3.

rowmodel, colmodel, colprune
The object modeling parameters whose meaning and possible values are described in Section 5.4.

ntrials Specifies the number of different clustering solutions to be computed. The solution that achieves the
best value of the criterion function is the one that is returned. The value for ntrials must be greater
than zero.

niter Specifies the maximum number of iterations that are performed during each refinement cycle. The
value for niter has to be greater than zero.

seed The seed to be used by the random number generator.

kwayrefine
This parameter controls whether or not the clustering solution will be globally optimized at the end
by performing a series of k-way refinement iterations. The possible values for this parameter are:

0 Does not optimize the clustering solution globally.

1 Optimizes the clustering solution globally.

The global optimization of the clustering solution can significantly increase the amount of time
required to perform the clustering.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

Note
CLUTO VP ClusterRB is considerably faster than CLUTO VP ClusterDirect and it should be preferred if the
number of desired clusters is quite large (e.g., greater than 20–30).

41

int CLUTO VP GraphClusterRB (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int grmodel,
int nnbrs, float edgeprune, float vtxprune, int mincmp,
int ntrials, int seed, int cstype, int dbglvl, int nclusters,
int *part, float *crvalue)

Description
Used to cluster a matrix into a specified (k) number of clusters using a graph-partitioning-based clustering
algorithm that computes the k-way by performing a sequence of repeated min-cut bisections. Provides the
functionality of the -clmethod=graph clustering method of the vcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

simfun, crfun, cstype
The clustering parameters whose meaning and possible values are described in Section 5.3.

rowmodel, colmodel, colprune, vtxprune, edgeprune
The object modeling parameters whose meaning and possible values are described in Section 5.4.

nnbrs The number of neighbors of each object that will be used to create the nearest neighbor graph.

mincmp The size of the minimum connect component that will be pruned prior to clustering.

ntrials Specifies the number of different clustering solutions to be computed. The solution that achieves the
best value of the criterion function is the one that is returned. The value for ntrials must be greater
than zero.

seed The seed to be used by the random number generator.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

crvalue This is a variable that upon returns stores the edge-cut of the clustering solution.

Returned Value
Returns the number of clusters that it found. This number will be equal to the number of desired clusters plus
the number of connected components in the graph.

Note

42

void CLUTO VA Cluster (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int crfun, int rowmodel, int colmodel, float colprune,
int dbglvl, int nclusters, int *part, int *ptree, float *tsims, float *gains)

Description
Used to cluster a matrix into a specified (k) number of clusters using a hierarchical agglomerative clustering
algorithm. Provides the functionality of the -clmethod=agglo clustering method of the vcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.
rowptr, rowind, rowval

The matrix itself in the format described in Section 5.2.
simfun, crfun

The clustering parameters whose meaning and possible values are described in Section 5.3.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 5.4.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

ptree This is an array of size 2*nrows that upon successful completion stores the parent array of the bi-
nary hierarchical tree. In this tree, each node corresponds to a cluster. The leaf nodes are the original
nrows objects, and they are numbered from 0 to nrows-1. The internal nodes of the tree are numbered
from nrows to 2*nrows-2. The numbering of the internal nodes is performed so that smaller num-
bers correspond to clusters obtained by merging a pair of clusters earlier during the agglomeration
process. The root of the tree is numbered 2*nrows-2.

The i th entry of the ptree array stores the parent node of the i node of the tree. The ptree entry for
the root is set to -1.

The application is responsible for allocating the memory for this array.

tsims This is an array of size 2*nrows that upon successful completion stores the average similarity be-
tween every pair of siblings in the induced tree. In particular, tsims[i] stores the average pairwise
similarity between the pair of clusters that are the children of the i th node of the tree. Note that the
first nrows entries of this vector are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

gains This is an array of size 2*nrows that upon successful completion stores the gains in the value of the
criterion function resulted by the merging pairs of clusters. In particular, gains[i] stores the gain
achieved by merging the clusters that are the children of the i th node of the tree. Note that the first
nrows entries of this vector are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

Note
Due to the high computational requirements of CLUTO VA Cluster, it should only be used to cluster matrices
that have fewer than 3,000–6,000 rows.

43

void CLUTO SP ClusterDirect (int nrows, int *rowptr, int *rowind, float *rowval, int crfun,
int ntrials, int niter, int seed, int dbglvl, int nclusters, int *part)

Description
Used to cluster a graph into a specified (k) number of clusters using a partitional clustering algorithm that
computes the k-way clustering directly. Provides the functionality of the -clmethod=direct clustering method of
the scluster program.

