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Abstract

In recent years, we have witnessed atremendous growth in the volume of text documents available on the Internet,
digital libraries, news sources, and company-wide intranets. This has led to an increased interest in developing
methods that can help users to effectively navigate, summarize, and organize this information with the ultimate
goal of helping them to find what they are looking for. Fast and high-quality document clustering algorithms play an
important role towards this goal asthey have been shown to provide both an intuitive navigation/browsing mechanism
by organizing large amounts of information into a small number of meaningful clusters as well asto greatly improve
theretrieval performance either viacluster-driven dimensionality reduction, term-weighting, or query expansion. This
ever-increasing importance of document clustering and the expanded range of its applications led to the devel opment
of a number of new and novel agorithms with different complexity-quality trade-offs. Among them, a class of
clustering algorithms that have relatively low computational requirements are those that treat the clustering problem
as an optimization process which seeks to maximize or minimize a particular clustering criterion function defined
over the entire clustering solution.

The focus of this paper isto evaluate the performance of different criterion functions for the problem of clustering
documents. Our study involves a total of eight different criterion functions, three of which are introduced in this
paper and five that have been proposed in the past. Our evaluation consists of both a comprehensive experimental
evauation involving fifteen different datasets, as well as an analysis of the characteristics of the various criterion
functions and their effect on the clusters they produce. Our experimental results show that there are a set of criterion
functionsthat consistently outperform the rest, and that some of the newly proposed criterion function lead to the best
overall results. Our theoretical analysis of the criterion function shows that their relative performance depends on (i)
the degree to which they can correctly operate when the clusters are of different tightness, and (ii) the degree to which
they can lead to reasonably balanced clusters.

1 Introduction

The topic of clustering has been extensively studied in many scientific disciplines and over the years a variety of
different algorithms have been developed [31, 22, 6, 27, 20, 35, 2, 48, 13, 43, 14, 15, 24]. Two recent surveys on

*This work was supported by NSF CCR-9972519, EIA-9986042, ACI-9982274, by Army Research Office contract DA/DAAG55-98-1-0441,
by the DOE ASCI program, and by Army High Performance Computing Research Center contract number DAAH04-95-C-0008. Related papers
are available via WWW at URL: http://www.cs.umn.edu/"karypis



the topics [21, 18] offer a comprehensive summary of the different applications and algorithms. These algorithms
can be categorized along different dimensions based either on the underlying methodology of the algorithm, leading
to agglomerative or partitional approaches, or based on the structure of the final solution, leading to hierarchical or
non-hierarchical solutions.

Agglomerative algorithms find the clusters by initialy assigning each object to its own cluster and then repeatedly
merging pairs of clusters until a certain stopping criterion is met. A number of different methods have been proposed
for determining the next pair of clustersto be merged, such as group average (UPGMA) [22], single-link [38], complete
link [28], CURE [14], ROCK [15], and CHAMELEON [24]. Hierarchical agorithms produce a clustering that forms
adendrogram, with asingle al inclusive cluster at the top and single-point clusters at the leaves. On the other hand,
partitional algorithms, such as K -means [33, 22], K-medoids[22, 27, 35], Autoclass [8, 6], graph-partitioning-based
[45, 22, 17, 40Q], or spectral-partitioning-based [5, 11], find the clusters by partitioning the entire dataset into either
a predetermined or an automatically derived number of clusters. Depending on the particular algorithm, a k-way
clustering solution can be obtained either directly, or via a sequence of repeated bisections. In the former case, there
isin genera no relation between the clustering solutions produced at different levels of granularity, whereas the later
case givesrise to hierarchical solutions.

Inrecent years, variousresearchers have recognized that partitional clustering algorithmsare well-suited for cluster-
ing large document datasets due to their relatively low computational requirements|[7, 30, 1, 39]. A key characteristic
of many partitional clustering algorithms is that they use a global criterion function whose optimization drives the
entire clustering process'. For some of these algorithms the criterion function is implicit (e.g., PDDP), whereas for
other algorithms (e.g, K-means and Autoclass) the criterion function is explicit and can be easily stated. This later
class of algorithms can be thought of as consisting of two key components. First is the criterion function that needs to
be optimized by the clustering solution, and second is the actual algorithm that achieves this optimization. These two
components are largely independent of each other.

