Comparison of Agglomerative and Partitional Document
Clustering Algorithms*

Ying Zhao and George Karypis

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455
{yzhao, karypis}@cs.umn.edu

Abstract

Fast and high-quality document clustering al gorithms play an important role in providing intuitive navigation and
browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters, and
in greatly improving the retrieval performance either via cluster-driven dimensionality reduction, term-weighting, or
query expansion. This ever-increasing importance of document clustering and the expanded range of its applications
led to the development of a number of novel algorithms and new clustering criterion functions, especialy in the
context of partitional clustering.

The focus of this paper isto experimentally evaluate the performance of seven different global criterion functions
in the context of agglomerative clustering algorithms and compare the clustering results of agglomerative algorithms
and partitiona algorithms for each one of the criterion functions. Our experimental evaluation shows that for every
criterion function, partitional agorithms always lead to better clustering results than agglomerative algorithms, which
suggests that partitional clustering algorithms are well-suited for clustering large document datasets due to not only
their relatively low computational requirements, but also comparable or even better clustering performance.

1 Introduction

The topic of clustering has been extensively studied in many scientific disciplines and over the years a variety of
different algorithms have been developed. Two recent surveys on the topics [12, 11] offer a comprehensive summary of
the different applications and algorithms. These algorithms can be categorized based on their underlying methodology,
as either agglomerative [22, 16, 8, 9, 15] or partitional approaches [18, 13, 19, 3, 27, 10, 24, 2, 5].

In recent years, various researchers have recognized that partitional clustering algorithms are well-suited for clus-
tering large document datasets due to their relatively low computational requirements [4, 17, 1, 23]. However, there
was the common belief that in terms of clustering quality, partitional algorithms are actually inferior and less effective
than their agglomerative counterparts. This belief was based both on experiments with low dimensional datasets as
well was as a limited number of studies in which agglomerative approaches outperformed partitional K-means based
approaches. For example, in the context of document retrieval, the hierarchical algorithms seems to perform better
than the partitional algorithms for retrieving relevant documents [25]. Similarly, Larsen [17] also observed that group
average greedy agglomerative clustering outperformed various partitional clustering algorithms in document data sets
from TREC and Reuters. However, most of the previous comparisons did not address the effect of a key character-
istic of both partitional clustering algorithms and agglomerative clustering algorithms, which is the criterion function
whose optimization drives the entire clustering process. A recent study [26] on the suitability of different criterion
functions to the problem of partitionally clustering document datasets showed that different criterion functions do lead
to substantially different results. An extensive study of the various criterion functions in the context of agglomerative
clustering algorithms is needed in order to conduct a more comprehensive comparison.

The focus of this paper is to perform such a study on the suitability of different criterion functions in the context of
agglomerative document clustering, and to compare agglomerative and partitional algorithms from the perspective of
criterion functions. In particular, we evaluate a total of seven different global criterion functions that measure various

*This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Research Office contract DA/DAAG55-98-1-0441,
by the DOE ASCI program, and by Army High Performance Computing Research Center contract number DAAHO04-95-C-0008. Related papers
are available via WWW at URL: http://www.cs.umn.edu/karypis



aspects of intra-cluster similarity, inter-cluster dissimilarity, and their combinations. These criterion functions utilize
different views of the underlying collection, by either modeling the documents as vectors in a high dimensional space,
or by modeling the collection as a graph. We also compare the hierarchical clustering results obtained from repeated
bisections and agglomerative clustering under the same criterion function. In the former case, the criterion function
is used in cluster refinement, whereas the later case, the criterion function determines the next pair of clusters to be
merged. The commonly used method group average (UPGMA) [13] is among the seven criterion functions.

We experimentally evaluated the performance of these criterion functions using partitional and agglomerative clus-
tering algorithms in twelve different data sets obtained from various sources. Our experiments showed that in the
context of agglomerative document clustering, different criterion functions also lead to substantially different results.
However, the relative performance of various criterion functions in agglomerative clustering algorithms does differ
from the relative performance in partitional clustering algorithms as we found in [26].

Our experimental results also showed that partitional algorithms always generate better hierarchical clustering
solutions by repeated bisection than agglomerative algorithms for all the criterion functions. The observed superiority
of partitional algorithms suggests that partitional clustering algorithms are well-suited for clustering large document
datasets due to not only their relatively low computational requirements, but also comparable or better clustering
performance.

2 Preliminaries

Through-out this paper we will use the symbols n, m, and k to denote the number of documents, the number of terms,
and the number of clusters, respectively. We will use the symbol Sto denote the set of n documents that we want to
cluster, S, &, ..., S to denote each one of the k clusters, and n1, n2, ..., nk to denote the sizes of the corresponding
clusters.

The various clustering algorithms that are described in this paper use the vector-space model [21] to represent each
document. In this model, each document d is considered to be a vector in the term-space. In particular, we employed
thetf —idf term weighting model, in which each document can be represented as

(tfy log(n/dfy), tf, log(n/df,), . . ., tf,, log(n/df;,)).

where tf; is the frequency of the i th term in the document and df; is the number of documents that contain the i th term.
To account for documents of different lengths, the length of each document vector is normalized so that it is of unit
length (||dgigr|| = 1), that is each document is a vector in the unit hypersphere. In the rest of the paper, we will assume
that the vector representation for each document has been weighted using tf-idf and it has been normalized so that it
is of unit length. Given a set A of documents and their corresponding vector representations, we define the composite
vector Da to be Da = )"y d, and the centroid vector Ca to be Ca = PT/T .

In the vector-space model, the cosine similarity is the most commonly used method to compute the similarity
between two documents dj and dj, which is defined to be cos(d;, dj) = ”—didi[—ﬁiém. The cosine formula can be

simplified to cos(d;, dj) = ditdj, when the document vectors are of unit length. This measure becomes one if the
documents are identical, and zero if there is nothing in common between them (i.e., the vectors are orthogonal to each
other).

3 Document Clustering

In this section, we first discuss the various criterion functions that we evaluated in the context of agglomerative clus-
tering and then describe the details of the agglomerative and partitional clustering algorithms that we used in our
experiments.

3.1 Clustering Criterion Functions

The clustering criterion functions introduced in this section can be classified into four groups: internal, external, hybrid
and graph-based. The internal criterion functions focuses on producing a clustering solution that optimizes a function
defined only over the documents of each cluster and does not take into account the documents assigned to different
clusters. The external criterion functions derive the clustering solution by focusing on optimizing a function that
is based on how the various clusters are different from each other. The graph based criterion functions model the



documents as a graph and use clustering quality measures defined in the graph model. The hybrid criterion functions
simultaneously optimize multiple individual criterion functions. Most of these criterion functions have been proposed
in the context of partitional clustering algorithms. However, they can also be used for agglomerative clustering.
Table 1 lists all the seven criterion functions that we will study. In these formulas, D is the composite vector of the
entire document collection, and C; and D, are the centroid and composite vectors of the § cluster, respectively.