Input Parameters
nrows The number of rows of the input adjacency matrix whose rows store the adjacency structure of the

between object similarity graph.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

crfun The clustering criterion function whose meaning and possible values are described in Section 5.3.

ntrials Specifies the number of different clustering solutions to be computed. The solution that achieves the
best value of the criterion function is the one that is returned. The value for ntrials must be greater
than zero, and vcluster’s default setting is 10.

niter Specifies the maximum number of iterations that are performed during each refinement cycle. The
value for niter has to be greater than zero.

seed The seed to be used by the random number generator.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

Note

44

void CLUTO SP ClusterRB (int nrows, int *rowptr, int *rowind, float *rowval, int crfun
int ntrials, int niter, int seed, int cstype, int kwayrefine,
int dbglvl, int nclusters, int *part)

Description
Used to cluster a matrix into a specified (k) number of clusters using a partitional clustering algorithm that com-
putes the k-way by performing a sequence of repeated bisections. Provides the functionality of the -clmethod=rb
and -clmethod=rbr clustering methods of the scluster program.

Input Parameters
nrows The number of rows of the input adjacency matrix whose rows store the adjacency structure of the

between-object similarity graph.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

crfun, cstype
The clustering parameters whose meaning and possible values are described in Section 5.3.

ntrials Specifies the number of different clustering solutions to be computed. The solution that achieves the
best value of the criterion function is the one that is returned. The value for ntrials must be greater
than zero.

niter Specifies the maximum number of iterations that are performed during each refinement cycle. The
value for niter has to be greater than zero.

seed The seed to be used by the random number generator.

kwayrefine
This parameter controls whether or not the clustering solution will be globally optimized at the end
by performing a series of k-way refinement iterations. The possible values for this parameter are:

0 Does not optimize the clustering solution globally.

1 Optimizes the clustering solution globally.

The global optimization of the clustering solution can significantly increase the amount of time
required to perform the clustering.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

Note
CLUTO SP ClusterRB is considerably faster than CLUTO SP ClusterDirect and it should be preferred if the
number of desired clusters is quite large (e.g., greater than 20–30).

45

int CLUTO SP GraphClusterRB (int nrows, int *rowptr, int *rowind, float *rowval, int nnbrs,
float edgeprune, float vtxprune, int mincmp, int ntrials, int seed,
int cstype, int dbglvl, int nclusters, int *part, float *crvalue)

Description
Used to cluster a matrix into a specified (k) number of clusters using a graph-partitioning-based clustering
algorithm that computes the k-way by performing a sequence of repeated min-cut bisections. Provides the
functionality of the -clmethod=graph clustering method of the scluster program.

Input Parameters
nrows The number of rows of the input adjacency matrix whose rows store the adjacency structure of the

between-object similarity graph.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

cstype The clustering parameters whose meaning and possible values are described in Section 5.3.
vtxprune, edgeprune

The object modeling parameters whose meaning and possible values are described in Section 5.4.

nnbrs The number of neighbors used in the edge- and vertex-pruning calculations. Note that in this routine,
this variable does not control the number of neighbors in the graph.

mincmp The size of the minimum connect component that will be pruned prior to clustering.

ntrials Specifies the number of different clustering solutions to be computed. The solution that achieves the
best value of the criterion function is the one that is returned. The value for ntrials must be greater
than zero.

seed The seed to be used by the random number generator.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

crvalue This is a variable that upon returns stores the edge-cut of the clustering solution.

Returned Value
Returns the number of clusters that it found. This number will be equal to the number of desired clusters plus
the number of connected components in the graph.

Note

46

void CLUTO SA Cluster (int nrows, int *rowptr, int *rowind, float *rowval, int crfun,
int dbglvl, int nclusters, int *part, int *ptree, float *tsims, float *gains)

Description
Used to cluster a matrix into a specified (k) number of clusters using a hierarchical agglomerative clustering
algorithm. Provides the functionality of the -clmethod=agglo clustering method of the scluster program.

Input Parameters
nrows The number of rows of the input adjacency matrix whose rows store the adjacency structure of the

between-object similarity graph.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

crfun The clustering parameters whose meaning and possible values are described in Section 5.3.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of desired clusters.