The focus of this paper is to study the suitability of different criterion functions to the problem of clustering doc-
ument datasets. In particular, we evaluate atotal of eight different criterion functions that measure various aspects of
intra-cluster similarity, inter-cluster dissimilarity, and their combinations. These criterion functions utilize different
views of the underlying collection, by either modeling the documents as vectors in a high dimensional space, or by
modeling the collection as agraph. We experimentally evaluated the performance of these criterion functionsusing 15
different data sets obtained from various sources. Our experiments showed that different criterion functions do lead to
substantially different results, and that there are a set of criterion functionsthat produce the best clustering solutions.

Our analysis of the different criterion functions shows that their overall performance depends on the degree to
which they can correctly operate when the dataset contains clusters of different densities (i.e., they contain documents
whose pairwise similarities are different) and the degree to which they can produce balanced clusters. Moreover,
our analysis also shows that the sensitivity to the difference in the cluster densities can also explain an outcome of
our study (that was also observed in earlier results reported in [39]), that for some clustering algorithms the solution
obtained by performing a sequence of repeated bisectionsis better (and for some criterion functions by a considerable
amount) than the solution obtained by computing the clustering directly. When the solution is computed via repeated
bisections, the difference in density between the two clusters that are discovered isin general smaller than the density
differences between al the clusters. As a result, clustering algorithms that cannot handle well variation in cluster
density tend to perform substantially better when used to compute the clustering via repeated bisections.

Therest this paper is organized as follows. Section 2 provides someinformation on how documents are represented
and how the similarity or distance between documentsis computed. Section 3 describesthe different criterion functions
as well as the algorithms used to optimize them. Section 4 provides the detailed experimental evaluation of the
various criterion functions. Section 5 analyzesthe different criterion functionsand explainstheir performance. Finally,
Section 6 provides some concluding remarks and directions of future research.

1Global clustering criterion functions are not an inherent feature of partitional clustering algorithms but they can also be used in the context of
agglomerative algorithms.



2 Preliminaries

Document Representation The various clustering algorithms that are described in this paper use the vector-
space model [37] to represent each document. In this model, each document d is considered to be a vector in the
term-space. In its simplest form, each document is represented by the term-frequency (TF) vector

dit = (tfy, thy, ..., thy),

where tf; is the frequency of theith term in the document. A widely used refinement to this model is to weight each

term based on its inverse document frequency (IDF) in the document collection. The motivation behind this weighting

isthat terms appearing frequently in many documents have limited discrimination power, and for this reason they need

to be de-emphasized. Thisis commonly done [37] by multiplying the frequency of each termi by log(N/df ;), where
N isthetotal number of documentsin the collection, and df; isthe number of documentsthat contain theithterm (i.e.,

document frequency). This leads to the tf-idf representation of the document, i.e.,

Oiigr = (tf log(N/dfy), tfo log(N/df5), . .., tf,, log(N/df ).

To account for documents of different lengths, the length of each document vector is normalized so that it is of unit
length (|| digr]| = 1), that is each document is a vector in the unit hypersphere. In the rest of the paper, we will assume
that the vector representation for each document has been weighted using tf-idf and it has been normalized so that it is
of unit length.

Similarity Measures Over the years, two prominent ways have been proposed to compute the similarity between
two documents d; and d;. Thefirst method is based on the commonly used cosine function [37] given by

ditdj

cos(di, dj) = ——————
C T diid |

D
and since the document vectors are of unit length, the above formulasimplifiesto cos(d;, dj) = d;i'd;. This measure
becomes one if the documentsare identical, and zero if thereis nothing in common between them (i.e., the vectors are
orthogonal to each other). The second method computes the similarity between the documents using the Euclidean
distance, give by

distch. dj) = /(¢ — d)'(ch —dj) = i — . @

If the distance is zero, then the documents are identical, and if there is nothing in common between their distance is
/2. Note that besides the fact that one measures similarity and the other measures distance, these measures are quite
similar to each other because the document vectors are of unit length.