Criterion Function | Category Optimazition Function
T Internal maximize Zk:n i Z cos(d;, dj) —Xk: IEx HZ 1)
1 r n2 KR = n .
r=1 rd.djes r=1 '
k k -t k
- d'c
T, Internal maximize » )" cos(c,Cr) =) »_ IC L. > D, %)
r=1dieS r=1dieS Il =
k t
L Dr*D
&1 External minimize n . 3
r;l "Dy |
. & ptp
G1 Graph-Based, Hybrid minimize 5 - (4)
;=1 IIDr |l
, . . S B Y )
g1 Graph-Based, Hybrid minimize an 5 - (5)
;=1 IDrl
k 2
. T _, 11D n
M1 Hybrid maximize = = M (6)
&1 »K e DtD/|Dyr |
k
. _1 IID;
Ho Hybrid maximize =2 = % @)
&1 D =1 D 'D/|IDx ||

Table 1: Summary of various clustering criterion functions.

The 73 criterion function (Equation 1) maximizes the sum of the average pair-wise cosine similarities between the
documents assigned to each cluster, weighted according to the size of each cluster, and is identical to the group-average
heuristic used in agglomerative clustering [4]. The Z> criterion function (Equation 2) is used by the popular vector-
space variant of the K-means algorithm [4, 17, 6, 23, 14]. The goal is to find clustering solutions that maximize the
cosine similarity between each document and the centroid of the cluster that is assigned to. The £ criterion function
(Equation 3) tries to separate the documents of each cluster from the entire collection. In particular, it minimizes the
cosine between the centroid vector of each cluster to the centroid vector of the entire collection. The contribution of
each cluster is weighted based on the cluster size. The G4 criterion function (Equation 4) is graph based and is derived
from the recently introduced MinMaxCut [5] objective, that simultaneously minimizes the cut between the cluster and
every other document in the collection and maximizes the self-similarity within the cluster itself. It can be shown that
G1 combines each cluster quality weighted proportional to the inverse of the size of the cluster [26]. As a variant to the
G function, the G criterion function (Equation 5) weights the quality measure of a cluster by its size to ensure that
large clusters contribute more to the overall function value. Finally, the two hybrid criterion functions # 1 (Equation 6)
and H (Equation 7) were obtained by combining Z; with £1, and Z with £1, respectively. A more detailed description
and motivation of all the criterion functions can be found in [26].

3.2 Hierarchical Agglomerative Clustering Algorithms

Hierarchical agglomerative algorithms find the clusters by initially assigning each object to its own cluster and then
repeatedly merging pairs of clusters until a certain stopping criterion is met. The various clustering criterion functions
that we are considering in this paper can be used to determine the pairs of clusters to be merged at each step in the
following way.

Consider an n-document dataset and the clustering solution that has been computed after performing | merging
steps. This solution will contain exactly n — | clusters, as each merging step reduces the number of clusters by one.
Now, given this (n — I)-way clustering solution, the pair of clusters that is selected to be merged next, is the one
that leads to an (n — | — 1)-way solution that optimizes the particular criterion function. That is, each one of the
(n—1) x (n—1—1)/2 pairs of possible merges is evaluated, and the one that leads to a clustering solution that has the



maximum (or minimum) value of the particular criterion function is selected. Thus, the criterion function is locally
optimized within the particular stage of the agglomerative algorithm. Depending on the desired solution, this process
continues until either there are only k cluster left, or when the entire agglomerative tree has been obtained.

There are two main computationally expensive steps in agglomerative clustering. The first step is the computation
of the pairwise similarity between all the documents in the data set. The complexity of this step is upper bounded by
O(n?m), where n is the number of documents and m is the number of terms. However, for most realistic document
datasets, the average number of terms in each document is much smaller than m and often ranges within 100-300
terms, irrespective of m. For this reason, the pairwise similarity between all the documents can be computed in O(n?)
time by using appropriate sparse data structures.

The second step is the repeated selection of the pair of clusters that best optimizes the criterion function. A naive
way of performing that is to recompute the gains achieved by merging each pair of clusters after each level of the
agglomeration, and select the most promising pair. During the Ith agglomeration step, this will require O((n — 1))
time, leading to an overall complexity of O(n2). Fortunately, the complexity of this step can be reduced for the Z1, Z»,
£1, G1, and G criterion functions because the improvements in the value of the criterion function achieved by merging
a pair of clustersi and j does not change during the different agglomerative steps, as long asi or j is not selected to be
merged. Consequently, the different gains in the value of the criterion function can be computed once for each pair of
clusters and inserted into a priority queue. As a pair of clustersi and j is selected to be merged to form cluster p, then
the priority queue is updated so that any gains corresponding to cluster pairs involving either i or j are removed, and
the gains of merging the rest of the clusters with the newly formed cluster p are inserted. During the I1th agglomeration
step, that involves O(n — I) priority queue delete and insert operations. If the priority queue is implemented using
a binary heap, the total complexity of these operations is O((n — I) log(n — 1)), and the overall complexity over the
n — 1 agglomeration steps is O(n? log n).

Unfortunately, the original complexity of O(n3) of the naive approach cannot be reduced for the 1 and %2
criterion functions, because the improvement in the overall value of the criterion function when a pair of clustersi and
j is merged tends to be changed for all pairs of clusters. As a result, they cannot be pre-computed and inserted into a
priority queue.

3.3 Partitional Clustering Algorithms

Partitional clustering algorithms compute a k-way clustering of a set of documents either directly or via a sequence
of repeated bisections. A direct k-way clustering is commonly computed as follows. Initially, a set of k documents is
selected from the collection to act as the seeds of the k clusters. Then, for each document, its similarity to these k seeds
is computed, and it is assigned to the cluster corresponding to its most similar seed. This forms the initial k-way clus-
tering. This clustering is then repeatedly refined so that it optimizes the desired clustering criterion function. A k-way
partitioning via repeated bisections is obtained by recursively applying the above algorithm to compute 2-way clus-
tering (i.e., bisections). Initially, the documents are partitioned into two clusters, then one of these clusters is selected
and is further bisected, and so on. This process continues k — 1 times, leading to k clusters. Each of these bisections is
performed so that the resulting two-way clustering solution optimizes the particular criterion function. However, the
overall k-way clustering solution will not necessarily be at a local minima with respect to the criterion function. The
key step in this algorithm is the method used to select which cluster to bisect next. In all of our experiments, we chose
to select the largest cluster, as this approach lead to reasonably good and balanced clustering solutions [23]. Extensive
experiments presented in [26], show that the clustering solutions obtained via repeated bisections are comparable or
better than those produced via direct clustering. Furthermore, their computational requirements are much smaller, as
they have to solve a simpler optimization problem at each step. For this reason, in all of our experiments we use this
approach to compute partitional clustering solutions.