Output Parameters
part This is an array of size nrows that upon successful completion stores the clustering vector of the

matrix. The i th entry of this array stores the cluster number that the i th row of the matrix belongs to.
Note that the numbering of the clusters starts from zero. The application is responsible for allocating
the memory for this array.

Under certain circumstances, CLUTO may not be able to assign a particular row to a cluster. In this
case, the part[] entry of that particular row will be set to -1.

ptree This is an array of size 2*nrows that upon successful completion stores the parent array of the bi-
nary hierarchical tree. In this tree, each node corresponds to a cluster. The leaf nodes are the original
nrows objects, and they are numbered from 0 to nrows-1. The internal nodes of the tree are numbered
from nrows to 2*nrows-2. The numbering of the internal nodes is performed so that smaller num-
bers correspond to clusters obtained by merging a pair of clusters earlier during the agglomeration
process. The root of the tree is numbered 2*nrows-2.

The i th entry of the ptree array stores the parent node of the i node of the tree. The ptree entry for
the root is set to -1.

The application is responsible for allocating the memory for this array.

tsims This is an array of size 2*nrows that upon successful completion stores the average similarity be-
tween every pair of siblings in the induced tree. In particular, tsims[i] stores the average pairwise
similarity between the pair of clusters that are the children of the i th node of the tree. Note that the
first nrows entries of this vector are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

gains This is an array of size 2*nrows that upon successful completion stores the gains in the value of the
criterion function resulted by the merging pairs of clusters. In particular, gains[i] stores the gain
achieved by merging the clusters that are the children of the i th node of the tree. Note that the first
nrows entries of this vector are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

Note
Due to the high computational requirements of CLUTO SA Cluster, it should only be used to cluster matrices
that have fewer than 3,000–6,000 rows.

47

void CLUTO V BuildTree (int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun
int crfun, int rowmodel, int colmodel, float colprune, int treetype,
int dbglvl, int nclusters, int *part, int *ptree, float *tsims, float *gains)

Description
Builds a hierarchical agglomerative tree that preserves the clustering solution supplied in the part array. It can
build two types of trees. The first type is a tree built on top of a particular clustering solution, such that the
leaves of the tree correspond to the different clusters. This is the type of tree used when the -showtree option
of vcluster is specified. The second type of tree is a complete agglomerative tree that preserves the clustering.
This is the type of tree used when the -fulltree option of vcluster is specified. The hierarchical agglomerative
tree is build so that it optimizes a particular clustering criterion function.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.
rowptr, rowind, rowval

The matrix itself in the format described in Section 5.2.
simfun, crfun

The clustering parameters whose meaning and possible values are described in Section 5.3.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 5.4.
treetype

Specifies the type of tree that needs to be built. The possible values for this parameter are:

CLUTO TREE TOP Builds a tree whose leaves correspond to the different clusters.

CLUTO TREE FULL Builds a complete tree that preserves the clustering solution.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

Output Parameters
ptree An array whose size depends on the type of tree that is requested.

If treetype==CLUTO TREE TOP, then it is of size 2*nclusters that upon successful completion
stores the parent array of the binary hierarchical tree. In this tree, each node corresponds to a cluster.
The leaf nodes are the original nclusters clusters supplied via the part array, and they are numbered
from 0 to nclusters-1. The internal nodes of the tree are numbered from nclusters to 2*nclusters-2.
The root of the tree is numbered 2*nclusters-2.

If treetype==CLUTO TREE FULL, then it is of size 2*nrows that upon successful completion stores
the parent array of the binary hierarchical tree. In this tree, each node corresponds to a cluster. The
leaf nodes are the original rows of the matrix, and they are numbered from 0 to nrows-1. The internal
nodes of the tree are numbered from nrows to 2*nrows-2. The root of the tree is numbered 2*nrows-
2.

The numbering of the internal nodes is done in such a fashion so that smaller numbers correspond to
clusters obtained by merging a pair of clusters earlier during the agglomeration process.

The i th entry of the ptree array stores the parent node of the i node of the tree. The ptree entry for
the root is set to -1.

The application is responsible for allocating the memory for this array.

48

tsims An array whose size depends on the type of tree that is requested. If treetype==CLUTO TREE TOP,
then it is of size 2*nclusters and if treetype==CLUTO TREE FULL then it is of size 2*nrows.