Definitions  Through-out this paper we will use the symbols n, m, and k to denote the number of documents, the
number of terms, and the number of clusters, respectively. We will use the symbol Sto denote the set of n documents
that we want to cluster, S;, S, ..., S to denote each one of the k clusters, and n1, na, ..., ng to denote the sizes of
the corresponding clusters.

Given aset A of documents and their corresponding vector representations, we define the composite vector D A to

be
Da=) d, ©)
deA
and the centroid vector C 5 to be 5
A
Ca=—. 4)
[Al

The composite vector D a is nothing more than the sum of all documents vectorsin A, and the centroid C 4 is nothing
more than the vector obtained by averaging the weights of the various terms present in the documents of A. Note that



even though the document vectors are of length one, the centroid vectors will not necessarily be of unit length.

Vector Properties By using the cosine function as the measure of similarity between documents we can take
advantage of a number of propertiesinvolving the composite and centroid vectors of a set of documents. In particular,
if § and §j are two sets of unit-length documents containing n; and n; documents respectively, and Dj, Dj and C;,
C; aretheir corresponding composite and centroid vectors then the following is true:

1. The sum of the pair-wise similarities between the documentsin S; and the document in S; is equal to D;'D;.
That is,
> cos(dg.d)= D dg'd =Di'Dj. (5)

dqeDi.dreDj dqeDi.dreDj
2. The sum of the pair-wise similarities between the documentsin S; isequal to || Dj||2. That is,

Y cos(dg,d)= D dg'de =Di'Di = |IDi || (6)
dq.dr €Dj dg,dr€Dj

Note that this equation includes the pairwise similarities involving the same pairs of vectors.

3 Document Clustering

At a high-level the problem of of clustering is defined as follows. Given a set S of n documents, we would like to
partition them into a pre-determined number of k subsets S1, S, ..., &, such that the documents assigned to each
subset are more similar to each other than the documents assigned to different subsets.

As discussed in the introduction, our focus in this paper is to study the suitability of various clustering criterion
functionsin the context of partitional document clustering agorithms. Consequently, the clustering problem becomes
that of given a particular clustering criterion function C, compute a k-way clustering solution such that the value of C
is optimized. In the rest of this section we first present a number of different criterion functions that can be used to
both evaluate and drive the clustering process, followed by a description of our optimization algorithms.

3.1 Clustering Criterion Functions

3.1.1 Internal Criterion Functions

This class of clustering criterion functions focuses on producing a clustering solution that optimizes a particular cri-
terion function that is defined over the documents that are part of each cluster and does not take into account the
documents assigned to different clusters. Dueto this intra-cluster view of the clustering process we will refer to these
criterion functions asinternal.

The first internal criterion function that we will study maximizes the sum of the average pairwise similarities
between the documents assigned to each cluster, weighted according to the size of each cluster. Specificaly, if we use
the cosine function to measure the similarity between documents, then we want the clustering solution to optimize the
following criterion function:

K
1
maximize 11=an = Z cos(di, dj) | - 7

=1 N7 4. des

By using Equation 6, the above formula can be re-written as:

K 2
D
Loy IO

=

Note that our definition of Z1 includes the self-similarities between the documents of each cluster. The Z; criterion



function is similar to that used in the context of hierarchical agglomerative clustering that uses the group-average
heuristic to determine which pair of clusters to merge next.