A key step in the above class of partitional algorithms is the method used to refine the initial clustering solution. The
refinement strategy that we used consists of a number of iterations. During each iteration, the documents are visited
in a random order. For each document, d;, we compute the change in the value of the criterion function obtained by
moving d; to one of the other k — 1 clusters. If there exist some moves that lead to an improvement in the overall
value of the criterion function, then d; is moved to the cluster that leads to the highest improvement. If no such cluster
exists, di remains in the cluster that it already belongs to. The refinement phase ends, as soon as we perform an
iteration in which no documents moved between clusters. Note that unlike the traditional refinement approach used
by K-means type of algorithms, the above algorithm moves a document as soon as it is determined that it will lead to
an improvement in the value of the criterion function. This type of refinement algorithms are often called incremental



[7]. Since each move directly optimizes the particular criterion function, this refinement strategy always converges to
a local minima. Furthermore, because the various criterion functions that use this refinement strategy are defined in
terms of cluster composite and centroid vectors, the change in the value of the criterion functions as a result of single
document moves can be computed efficiently.

The algorithms used during the refinement phase are greedy in nature, they are not guaranteed to converge to a
global minima, and the local minima solution they obtain depends on the particular set of seed documents that were
selected to obtain the initial clustering. To eliminate some of this sensitivity, the overall process is repeated a number
of times. That is, we compute N different clustering solutions (i.e., initial clustering followed by cluster refinement),
and the one that achieves the best value for the particular criterion function is kept. In all of our experiments, we used
N = 10. For the rest of this discussion when we refer to the clustering solution we will mean the solution that was
obtained by selecting the best out of these N potentially different solutions.

One of the differences between partitional and agglomerative clustering algorithms is the fact that the former do not
generate an agglomerative tree. Agglomerative trees are very useful as they contain information on how the different
documents are related with each other, at different levels of granularity. One way of inducing an agglomerative
tree from a partitional clustering solution is to do it in such a way so that it preserves the already computed k-way
clustering. This can be done in two steps. First, we build an agglomerative tree for the documents belonging to
each one of the clusters, and then we combine these trees by building an agglomerative tree, whose leaves are the
partitionally discovered clusters. This approach ensures that the k-way clustering solution induced by the overall tree
is identical to the k-way clustering solution computed by the partitional algorithm. Both of these trees are constructed
so that they optimize the same criterion function that was used to derived the partitional clustering solution.

4 Experimental Results

We experimentally evaluated the performance of the different clustering criterion functions, in the context of hierarchi-
cal agglomerative clustering, on a number of different datasets. In the rest of this section we first describe the various
datasets and our experimental methodology, followed by a description of the experimental results.

4.1 Document Collections

In our experiments, we used a total of twelve different datasets, whose general characteristics are summarized in
Table 2. The smallest of these datasets contained 878 documents and the largest contained 4,069 documents. To
ensure diversity in the datasets, we obtained them from different sources. For all datasets, we used a stop-list to
remove common words, and the words were stemmed using Porter’s suffix-stripping algorithm [20]. Moreover, any
term that occurs in fewer than two documents was eliminated. Due to space constraints, we did not include a detailed
description of these data sets, but it can be found in [26].

Data Source # of documents | # of terms | # of classes
fhis FBIS (TREC) 2463 12674 17
hitech San Jose Mercury (TREC) 2301 13170 6
reviews | San Jose Mercury (TREC) 4069 23220 5
lal LA Times (TREC) 3204 21604 6
la2 LA Times (TREC) 3075 21604 6
tr31 TREC 927 10128 7
tral TREC 878 7454 10
re0 Reuters-21578 1504 2886 13
rel Reuters-21578 1657 3758 25
kla WebACE 2340 13879 20
kb WebACE 2340 13879 6
wap WebACE 1560 8460 20

Table 2: Summary of data sets used to evaluate the various clustering criterion functions.



4.2 Experimental Methodology and Metrics

For each one of the different datasets we obtained 10- and 20-way clustering solutions that optimized the various
criterion functions, in the context of hierarchical and partitional agglomerative clustering. We computed both the k-
way clustering and the entire hierarchical agglomerative tree that was derived from each one of the criterion functions.

The quality of a clustering solution was measured using two different methods that look at the class labels of the
documents assigned to each cluster. The first method uses the widely used entropy metric that looks at how the various
classes of documents are distributed within each one of the k clusters. The second method, determines the quality of
a clustering solution by analyzing the entire agglomerative tree that is produced by the particular clustering criterion
function.

Entropy Measure Given a particular cluster S of size n;, the entropy of this cluster is defined to be

1 Enl nl
E - __- ' log X
(S) logq;nr og -

where g is the number of classes in the dataset, and nir is the number of documents of the i th class that were assigned
to the rth cluster. The entropy of the entire clustering solution is then defined to be the sum of the individual cluster
entropies weighted according to the cluster size. That is,

k
n
Entropy = Z Fr E(S).
r=1

A perfect clustering solution will be the one that leads to clusters that contain documents from only a single class, in
which case the entropy will be zero. In general, the smaller the entropy values, the better the clustering solution is.

FScore Measure One of the limitations of evaluating the quality of a clustering solution produced by agglomera-
tive methods is that it is very sensitive on the choice of k, and the derived clustering solution may appear unnecessarily
poor due to the presence of a few outlier documents. For this reason, a better approach for comparing the clustering
solutions produced by agglomerative methods is to compare the overall set of clusters that are represented in the tree
they produce. One such measure is FScore measure, introduced by [17]. Given a particular class C; of size n; and a
particular cluster § of size n;, suppose n;j documents in the cluster § belong to C;, then the FScore of this class and

cluster is defined to be 24 RC. )% PCr. S
F(Cr,s): * ( T )* ( I ),
R(Cr, S) + PG, §)
where R(C;, §) is the recall value defined as nyj/n;, and P(C;, §) is the precision value defined as nj/n;. The
FScore of the class C;, is the maximum FScore value attained at any node in the hierarchical clustering tree T. That

IS,

F(Cr) = rsng_)l_(l:(cr, S).