Upon successful completion stores the average similarity between every pair of siblings in the in-
duced tree. In particular, tsims[i] stores the average pairwise similarity between the pair of clusters
that are the children of the i th node of the tree. Note that the first nclusters or nrows entries of this
vector are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

gains An array whose size depends on the type of tree that is requested. If treetype==CLUTO TREE TOP,
then it is of size 2*nclusters and if treetype==CLUTO TREE FULL then it is of size 2*nrows.

Upon successful completion stores the gains in the value of the criterion function resulted by the
merging pairs of clusters. In particular, gains[i] stores the gain achieved by merging the clusters that
are the children of the i th node of the tree. Note that the first nclusters or nrows entries of this vector
are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

Note
In order for this routine to build the accurate tree for a particular clustering solution, the values for the rowmodel,
colmodel, and colprune parameters should be identical to those used to compute the clustering solution.

This routine can be used to build the hierarchical agglomerative tree with respect to any clustering criterion
function regardless of the criterion function used to compute the clustering solution.

49

void CLUTO S BuildTree (int nrows, int *rowptr, int *rowind, float *rowval, int crfun, int treetype,
int dbglvl, int nclusters, int *part, int *ptree, float *tsims, float *gains)

Description
Builds a hierarchical agglomerative tree that preserves the clustering solution supplied in the part array. It can
build two types of trees. The first type is a tree built on top of a particular clustering solution, such that the
leaves of the tree correspond to the different clusters. This is the type of tree used when the -showtree option
of scluster is specified. The second type of tree is a complete agglomerative tree that preserves the clustering.
This is the type of tree used when the -fulltree option of scluster is specified. The hierarchical agglomerative
tree is build so that it optimizes a particular clustering criterion function.

Input Parameters
nrows The number of rows of the input adjacency matrix whose rows store the adjacency structure of the

between-object similarity graph.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

crfun The clustering parameters whose meaning and possible values are described in Section 5.3.
treetype

Specifies the type of tree that needs to be built. The possible values for this parameter are:

CLUTO TREE TOP Builds a tree whose leaves correspond to the different clusters.

CLUTO TREE FULL Builds a complete tree that preserves the clustering solution.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

Output Parameters
ptree An array whose size depends on the type of tree that is requested.

If treetype==CLUTO TREE TOP, then it is of size 2*nclusters that upon successful completion
stores the parent array of the binary hierarchical tree. In this tree, each node corresponds to a cluster.
The leaf nodes are the original nclusters clusters supplied via the part array, and they are numbered
from 0 to nclusters-1. The internal nodes of the tree are numbered from nclusters to 2*nclusters-2.
The root of the tree is numbered 2*nclusters-2.

If treetype==CLUTO TREE FULL, then it is of size 2*nrows that upon successful completion stores
the parent array of the binary hierarchical tree. In this tree, each node corresponds to a cluster. The
leaf nodes are the original rows of the matrix, and they are numbered from 0 to nrows-1. The internal
nodes of the tree are numbered from nrows to 2*nrows-2. The root of the tree is numbered 2*nrows-
2.

The numbering of the internal nodes is done in such a fashion so that smaller numbers correspond to
clusters obtained by merging a pair of clusters earlier during the agglomeration process.

The i th entry of the ptree array stores the parent node of the i node of the tree. The ptree entry for
the root is set to -1.

The application is responsible for allocating the memory for this array.

50

tsims An array whose size depends on the type of tree that is requested. If treetype==CLUTO TREE TOP,
then it is of size 2*nclusters and if treetype==CLUTO TREE FULL then it is of size 2*nrows.

Upon successful completion stores the average similarity between every pair of siblings in the in-
duced tree. In particular, tsims[i] stores the average pairwise similarity between the pair of clusters
that are the children of the i th node of the tree. Note that the first nclusters or nrows entries of this
vector are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

gains An array whose size depends on the type of tree that is requested. If treetype==CLUTO TREE TOP,
then it is of size 2*nclusters and if treetype==CLUTO TREE FULL then it is of size 2*nrows.

Upon successful completion stores the gains in the value of the criterion function resulted by the
merging pairs of clusters. In particular, gains[i] stores the gain achieved by merging the clusters that
are the children of the i th node of the tree. Note that the first nclusters or nrows entries of this vector
are not defined and are set to 0.0.

The application is responsible for allocating the memory for this array.

Note
In order for this routine to build the accurate tree for a particular clustering solution, the values for the rowmodel,
colmodel, and colprune parameters should be identical to those used to compute the clustering solution.

This routine can be used to build the hierarchical agglomerative tree with respect to any clustering criterion
function regardless of the criterion function used to compute the clustering solution.