The second criterion function that we will study is used by the popular vector-space variant of the K -means algo-
rithm [7, 30, 10, 39, 23]. In this algorithm each cluster is represented by its centroid vector and the goal is to find
the clustering solution that maximizes the similarity between each document and the centroid of the cluster that is
assigned to. Specifically, if we use the cosine function to measure the similarity between a document and a centroid,
then the criterion function becomes the following:

k
maximize 7, = Z Z cos(d;, Cr). (8)
r=1deS
Thisformulacan be re-written as follows:

k ditCr k k k
2= 2 2 G T Y e ; B =100

1d r=1

Comparing the Z, criterion function with Z; we can see that the essential difference between these criterion functions
is that 7, scales the within-cluster similarity by the || D, || term as opposed to n, term used by Z1. Theterm ||D; || is
nothing morethan the square-root of the pairwise similarity between all thedocument in S;, and will tend to emphasize
the importance of clusters (beyond the || D, |2 term) whose documents have smaller pairwise similarities compared to
clusters with higher pair-wise similarities. Also note that if the similarity between a document and the centroid vector
of its cluster is defined as just the dot-product of these vectors, then we will get back the Z 1 criterion function.

Finally, the last internal criterion function that we will study is that used by the traditional K -means algorithm.
This criterion function uses the Euclidean distance to determine which documents should be clustered together, and
determines the overal quality of the clustering solution by using the sum-of-squared-errors function. In particular,
this criterion is defined as follows:

K
minimize Zz = Z Z Idi —Cr |12 9)

r=1deS
Note that by some simple algebraic manipulations[12], the above equation can be rewritten as:

k

1
T3=>Y = > ld—dj|? (10)
r=1

r di.djeS

that is similar in nature to the Z1 criterion function but instead of using similaritiesit is expressed in terms of squared
distances.

3.1.2 External Criterion Functions

Unlikeinternal criterion functions, external criterion functionsderive the clustering solution by focusing on optimizing
afunction that is based on how the various clusters are different from each other. Due to thisinter-cluster view of the
clustering process we will refer to these criterion functions as external.

It is quite hard to define external criterion functions that lead to meaningful clustering solutions. For example, it
may appear that an intuitive external function may be derived by requiring that the centroid vectors of the different
clusters are as mutually orthogonal as possible, i.e., they contain documents that share very few terms across the
different clusters. However, for many problems this criterion function has trivia solutions that can be achieved by
assigning to thefirst k — 1 clusters a single document that shares very few terms with the rest, and then assigning the
rest of the documentsto the kth cluster.

For this reason, the externa function that we will study tries to separate the documents of each cluster from the
entire collection, as opposed trying to separate the documents among the different clusters. In particular, our external



criterion function is defined as ’

minimize Z nr cos(Cy, C), (11)
where C is the centroid vector of the entire collection. From this equation we can see that we try to minimize the
cosine between the centroid vector of each cluster to the centroid vector of the entire collection. By minimizing the
cosine we essentially try to increase the angle between them as much as possible. Also note that the contribution of
each cluster is weighted based on the cluster size, so that larger clusters will weight heavier in the overall clustering
solution. Thisexterna criterion function was motivated by multiple discriminant analysis and is similar to minimizing
the trace of the between-cluster scatter matrix [12, 41]. Equation 11 can be re-written as

k k t k k t
CC 1 D, D

Encos(C,C) En E En—,

= “ICicH ||Dr||||D|| IDJ] (,_1 r||Dr||>

where D isthe composite vector of the entire document collection. Note that since 1/||D|| is constant irrespective of
the clustering solution the criterion function can be re-stated as:

k t
N D/'D
minimize £1 = E n .
"Dy |

(12)

As we can see from Equation 12, even-though our initial motivation was to define an external criterion function,
because we used the cosine function to measure the separation between the cluster and the entire collection, the
criterion function does take into account the within-cluster similarity of the documents (dueto the ||D || term). Thus,
&1 isactually ahybrid criterion function that combines both external as well as internal characteristics of the clusters.

Another external criterion function can be defined with respect to the Euclidean distance function and the squared-
errors of the centroid vectors as follows:

K
maximize 2 =Y nr||C; — CJ|°. (13)
r=1

However, it can be shown that maximizing £ is identical to minimizing Z3 [12], and we will not consider it any
further.