The FScore of the entire clustering solution is then defined to be the sum of the individual class FScore weighted

according to the class size.
C

n
FScore =) F’ F(Cr),
r=1
where c is the total number of classes. A perfect clustering solution will be the one in which every class has a
corresponding cluster containing the exactly same documents in the resulting hierarchical tree, in which case the
FScore will be one. In general, the higher the FScore values, the better the clustering solution is.

4.3 Evaluation of the Criterion Functions for Agglomerative Clustering

Ouir first set of experiments was focused on evaluating the quality of the clustering solutions produced by the various
criterion functions when they were used to guide the agglomeration process.
The entropy results for the various datasets and criterion functions for 10- and 20-way clustering solutions are



shown in Table 3. The results in this table are provided primarily for completeness and in order to evaluate the various
criterion functions we actually summarized these results by looking at the average performance of each criterion
function over the entire set of datasets.

10-way Clustering 20-way Clustering

Name Iy I, &1 g1 1 Hy Ho I I, &1 g1 [ Hy Ho

tr31 0.270 | 0226 | 0313 | 0.269 | 0.317 | 0293 | 0.284 | 0.230 | 0.196 | 0.228 | 0.187 | 0.241 | 0227 | 0.224
tr4l 0472 | 0262 | 0.320 | 0.376 | 0.321 | 0.329 | 0.327 0.223 | 0187 | 0226 | 0.239 | 0.222 | 0.229 | 0.220
re0 0488 | 0455 | 0492 | 0489 | 0488 | 0470 | 0478 0434 | 0405 | 0425 | 0426 | 0430 | 0.382 | 0.414
rel 0.548 | 0470 [ 0509 | 0.513 | 0516 | 0.489 | 0.494 0.463 | 0.383 | 0.406 | 0434 | 0421 | 0.388 | 0.400
kla 0.567 | 0472 | 0.546 | 0484 | 0537 | 0486 | 0506 | 0.462 | 0.418 | 0481 | 0.441 | 0485 | 0.399 | 0.448
k1b 0.276 | 0.180 | 0.280 | 0.174 | 0272 | 0.173 | 0.235 | 0.211 | 0.163 | 0.241 | 0.158 | 0.237 | 0.152 | 0.203
wap 0.520 | 0448 | 0528 | 0485 | 0537 | 0.474 | 0.503 0435 | 0397 | 0455 | 0.446 | 0484 | 0.406 | 0.426
fbis 0483 | 0458 | 0.448 | 0490 | 0457 | 0.456 | 0.446 0418 | 0396 | 0.375 | 0401 | 0.391 | 0.395 | 0.378
hitech 0.734 | 0.726 | 0.731 | 0.714 | 0.745 | 0.720 | 0.710 0.675 | 0.673 | 0.688 | 0.652 | 0.691 | 0.664 | 0.672
lal 0.636 | 0580 | 0.570 | 0.580 | 0.654 | 0.561 | 0.611 | 0.590 | 0.530 | 0.541 | 0.542 | 0.603 | 0.531 | 0.561
la2 0.673 | 0540 | 0594 | 0535 | 0.607 | 0.561 | 0531 | 0513 | 0515 | 0.562 | 0504 | 0.562 | 0.536 | 0512
reviews | 0.606 | 0.442 | 0.460 | 0.506 | 0.482 | 0.436 | 0.402 0.408 | 0374 | 0431 | 0.387 | 0407 | 0.383 | 0.377

Table 3: The entropy values for the various datasets and criterion functions for the clustering solutions obtained via hierarchical
agglomerative clustering.

One way of summarizing the results is to average the entropies for each criterion function over the twelve different
datasets. However, since the clustering quality for different datasets is quite different and since the quality tends to
improve as we increase the number of clusters, we felt that such simple averaging may distort the overall results. For
this reason, our summarization is based on averaging relative entropies, as follows. For each dataset and value of k,
we divided the entropy obtained by a particular criterion function by the smallest entropy obtained for that particular
dataset and value of k over the different criterion functions. These ratios represent the degree to which a particular
criterion function performed worse than the best criterion function for that particular series of experiments. Note that
for different datasets and values of k, the criterion function that achieved the best solution as measured by entropy
may be different. These ratios are less sensitive to the actual entropy values and the particular value of k. We will
refer to these ratios as relative entropies. Now, for each criterion function and value of k we averaged these relative
entropies over the various datasets. A criterion function that has an average relative entropy close to 1.0 will indicate
that this function did the best for most of the datasets. On the other hand, if the average relative entropy is high, then
this criterion function performed poorly.

The values for the relative entropies for the 10- and 20-way clustering solutions are shown in Table 4, and the
average relative entropy is shown in the row labeled “Average”. The entries that are boldfaced correspond to the
criterion functions that performed the best.

10-way Clustering 20-way Clustering

Name I, I, &1 g1 [ Hy Ho Iy I, &1 g1 g1 Hy Ho

tr31 1195 | 1.000 | 1.385 | 1.190 | 1.403 | 1.296 | 1.257 | 1.230 | 1.048 | 1.219 | 1.000 | 1.289 | 1.214 | 1.198
tr4l 1802 | 1.000 | 1.221 | 1435 | 1.225 | 1.256 | 1.248 | 1.193 | 1.000 | 1.209 | 1.278 | 1.187 | 1225 | 1.176
re0 1.073 | 1.000 | 1.081 | 1.075 | 1.073 | 1.033 | 1.051 | 1.136 | 1.060 | 1.113 | 1.115 | 1.126 | 1.000 | 1.084
rel 1166 | 1.000 | 1.083 | 1.091 | 1.098 | 1.040 | 1.051 | 1.209 | 1.000 | 1.060 | 1.133 | 1.099 | 1.013 | 1.044
kla 1201 | 1.000 | 1157 | 1.025 | 1.138 | 1.030 | 1.072 | 1.158 | 1.048 | 1206 | 1.105 | 1.216 | 1.000 | 1.123
k1b 1595 | 1.040 | 1.618 | 1.006 | 1572 | 1.000 | 1.358 | 1.388 | 1.072 | 1586 | 1.039 | 1.559 | 1.000 | 1.336
wap 1161 | 1.000 | 1179 | 1.083 | 1.199 | 1.058 | 1.123 | 1.096 | 1.000 | 1.146 | 1.123 | 1.219 | 1.023 | 1.073
fbis 1.083 | 1.027 | 1.004 | 1.099 | 1.025 | 1.022 | 1.000 | 1.115 | 1.056 | 1.000 | 1.069 | 1.043 | 1.053 | 1.008
hitech 1034 | 1.023 | 1.030 | 1.006 | 1.049 | 1.014 | 1.000 | 1.035 | 1.032 | 1.055 | 1.000 | 1.060 | 1.018 | 1.031
lal 1134 | 1.034 | 1016 | 1.034 | 1.166 | 1.000 | 1.089 | 1.113 | 1.000 | 1.021 | 1.023 | 1.138 | 1.002 | 1.058
la2 1267 | 1.017 | 1119 | 1.008 | 1.143 | 1.056 | 1.000 | 1.018 | 1.022 | 1.115 | 1.000 | 1.115 | 1.063 | 1.016
reviews | 1.507 | 1.100 | 1.144 | 1.259 | 1.199 | 1.085 | 1.000 | 1.091 | 1.000 | 1.152 | 1.035 | 1.088 | 1.024 | 1.008
Average | 1.268 | 1.020 | 1.170 | 1.109 | 1.191 | 1.074 | 1104 | 1.148 | 1.028 | 1.157 | 1.077 | 1178 | 1.053 | 1.096