51

5.7 Graph Creation Routines

int CLUTO V GetGraph (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int grmodel,
int nnbrs, int dbglvl, int **growptr, int **growind, float **growval)

Description
Used to create a nearest-neighbor graph of the set of objects. This is graph can be used as input to the graph-
partitioning based clustering algorithm (CLUTO SP GraphClusterRB).

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects to be clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

simfun The method used to compute the similarity between objects, whose meaning and possible values are
described in Section 5.3.1.

rowmodel, colmodel, grmodel, colprune
The object modeling parameters whose meaning and possible values are described in Section 5.4.

nnbrs The number of neighbors of each object that will be used to create the nearest neighbor graph.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

Output Parameters
growptr, growind, growval

These are three arrays storing the computed graph in the CSR matrix format. Memory for these
arrays are allocated within CLUTO’s library. However, the application is responsible for freeing this
memory.

Note

52

int CLUTO S GetGraph (int nrows, int *rowptr, int *rowind, float *rowval, int grmodel,
int nnbrs, int dbglvl, int **growptr, int **growind, float **growval)

Description
Used to create a nearest-neighbor graph of the set of objects. This is graph can be used as input to the graph-
partitioning based clustering algorithm (CLUTO SP GraphClusterRB).

Input Parameters
nrows The number of rows of the adjacency matrix (i.e., the number of vertices in the graph).

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

grmodel The type of graph to be constructed. The meaning and possible values are described in Section 5.4.

nnbrs The number of neighbors of each object that will be used to create the nearest neighbor graph.

dbglvl The debugging parameter whose meaning and possible values are described in Section 5.5.

Output Parameters
growptr, growind, growval

These are three arrays storing the computed nrows-vertex graph in the CSR matrix format. Memory
for these arrays are allocated within CLUTO’s library. However, the application is responsible for
freeing this memory.

Note

53

5.8 Cluster Statistics Routines

float CLUTO V GetSolutionQuality (int nrows, int ncols, int *rowptr, int *rowind, float *rowval, int simfun,
int crfun, int rowmodel, int colmodel, float colprune, int nclusters, int *part)

Description
Returns the value of a particular criterion function for a given clustering solution.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

simfun, crfun
The clustering parameters whose meaning and possible values are described in Section 5.3.

rowmodel, colmodel, colprune
The object modeling parameters whose meaning and possible values are described in Section 5.4.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

Returned Value
This function returns the value of the clustering criterion function of the supplied clustering solution. Please
refer to [6] for the exact definitions of these criterion functions.

Note
This routine can be used to find the value of any clustering criterion function regardless of the criterion function
used to compute the clustering solution.

54

float CLUTO S GetSolutionQuality (int nrows, int *rowptr, int *rowind, float *rowval, int crfun,
int nclusters, int *part)

Description
Returns the value of a particular criterion function for a given clustering solution.

Input Parameters
nrows The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

crfun The clustering parameters whose meaning and possible values are described in Section 5.3.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

Returned Value
This function returns the value of the clustering criterion function of the supplied clustering solution. Please
refer to [6] for the exact definitions of these criterion functions.

Note
This routine can be used to find the value of any clustering criterion function regardless of the criterion function
used to compute the clustering solution.

55

void CLUTO V GetClusterStats (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int nclusters,
int *part, int *pwgts, float *cintsim, float *cintsdev, float *izscores,
float *cextsim, float *cextsdev, float *ezscores)

Description
Returns a number of statistics about a given clustering solution.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

simfun The clustering similarity function whose meaning and possible values are described in Section 5.3.1.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 5.4.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

Output Parameters
pwgts An array of size nclusters that returns the sizes of the different clusters. In particular, the size of the

i th cluster is returned in pwgts[i]. The application is responsible for allocating the memory for this
array.

cintsim An array of size nclusters that returns the average similarity between the objects assigned to each
cluster. In particular, the average similarity between the objects of the i th cluster is returned in
cintsim[i]. The application is responsible for allocating the memory for this array.

cintsdev An array of size nclusters that returns the standard deviation of the average similarity between each
object and the other objects in its own cluster. In particular, the standard deviation of the i th cluster
is returned in cintsdev[i]. The application is responsible for allocating the memory for this array.

izscores An array of size nrows that returns the internal z-scores of each object. The internal z-score of the
i th object is returned in izscores[i]. The internal z-score of each object is described in the discussion
of the -zscores option of vcluster. The application is responsible for allocating the memory for this
array.