3.1.3 Hybrid Criterion Functions

The various criterion functions we described so far focused only on optimizing a single criterion function the was
either defined in terms on how documents assigned to each cluster are related together, or on how the documents
assigned to each cluster are related with the entire collection. Inthe first case, they tried to maximize various measures
of similarity over the documentsin each cluster, and in the second case, they tried to minimize the similarity between
the cluster’s documents and the collection. However, the various clustering criterion function can be combined to
define a set of hybrid criterion functions that simultaneously optimize multiple individual criterion functions.

In our study, we will focus on two hybrid criterion function that are obtained by combining criterion Z 1 with &1,
and 7 with &1, respectively. Formally, thefirst criterion functionis

T k D 2 n
maximize Hi1 = -1 Y =1 IDr %/

= : (14)
&1 Y ¥ nD'D/|Dyll

and the second is .
o _ Y =1 D]
&1 Y*  nD'D/|IDy

Note that since £1 is minimized, both {1 and 72 need to be maximized as they areinversely related to £1.

maximize Hy = (15)



3.1.4 Graph Based Criterion Functions

Thevariouscriterion functionsthat we described so far, view each document asamultidimensional vector. An aternate
way of viewing the relations between the documents is to use graphs. In particular, two types of graphs have been
proposed for modeling the document in the context of clustering. The first graph is nothing more than the graph
obtained by computing the pair-wise similarities between the documents, and the second graph is obtained by viewing
the documents and the terms as a bipartite graph.

Given a collection of n documents S, the similarity graph G s is obtained by modeling each document as a vertex,
and having an edge between each pair of vertices whose weight is equal to the similarity between the corresponding
documents. Viewing the documents in this fashion, a number of internal, external, or combined criterion functions
can be defined that measure the overall clustering quality. In our study we will investigate one such criterion function
called MinMaxCut, that was proposed recently [11]. MinMaxCut falls under the category of criterion functions that
combine both the internal and external views of the clustering process and is defined as[11]

K as.S-$)
r=1 Zdi,djes sim(d;, dj)’

minimize

wherecut(S, S— S ) isthe edge-cut between the verticesin S; to therest of the verticesinthe graph S— S;. The edge-
cut between two sets of vertices A and B is defined to be the sum of the edges connecting verticesin A to verticesin
B. The motivation behind this criterion function is that the clustering process can be viewed as that of partitioning the
documentsinto groups by minimizing the edge-cut of each partition. However, for reasons similar to those discussed
in Section 3.1.2, such an externa criterion may have trivial solutions, and for this reason each edge-cut is scaled by
the sum of the internal edges. As shown in[11], this scaling leads to better balanced clustering solutions.

If we use the cosine function to measure the similarity between the documents, and Equations 5 and 6, then the
above criterion function can be re-written as

K\ D dies djes—s €0S(di, dj) _y D/ YD —2Dr) _ Xk: DrtDz x
2_d.djes €0(di. dj) 1Dr |l 1Dy |l

r=1 r=1

r=1
and since k is constant, the criterion function can be simplified to
k. D/'D

minimize G = ; D

(16)

An alternate graph model views the various documents and their terms as a bipartite graph G, = (V, E), where V
consists of two sets Vg and V;. The vertex set Vy correspondsto the documents whereas the vertex set V; corresponds
to the terms. In this modél, if the i th document contains the jth term, there is an edge connecting the corresponding
i th vertex of Vy to the jthvertex of Vi. Theweights of these edges are set using the tf-idf model discussed in Section 2.
Given such abipartite graph, the problem of clustering can be viewed as that of computing a simultaneous partitioning
of the documents and the terms so that a criterion function defined on the edge-cut is optimized. In our study we
will focus on a particular edge-cut based criterion function called the normalized cut, which was recently used in the
context of this bipartite graph model for document clustering [46, 9]. The normalized cut criterion function is defined
as

K, cut(Vr, V — )

minimize Go = ,
; W(Vr)

(17)

where V; isthe set of vertices assigned to ther th cluster, and W(V,) is the sum of the weights of the adjacency lists
of the vertices assigned to ther th cluster. Note that the r th cluster will contain vertices from both the V4 and V4, i.e,,
both documents as well as terms. The key motivation behind this representation and criterion function is to compute
a clustering that groups together documents as well as the terms associated with these documents. Also, note that the
various W(V;) quantities are used primarily as normalization factors, to ensure that the optimization of the criterion



function does not lead to trivial solutions. Its purposeis similar to the || D, ||2 factor used in G1 (Equation 16).