Table 4: Relative entropies of the different datasets for different criterion functions for the clustering solutions obtained via hierar-
chical agglomerative clustering. Boldfaced entries represent the best performing scheme.

A number of observations can be made by analyzing the results in Table 4. First, the Z» criterion function leads to
the best solutions irrespective of the number of clusters for most of the data sets. Over the entire set of experiments,
this method is either the best or always within 10% of the best solution. On the average, the 7, criterion function



outperforms the other criterion functions by 5%—27% and 3%-13% for 10- and 20-way clustering, respectively. Sec-
ond, the #1 criterion function performs the next best and overall is within 5% and 3% of the best solution for 10-
and 20-way clustering, respectively. Third, the 7> criterion function performs quite well when the number of clusters
is relatively small. It outperforms the Z5 criterion function in several data sets—a trend also observed in the case of
partitional clustering algorithms [26]. Fourth, the Z, &1, and the G; criterion functions lead to clustering solutions
that are consistently worse than the solutions obtained using the other criterion functions regardless of the number of
clusters. Finally, the G1 criterion function always performs somewhere in the middle of the road. Also note that the
relative performance of the various criterion functions remains relatively the same for the 10- and 20-way clustering
solutions.

The FScore-based comparison of the trees produced by the various criterion functions for the different datasets
is shown in Table 5. The sub-table labeled “FScore” shows the actual FScore values of the trees produced by the
different criterion functions, whereas the sub-table labeled “Relative FScore” shows the ratio of the FScore values
for a particular criterion function relative to the best FScore value achieved for that particular data set. Since, higher
FScore values are better, all these relative FScore values are less than one, and the scheme that has a relative FScore
value of one, is the best. Finally, the row labeled “Average” shows the average relative FScore value over the different
data sets. A criterion function that has an average relative FScore value close to 1.0 will indicate that this function did
the best for most of the datasets. On the other hand, if the average relative FScore is small, then this criterion function
performed poorly.

FScore Relative FScore
Name I1 I, &1 g1 [ Hi Ho Name I, I &1 g1 g1 Hq Ho
tr31 0.756 | 0.844 | 0.795 | 0.796 | 0.762 | 0.818 | 0.789 tr31 0.896 | 1.000 | 0.942 | 0.943 | 0.903 | 0.969 | 0.935
tr4l 0.694 | 0.779 | 0.772 | 0.754 | 0.769 | 0.728 | 0.729 tr4l 0.891 | 1.000 | 0.991 | 0.968 | 0.987 | 0.935 | 0.936
re0 0561 | 0576 | 0575 | 0581 | 0.571 | 0.603 | 0.585 re0 0930 | 0955 | 0.954 | 0.964 | 0.947 | 1.000 | 0.970
rel 0.607 0.684 | 0.651 0.617 | 0.632 | 0.662 0.660 rel 0.887 1.000 | 0.952 | 0.902 0.924 | 0.968 | 0.965
kla 0.583 0.605 0544 | 0603 | 0.538 | 0.601 0.579 kla 0.964 1.000 0.899 0.997 0.889 | 0.993 | 0.957
klb 0.836 | 0.896 | 0.816 | 0.844 | 0.812 | 0.889 | 0.858 klb 0.933 | 1.000 | 0.911 | 0.942 | 0.906 | 0.992 | 0.958
wap 0588 | 0.618 | 0.577 | 0.618 | 0.576 | 0.607 | 0.580 wap 0.951 | 1.000 | 0.934 | 1.000 | 0.932 | 0.982 | 0.939
fbis 0592 | 0.639 | 0.643 | 0.624 | 0.617 | 0.629 | 0.637 fbis 0921 | 0994 | 1.000 | 0970 | 0.960 | 0.978 | 0.991
hitech 0.480 0.480 | 0.489 0.471 | 0489 | 0.476 0.468 hitech 0.982 | 0.982 1.000 | 0.963 1.000 | 0.973 | 0.957
lal 0.580 0.648 0.634 | 0612 | 0.607 | 0.635 0.620 lal 0.895 1.000 0.978 0.944 | 0937 | 0.980 | 0.957
la2. 0.610 | 0.681 | 0.633 | 0.644 | 0.610 | 0.613 | 0.697 la2 0.875 | 0977 | 0.908 | 0.924 | 0.875 | 0.879 | 1.000
reviews | 0.642 | 0.689 | 0.690 | 0.654 | 0.734 | 0.648 | 0.727 reviews | 0.875 | 0939 | 0.940 | 0.891 | 1.000 | 0.883 | 0.990
Average | 0917 | 0.987 0.951 0.951 0.938 | 0961 | 0.963

Table 5: The actual and average FScore values for the various datasets and criterion functions for the tree obtained via hierarchical
agglomerative clustering.

Comparing the FScore-based results with those based on entropy, we can see that the relative performance of most
of the criterion functions remains the same. Z> still leads to the best solutions whereas Z7 leads to the worst. Over the
entire set of experiments, Z5 is either the best or always within 6% of the best solution. On the average, the 7, criterion
function outperforms the other criterion functions with a 3%—8% lead. On the other hand, 7, is always 2%—11% worse
then the best results. The remaining five criterion functions perform similarly with each other, with H1 and H doing
somewhat better than the rest (within 3% of the best solution). The key difference between the FScore- and entropy-
based results is that the £1, G; and H> criterion functions appear to have a better relative performance when measured
using FScore instead of entropy. Since FScore measures the quality of the entire tree and not any fixed number of
clusters, one explanation of the difference between FScore and entropy may be that these criterion functions generate
reasonably good agglomerative solutions, but they are sensitive on outlier objects, that tends to produce somewhat
worse fixed k clustering solutions.