cextsim An array of size nclusters that returns the average similarity between the objects of each cluster and
the remaining objects. In particular, the average external similarity of the objects of the i th cluster is
returned in cextsim[i]. The application is responsible for allocating the memory for this array.

cextsdev An array of size nclusters that returns the standard deviation of the average external similarities of
each object. In particular, the external standard deviation of the objects of the i th cluster is returned
in cextsdev[i]. The application is responsible for allocating the memory for this array.

ezscores An array of size nrows that returns the external z-scores of each object. The external z-score of the
i th object is returned in ezscores[i]. The external z-score of each object is described in the discussion
of the -zscores option of vcluster. The application is responsible for allocating the memory for this
array.

56

Note
The various values for the simfun, rowmodel, and colmodel parameters are defined in cluto.h, and this header
file must be included in all programs that use CLUTO’s library.

In order for this routine to get the accurate statistics for a particular clustering solution, the values for the row-
model, colmodel, and colprune parameters should be identical to those used to compute the clustering solution.

57

void CLUTO S GetClusterStats (int nrows, int *rowptr, int *rowind, float *rowval, int nclusters,
int *part, int *pwgts, float *cintsim, float *cintsdev, float *izscores,
float *cextsim, float *cextsdev, float *ezscores)

Description
Returns a number of statistics about a given clustering solution.

Input Parameters
nrows The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

Output Parameters
pwgts An array of size nclusters that returns the sizes of the different clusters. In particular, the size of the

i th cluster is returned in pwgts[i]. The application is responsible for allocating the memory for this
array.

cintsim An array of size nclusters that returns the average similarity between the objects assigned to each
cluster. In particular, the average similarity between the objects of the i th cluster is returned in
cintsim[i]. The application is responsible for allocating the memory for this array.

cintsdev An array of size nclusters that returns the standard deviation of the average similarity between each
object and the other objects in its own cluster. In particular, the standard deviation of the i th cluster
is returned in cintsdev[i]. The application is responsible for allocating the memory for this array.

izscores An array of size nrows that returns the internal z-scores of each object. The internal z-score of the
i th object is returned in izscores[i]. The internal z-score of each object is described in the discussion
of the -zscores option of vcluster. The application is responsible for allocating the memory for this
array.

cextsim An array of size nclusters that returns the average similarity between the objects of each cluster and
the remaining objects. In particular, the average external similarity of the objects of the i th cluster is
returned in cextsim[i]. The application is responsible for allocating the memory for this array.

cextsdev An array of size nclusters that returns the standard deviation of the average external similarities of
each object. In particular, the external standard deviation of the objects of the i th cluster is returned
in cextsdev[i]. The application is responsible for allocating the memory for this array.

ezscores An array of size nrows that returns the external z-scores of each object. The external z-score of the
i th object is returned in ezscores[i]. The external z-score of each object is described in the discussion
of the -zscores option of vcluster. The application is responsible for allocating the memory for this
array.

Note

58

void CLUTO V GetClusterFeatures (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int nclusters,
int *part, int nfeatures, int *internalids, float *internalwgts,
int *externalids, float *externalwgts)

Description
Returns the set of features that best describe and discriminate each one of the clusters of a given clustering
solution. It provides the functionality of the -showfeatures option of the vcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.
rowptr, rowind, rowval

The matrix itself in the format described in Section 5.2.

simfun The clustering similarity function whose meaning and possible values are described in Section 5.3.1.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 5.4.

nclusters The number of clusters in the supplied clustering solution.

part This is an array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

nfeatures The number of descriptive and discriminating features that is desired.

Output Parameters
internalids

An array of size nclusters*nfeatures that returns the column numbers of the descriptive features. The
set of features of the i th cluster are stored in the internalids array starting at location i ∗ nfeatures
up to location (but excluding) (i + 1) ∗ nfeatures. The set of features for each cluster are returned
in decreasing importance order. The numbering of the returned columns starts from zero. The
application is responsible for allocating the memory for this array.

internalwgts
An array of size nclusters*nfeatures that returns the weight of each one of the descriptive features
returned in the internalids array. The weight of the features stored in the i th location of the internalids
array is returned in the i th location of the internalwgts array. The weights are numbers between
0.0 and 1.0 and represent the fraction of the within cluster similarity that each particular feature is
responsible for. The application is responsible for allocating the memory for this array.

externalids
This is an array of size nclusters*nfeatures that returns the column numbers of the discriminating
features. The set of features of the i th cluster are stored in the externalids array starting at location
i ∗ nfeatures up to location (but excluding) (i + 1)∗ nfeatures. The set of features for each cluster are
returned in decreasing importance order. The numbering of the returned columns starts from zero.
The application is responsible for allocating the memory for this array.

externalwgts
This is an array of size nclusters*nfeatures that returns the weight of each one of the discriminating
features returned in the externalids array. The weight of the features stored in the i th location of the
externalids array is returned in the i th location of the externalwgts array. The weights are numbers
between 0.0 and 1.0 and represent the fraction of the dissimilarity between the cluster and the rest of
the objects that each particular feature is responsible for. The application is responsible for allocating
the memory for this array.

59

Note
The various values for the simfun, rowmodel, and colmodel parameters are defined in cluto.h, and this header
file must be included in all programs that use CLUTO’s library.

In order for this routine to get the accurate set of features for a particular clustering solution, the values for
the rowmodel, colmodel, and colprune parameters should be identical to those used to compute the clustering
solution.

60

void CLUTO V GetTreeStats (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int nclusters,
int *part, int *ptree, int *pwgts, float *cintsim, float *cextsim)

Description
Returns a number of statistics about the clusters corresponding to the different nodes of the hierarchical agglom-
erative tree.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

simfun The clustering similarity function whose meaning and possible values are described in Section 5.3.1.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 5.4.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

ptree An array of size 2*nclusters that was populated by the CLUTO V BuildTree routine.

Output Parameters
pwgts An array of size 2*nclusters that returns the sizes of the clusters corresponding to the various nodes

of the tree. In particular, the size of the cluster corresponding to the i th tree-node is returned in
pwgts[i]. The application is responsible for allocating the memory for this array.

cintsim An array of size 2*nclusters that returns the average similarity between the objects assigned to each
cluster. In particular, the average similarity between the objects of the cluster corresponding to the
i th tree-node is returned in cintsim[i]. The application is responsible for allocating the memory for
this array.

cextsim An array of size 2*nclusters that returns the average similarity between the objects of each cluster
and their sibling cluster in the tree. In particular, the average external similarity of the objects of the
i th cluster is returned in cextsim[i]. Note that each pair of sibling clusters will have the same cextsim
value. The application is responsible for allocating the memory for this array.

Note
The various values for the simfun, rowmodel, and colmodel parameters are defined in cluto.h, and this header
file must be included in all programs that use CLUTO’s library.

In order for this routine to get the accurate statistics for a particular clustering solution, the values for the
rowmodel, colmodel, and colprune, nclusters, part, and ptree parameters should be identical to those used to
compute the clustering solution and build the hierarchical agglomerative tree.

61

void CLUTO V GetTreeFeatures (int nrows, int ncols, int *rowptr, int *rowind, float *rowval,
int simfun, int rowmodel, int colmodel, float colprune, int nclusters,
int *part, int *ptree, int nfeatures, int *internalids, float *internalwgts,
int *externalids, float *externalwgts)

Description
Returns the set of features that best describe and discriminate each one of the clusters corresponding to the
various nodes of the hierarchical agglomerative tree that was built on top of the clustering solution. It provides
the functionality of the -labeltree option of the vcluster program.

Input Parameters
nrows, ncols

The number of rows and columns of the input matrix whose rows store the objects that were clustered.

rowptr, rowind, rowval
The matrix itself in the format described in Section 5.2.

simfun The clustering similarity function whose meaning and possible values are described in Section 5.3.1.
rowmodel, colmodel, colprune

The object modeling parameters whose meaning and possible values are described in Section 5.4.

nclusters The number of clusters in the supplied clustering solution.

part An array of size nrows that stores the clustering solution. The i th entry of this array stores the
cluster number that the i th row of the matrix belongs to. This array should correspond to a clustering
solution returned by CLUTO’s clustering routines. Note that the numbering of the clusters starts from
zero.

ptree An array of size 2*nclusters that was populated by the CLUTO V BuildTree routine.

nfeatures The number of descriptive and discriminating features that is desired.