Comparing the observations made from Table 5 and Table 4 with the corresponding findings for partitional cluster-
ing algorithms in our previous study [26], they do share several common trends. The Z» criterion function performs
the best, the Z; criterion function performs the worst and G; is in the middle. However, the &1 criterion function does
not work well in agglomerative algorithms, and Z» outperforms every other criterion function, whereas in partitional
algorithms, 1 and H can produce competitive solutions.



4.4 Comparison of Agglomerative vs. Partitional Clustering Solutions

Our second set of experiments was focused on comparing the clustering solutions produced by the agglomerative
algorithms to those produced by the partitional algorithm based on repeated bisections (described in Section 3.3).

Table 6 shows the entropy of the clustering solutions produced by the various criterion functions for 10- and 20-way
partitional clustering. Recall from Section 3.3, we computed 10 partitional clustering solutions with various sets of
initial seed documents for each dataset and criterion function, and we chose the clustering solution that achieves the
best value of the corresponding criterion function used in clustering among the 10 trails. Table 7 shows the entropies
of the same clustering solutions relative to those achieved by the corresponding agglomerative approaches. Since,
smaller entropy values are better, any ratios greater than one indicate that the clustering solution produced by the
agglomerative approach is better, whereas any ratios smaller than one indicate that partitional does better. Also, the
row labeled “Average” shows the average of these relative entropies over all the different data sets.

10-way Clustering 20-way Clustering

Name Iy I, &1 g1 g1 Hy Ho I I, &1 g1 [ Hy Ho

tr31 0320 | 0163 | 0211 | 0182 | 0287 | 0.192 | 0182 | 0.221 | 0.122 | 0.147 | 0.143 | 0.188 | 0.159 | 0.163
tr4l 0311 | 0261 | 0.296 | 0.282 | 0.322 | 0.267 | 0.277 | 0.200 | 0.152 | 0.188 | 0.180 | 0.193 | 0.174 | 0.173
re0 0415 | 0412 | 0411 | 0.396 | 0.410 | 0.389 | 0.402 0319 | 0328 | 0.350 | 0.304 | 0.344 | 0.348 | 0.331
rel 0433 | 0414 | 0397 | 0406 | 0414 | 0410 | 0.399 0.344 | 0311 | 0323 | 0.315 | 0.337 | 0335 | 0.312
kla 0424 | 0424 | 0404 | 0410 | 0412 | 0419 | 0401 | 0338 | 0.316 | 0.319 | 0322 | 0.327 | 0.290 | 0.324
k1b 0.187 | 0172 | 0.152 | 0.156 | 0.166 | 0.183 | 0.133 | 0.131 | 0.116 | 0.120 | 0.131 | 0.119 | 0.103 | 0.116
wap 0431 | 0422 | 0395 | 0418 | 0412 | 0411 | 0401 | 0341 | 0.314 | 0.330 | 0.316 | 0.338 | 0.307 | 0.323
fbis 0400 | 0.394 | 0.446 | 0.408 | 0.408 | 0.400 | 0.440 0.336 | 0.344 | 0.373 | 0.330 | 0.343 | 0.334 | 0.360
hitech 0.666 | 0.583 [ 0.575 | 0.602 | 0.589 | 0.593 | 0.571 0.624 | 0531 | 0541 | 0553 | 0541 | 0551 | 0.535
lal 0477 | 0362 | 0395 | 0418 | 0.396 | 0421 | 0.384 | 0421 | 0.346 | 0.370 | 0.390 | 0.371 | 0.385 | 0.372
la2 0403 | 0351 | 0401 | 0.399 | 0.393 | 0.375 | 0.366 | 0.357 | 0.324 | 0.349 | 0.367 | 0.344 | 0.348 | 0.325
reviews | 0.359 | 0.299 | 0.232 | 0.288 | 0.283 | 0.316 | 0.254 0.281 | 0249 | 0.199 | 0.230 | 0.245 | 0.278 | 0.209

Table 6: The entropy values for the various datasets and criterion functions for the clustering solutions obtained via partitional
clustering.

10-way Clustering 20-way Clustering

Name 71 ) &1 g1 g1 Ha Ho 11 ) &1 [ g1 Ha Ho

tr31 1185 | 0.721 | 0674 | 0.677 | 0905 | 0.655 | 0.641 | 0.961 | 0.622 | 0.645 | 0.765 | 0.780 | 0.700 | 0.728
tr4l 0.659 | 0996 | 0.925 | 0.750 | 1.003 | 0.812 | 0.847 | 0.897 | 0.813 | 0.832 | 0.753 | 0.869 | 0.760 | 0.786
re0 0.850 | 0905 | 0.835 | 0.810 | 0.840 | 0.828 | 0.841 | 0.735 | 0.810 | 0.824 | 0.714 | 0.800 | 0.911 | 0.800
rel 0.790 | 0.881 | 0.780 | 0.791 | 0.802 | 0.838 | 0.808 | 0.743 | 0.812 | 0.796 | 0.726 | 0.800 | 0.863 | 0.780
kla 0.748 | 0.898 | 0.740 | 0.847 | 0.767 | 0.862 | 0.792 | 0.732 | 0.756 | 0.663 | 0.730 | 0.674 | 0.727 | 0.723
klb 0.678 | 0956 | 0.543 | 0.897 | 0.610 | 1.058 | 0.566 | 0.621 | 0.712 | 0.498 | 0.829 | 0.502 | 0.678 | 0.571
wap 0.829 | 0942 | 0.748 | 0.862 | 0.767 | 0.867 | 0.797 | 0.784 | 0.791 | 0.725 | 0.709 | 0.698 | 0.756 | 0.758
fbis 0.828 | 0.860 | 0.996 | 0.833 | 0.893 | 0.877 | 0.987 | 0.804 | 0.869 | 0.995 | 0.823 | 0.877 | 0.846 | 0.952
hitech 0.907 | 0.803 | 0.787 | 0.843 | 0.791 | 0.824 | 0.804 | 0.924 | 0.789 | 0.786 | 0.848 | 0.783 | 0.830 | 0.796
lal 0.750 | 0.624 | 0.693 | 0.721 | 0.606 | 0.750 | 0.628 | 0.714 | 0.653 | 0.684 | 0.720 | 0.615 | 0.725 | 0.663
la2 0.599 | 0.650 | 0.675 | 0.746 | 0.647 | 0.668 | 0.689 | 0.696 | 0.629 | 0.621 | 0.728 | 0.612 | 0.649 | 0.635
reviews | 0592 | 0.676 | 0.504 | 0569 | 0587 | 0.725 | 0.632 | 0.689 | 0.666 | 0.462 | 0594 | 0.602 | 0.726 | 0.554
Average | 0.785 | 0.826 | 0.742 | 0.779 | 0.768 | 0.814 | 0.753 | 0.775 | 0.743 | 0.711 | 0.745 | 0.718 | 0.764 | 0.729

Table 7: The entropy values for the various datasets and criterion functions for the clustering solutions obtained via partitional
clustering relative to the entropy values achieved via agglomerative clustering.

A number of observations can be made by analyzing the results in Table 7. First, the clustering solutions produced
by the partitional approach are consistently better then those produced by the agglomerative approach for all the
criterion functions. The partitional results are 18%—29% better than the corresponding agglomerative results. Second,
the improvements vary among the criterion functions. For those criterion functions that perform well in the partitional
approach, but poorly in the agglomerative approach, the improvements are greater. For example, £1, G, and H>
improve by 24%—-26% and 28%-29% for 10- and 20-way clustering, respectively. On the other head, the improvements
are lower for those criterion functions that have similar relative performance in both agglomerative and partitional
approaches. For example, Z; and 1 improve by 18%-19% and 25%—26% for 10-and 20-way clustering, respectively.

Table 8 shows the FScore of the agglomerative trees that are produced based on the 10- and 20-way partitional
clustering solutions. These trees were obtained using the approach described in Section 3.3. Again, these results are
primarily provided for completeness and our discussion will focus on comparing these clustering solutions to those



produced by the agglomerative algorithms. Table 9 shows the FScore values achieved by the partitional approach
relative to those achieved by the corresponding agglomerative approaches. Since, larger FScore values are better, any
ratios smaller than one indicate that the clustering solution produced by the agglomerative approach is better, whereas
any ratios greater than one indicate that partitional does better. Also, the row labeled “Average” shows the average of
these relative FScore values over all the different data sets.

10-way Clustering 20-way Clustering

Name 71 Iy &1 [ g1 Ha Ho 71 ) &1 g1 [ Ha Ho

tr31 0.770 | 0.896 | 0.856 | 0.687 | 0.756 | 0.859 | 0.873 | 0.727 | 0.883 | 0.875 | 0.797 | 0.801 | 0.800 | 0.818
tr4l 0.755 | 0.823 | 0.741 | 0.756 | 0.739 | 0.786 | 0.803 | 0.705 | 0.818 | 0.742 | 0.733 | 0.671 | 0.790 | 0.745
re0 0.603 | 0.623 | 0.612 | 0.624 | 0.668 | 0.618 | 0.608 | 0.614 | 0.621 | 0.618 | 0.612 | 0.615 | 0.627 | 0.634
rel 0631 | 0.731 | 0.719 | 0.707 | 0.693 | 0.710 | 0.730 | 0.625 | 0.739 | 0.725 | 0.682 | 0.695 | 0.717 | 0.724
kla 0.647 | 0.655 | 0.660 | 0.653 | 0.636 | 0.682 | 0.672 | 0.678 | 0.669 | 0.687 | 0.661 | 0.679 | 0.712 | 0.687
klb 0873 | 0.873 | 0.894 | 0.868 | 0.858 | 0.885 | 0920 | 0.893 | 0.896 | 0.892 | 0.867 | 0.867 | 0.915 | 0.870
wap 0.666 | 0.663 | 0.675 | 0.650 | 0.652 | 0.658 | 0.674 | 0.676 | 0.689 | 0.677 | 0.680 | 0.676 | 0.694 | 0.682
fbis 0.690 | 0.670 | 0.654 | 0.610 | 0.668 | 0.679 | 0.616 | 0.691 | 0.683 | 0.653 | 0.631 | 0.683 | 0.687 | 0.647
hitech 0.473 | 0556 | 0571 | 0522 | 0.553 | 0.545 | 0580 | 0473 | 0.566 | 0.570 | 0541 | 0.556 | 0.547 | 0.529
lal 0642 | 0804 | 0.718 | 0681 | 0.719 | 0.721 | 0.725 | 0642 | 0.804 | 0.719 | 0611 | 0.719 | 0.751 | 0.725
la2 0.638 | 0.774 | 0.772 | 0.642 | 0.749 | 0.717 | 0.781 | 0.711 | 0.777 | 0.784 | 0.647 | 0.765 | 0.717 | 0.764
reviews | 0.684 | 0.822 | 0.866 | 0.790 | 0.838 | 0.753 | 0.762 | 0.675 | 0.847 | 0.876 | 0.743 | 0.823 | 0.777 | 0.763

Table 8: The FScore values for the various datasets and criterion functions for the clustering solutions obtained via partitional
clustering.

10-way Clustering 20-way Clustering

Name I, I, &1 g1 [ Hy Ho Ih I, &1 g1 g1 Hy Ho

tr31 1019 | 1.062 | 1.077 | 0.863 | 0992 | 1.050 | 1.106 | 0.962 | 1.046 | 1.101 | 1.001 | 1.051 | 0.978 | 1.037
tr4l 1.088 | 1.056 | 0960 | 1.003 | 0961 | 1.080 | 1.102 | 1.016 | 1.050 | 0.961 | 0.972 | 0.873 | 1.085 | 1.022
re0 1075 | 1.082 | 1.064 | 1.074 | 1.170 | 1.025 | 1.039 | 1.094 | 1.078 | 1075 | 1.053 | 1.077 | 1.040 | 1.084
rel 1.040 | 1.069 | 1.104 | 1.146 | 1.097 | 1.073 | 1.106 | 1.030 | 1.080 | 1.114 | 1.105 | 1.100 | 1.083 | 1.097
kla 1110 | 1.083 | 1.213 | 1.083 | 1.182 | 1.135 | 1.161 | 1.163 | 1.106 | 1.263 | 1.096 | 1.262 | 1.185 | 1.187
k1b 1.044 | 0974 | 1096 | 1.028 | 1.057 | 0.996 | 1.072 | 1.068 | 1.000 | 1.093 | 1.027 | 1.068 | 1.029 | 1.014
wap 1133 | 1.073 | 1170 | 1.052 | 1.132 | 1.084 | 1.162 | 1.150 | 1.115 | 1173 | 1.100 | 1.174 | 1143 | 1.176
fbis 1166 | 1.049 | 1017 | 0.978 | 1.083 | 1.079 | 0.967 | 1.167 | 1.069 | 1.016 | 1.011 | 1.107 | 1.092 | 1.016
hitech 0.985 | 1.158 | 1.168 | 1.108 | 1.131 | 1.145 | 1.239 | 0.985 | 1179 | 1.166 | 1.149 | 1.137 | 1.149 | 1.130
lal 1107 | 1.241 | 1132 | 1113 | 1.185 | 1.135 | 1.169 | 1.107 | 1.241 | 1134 | 0.998 | 1.185 | 1.183 | 1.169
la2 1046 | 1.137 | 1220 | 0.997 | 1.228 | 1.170 | 1.121 | 1.166 | 1.141 | 1239 | 1.005 | 1.254 | 1.170 | 1.096
reviews | 1.065 | 1.193 | 1.255 | 1.208 | 1.142 | 1.162 | 1.048 | 1.051 | 1229 | 1.270 | 1.136 | 1.121 | 1.199 | 1.050
Average | 1.073 | 1.098 | 1.123 | 1.054 | 1.113 | 1.094 | 1.108 | 1.080 | 1.111 | 1.134 | 1.055 | 1.117 | 1111 | 1.090