Output Parameters
internalids

An array of size 2*nclusters*nfeatures that returns the column numbers of the descriptive features.
The set of features of the cluster corresponding to the i th tree node are stored in the internalids array
starting at location i ∗ nfeatures up to location (but excluding) (i + 1) ∗ nfeatures. The set of features
for each cluster are returned in decreasing importance order. The numbering of the returned columns
starts from zero. The application is responsible for allocating the memory for this array.

internalwgts
An array of size 2*nclusters*nfeatures that returns the weight of each one of the descriptive features
returned in the internalids array. The weight of the features stored in the i th location of the internalids
array is returned in the i th location of the internalwgts array. The weights are numbers between
0.0 and 1.0 and represent the fraction of the within cluster similarity that each particular feature is
responsible for. The application is responsible for allocating the memory for this array.

externalids
An array of size 2*nclusters*nfeatures that returns the column numbers of the discriminating fea-
tures. The discriminating features are defined within the context of the pair of clusters that are the
children of the same tree node. Consequently, there are no discriminating features for the root node
of the tree. The set of features of the cluster corresponding to the i th tree node are stored in the
externalids array starting at location i ∗ nfeatures up to location (but excluding) (i + 1) ∗ nfeatures.
The set of features for each cluster are returned in decreasing importance order. The numbering of
the returned columns starts from zero. The application is responsible for allocating the memory for
this array.

62

externalwgts
An array of size 2*nclusters*nfeatures that returns the weight of each one of the discriminating
features returned in the externalids array. The weight of the features stored in the i th location of the
externalids array is returned in the i th location of the externalwgts array. The weights are numbers
between 0.0 and 1.0 and represent the fraction of the dissimilarity between the cluster and the rest of
the objects that each particular feature is responsible for. The application is responsible for allocating
the memory for this array.

Note
The various values for the simfun, rowmodel, and colmodel parameters are defined in cluto.h, and this header
file must be included in all programs that use CLUTO’s library.

In order for this routine to get the accurate set of features for a particular clustering solution, the values for the
rowmodel, colmodel, and colprune, nclusters, part, and ptree parameters should be identical to those used to
compute the clustering solution and build the hierarchical agglomerative tree.

63

6 System Requirements and Contact Information

CLUTO is written in ANSI C and has been extensively tested under Linux, Solaris, and Windows. At this point
CLUTO’s distribution is only in a binary format, as it is actively under development. However, we expect to make the
source code available in future releases.

Even though, CLUTO contains no known bugs, it does not mean that all of its bugs have been found and fixed. If
you find any problems, please send email to karypis@cs.umn.edu, with a brief description of the problem you have
found. Also, any future updates to vcluster will be made available on WWW at http://www.cs.umn.edu/˜karypis/cluto.

7 Copyright Notice and Usage Terms

The CLUTO package is copyrighted by the Regents of the University of Minnesota. It can be freely used for educational
and research purposes by non-profit institutions and US government agencies only. Other organizations are allowed
to use CLUTO only for evaluation purposes, and any further uses will require prior approval. The software may not
be sold or redistributed without prior approval. One may make copies of the software for their use provided that the
copies, are not sold or distributed, are used under the same terms and conditions.

As unestablished research software, this code is provided on an “as is” basis without warranty of any kind, either
expressed or implied. The downloading, or executing any part of this software constitutes an implicit agreement to
these terms. These terms and conditions are subject to change at any time without prior notice.

References
[1] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An efficient clustering algorithm for large databases. In Proc. of

1998 ACM-SIGMOD Int. Conf. on Management of Data, 1998.

[2] G. Karypis, E.H. Han, and V. Kumar. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Com-
puter, 32(8):68–75, 1999.

[3] G. Karypis and V. Kumar. hMETIS 1.5: A hypergraph partitioning package. Technical report, Department of Computer Science,
University of Minnesota, 1998. Available on the WWW at URL http://www.cs.umn.edu/˜metis.

[4] G. Karypis and V. Kumar. METIS 4.0: Unstructured graph partitioning and sparse matrix ordering system. Technical report, De-
partment of Computer Science, University of Minnesota, 1998. Available on the WWW at URL http://www.cs.umn.edu/˜metis.

[5] Y. Zhao and G. Karypis. Comparison of agglomerative and partitional document clustering algorithms. In SIAM(2002) work-
shop on Clustering High-dimentional Data and Its Applications, 2002. Also available as techinical report #02-014, university
of Minnesota.

[6] Ying Zhao and George Karypis. Criterion functions for document clustering: Experiments and analysis. Technical Report
TR #01–40, Department of Computer Science, University of Minnesota, Minneapolis, MN, 2001. Available on the WWW at
http://cs.umn.edu/˜karypis/publications.

64