Table 9: The FScore values for the various datasets and criterion functions for the clustering solutions obtained via partitional
clustering relative to the FScore values achieved via agglomerative clustering.

Comparing these FScore values, we can see that the clustering solutions produced by the agglomerative approach
are consistently worse than those produced by the partitional approach for all the criterion functions. The FScore
values of the trees produced by partitional algorithms are 5%-13% better then those by agglomerative algorithms
for various criterion functions. Also, the improvements vary among the criterion functions. Overall, the £, criterion
function has the greatest improvement of 12%-13% of the FScore values, whereas the G; criterion function has the
least improvement of 5%. Similar improvements in the range of 7%—11% are observed by the other criterion functions.
Finally, the trees induced by 10- and 20-way partitional clustering have comparable FScore values. Moreover, we
performed a detailed study to see the effect that k has in the overall quality of the induced tree, and we found that there
is a wide range of values that k can take, and still achieve high quality induced trees. Due to space constraints, the
results of this study have been omitted.

5 Concluding Remarks

In the paper we experimentally evaluated seven different criterion functions for clustering large document datasets
using the agglomerative approach and compared the clustering results obtained via agglomerative algorithms with
those obtained via partitional algorithms for each one of the clustering criterion functions. Our experimental results
showed that in the context of agglomerative clustering, the group average criterion function (Z1) performs the worst,

10



and the traditional criterion function used by the vector-space K -means (Z2) leads to the best solutions.

The experimental results also showed that for every criterion function, the hierarchical trees produced by partitional
algorithms are always better than those produced by agglomerative algorithms, and the various criterion functions lead
to different improvements.

References

[1]

[2]
[3]

[4]
[5]
[6]

[71
(8]

(9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

Charu C. Aggarwal, Stephen C. Gates, and Philip S. Yu. On the merits of building categorization systems by supervised clustering. In Proc.
of the Fifth ACM SIGKDD Int’l Conference on Knowledge Discovery and Data Mining, pages 352—-356, 1999.

Daniel Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4), 1998.

P. Cheeseman and J. Stutz. Baysian classification (autoclass): Theory and results. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smith, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 153-180. AAAI/MIT Press, 1996.

D.R. Cutting, J.O. Pedersen, D.R. Karger, and J.W. Tukey. Scatter/gather: A cluster-based approach to browsing large document collections.
In Proceedings of the ACM SIGIR, pages pages 318-329, Copenhagen, 1992.

Chris Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst Simon. Spectral min-max cut for graph partitioning and data clustering.
Technical Report TR-2001-XX, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 2001.

1.S. Dhillon and D.S. Modha. Concept decomposition for large sparse text data using clustering. Technical Report Research Report RJ 10147,
IBM Almadan Research Center, 1999.

R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley & Sons, 2001.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An efficient clustering algorithm for large databases. In Proc. of 1998 ACM-
SIGMOD Int. Conf. on Management of Data, 1998.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: a robust clustering algorithm for categorical attributes. In Proc. of the 15th Int’l
Conf. on Data Eng., 1999.

E.H. Han, G. Karypis, V. Kumar, and B. Mobasher. Hypergraph based clustering in high-dimensional data sets: A summary of results. Bulletin
of the Technical Committee on Data Engineering, 21(1), 1998.

J. Han, M. Kamber, and A. K. H. Tung. Spatial clustering methods in data mining: A survey. In H. Miller and J. Han, editors, Geographic
Data Mining and Knowledge Discovery. Taylor and Francis, 2001.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264-323, 1999.
A.K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, 1988.

G. Karypis and E.H. Han. Concept indexing: A fast dimensionality reduction algorithm with applications to document retrieval & categoriza-
tion. Technical Report TR-00-016, Department of Computer Science, University of Minnesota, Minneapolis, 2000. Available on the WWW
at URL http://www.cs.umn.edu/ karypis.

G. Karypis, E.H. Han, and V. Kumar. Chameleon: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 32(8):68-75,
1999.

B. King. Step-wise clustering procedures. Journal of the American Statistical Association, 69:86-101, 1967.

Bjornar Larsen and Chinatsu Aone. Fast and effective text mining using linear-time document clustering. In Proc. of the Fifth ACM SIGKDD
Int’l Conference on Knowledge Discovery and Data Mining, pages 1622, 1999.

J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proc. 5th Symp. Math. Statist, Prob., pages
281-297, 1967.

R. Ng and J. Han. Efficient and effective clustering method for spatial data mining. In Proc. of the 20th VLDB Conference, pages 144-155,
Santiago, Chile, 1994.

M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130-137, 1980.

G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, 1989.
P. H. Sneath and R. R. Sokal. Numerical Taxonomy. Freeman, London, UK, 1973.

M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. In KDD Workshop on Text Mining, 2000.
A. Strehl and J. Ghosh. Scalable approach to balanced, high-dimensional clustering of market-baskets. In Proceedings of HiPC, 2000.

P. Willett. Recent trends in hierarchic document clustering: acritical review. In Information Processing and Management, 24(5):577-597,
1988.

Y. Zhao, G. Karypis. Criterion Functions for Document Clustering: Experiments and Analysis. Technical Report #01-34, University of
Minnesota, MN 2001.

K. Zahn. Graph-tehoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, (C-20):68-86, 1971.

11