3.2 Criterion Function Optimization

There are many ways that the various criterion functions described in the previous section can be optimized. A
common way of performing this optimizationis to use a greedy strategy. Such greedy approaches are commonly used
in the context of partitional clustering algorithms (e.g., K -means), and for many criterion functionsit has been shown
that they converge to alocal minima. An alternate way is to use more powerful optimizers such as those based on
the spectral properties of the document’s similarity matrix [47] or document-term matrix [46, 9], or various multilevel
optimization methods [26, 25]. However, such optimization methods have only been developed for a subset of the
various criterion functions that are used in our study. For this reason, in our study, the various criterion functions were
optimized using a greedy strategy. This was done primarily to ensure that the optimizer was equally powerful (or
weak), regardless of the particular criterion function.

Our greedy optimizer consists of two phases. (i) initial clustering, and (ii) cluster refinement. In the initial
clustering phase, a clustering solution is computed as follows. If k is the number of desired clusters, k documents are
randomly selected to form the seeds of these clusters. The similarity of each document to each of these k seeds is
computed, and each document is assigned to the cluster corresponding to its most similar seed. The similarity between
documents and seeds is determined using the cosine measure of the corresponding document vectors. This approach
leadsto aninitia clustering solution for all but the G criterion function. For G» the above approach will only produce
aninitia partitioning of Vg (i.e., the document vertices) and does not producean initial partitioning of V; (i.e., theterm
vertices). Our algorithm obtains an initial partitioning of V¢ by inducing it from the partitioning of V4. Thisis done
as follows. For each term-vertex v, we compute the edge-cut of v to each one of the k partitions of V ¢4, and assigh v
to the partition the corresponds to the highest cut. In other words, if we look at the column corresponding to v in the
document-term matrix, and sum-up the various weights of this column according to the partitioning of the rows, then
v isassigned to the partition that has the highest sum. Note that by assigning v to that partition, the total edge-cut due
to v is minimized.

The goal of the cluster refinement phase is to take the initial clustering solution and iteratively refineit. Since the
various criterion functions have different characteristics, depending on the particular criterion function we use three
different refinement strategies.

The refinement strategy that we used for 71, 7o, £1, H1, H2, and Gy is the following. It consists of a number of
iterations. During each iteration, the documents are visited in a random order. For each document, d;, we compute
the change in the value of the criterion function obtained by moving d; to one of the other k — 1 clusters. If there
exist some moves that lead to an improvement in the overall value of the criterion function, then d; is moved to the
cluster that leads to the highest improvement. If no such cluster exists, d; remainsin the cluster that it already belongs
to. The refinement phase ends, as soon as we perform an iteration in which no documents moved between clusters.
Note that unlike the traditional refinement approach used by K -means type of algorithms, the above algorithm moves
adocument as soon as it is determined that it will lead to an improvement in the value of the criterion function. This
type of refinement algorithms are often called incremental [12]. Since each move directly optimizes the particular
criterion function, this refinement strategy always converges to a local minima. Furthermore, because the various
criterion functionsthat use this refinement strategy are defined in terms of cluster composite and centroid vectors, the
change in the value of the criterion functions as aresult of single document moves can be computed efficiently.

The refinement strategy that we used for the Z3 criterion function is identical to that of K-means, that has been
shown to convergeto alocal minima[33]. It consists of a number of iterations. During each iteration, the documents
are visited in a random order. For each document d; we compute its distance to the k cluster centroids and assign
di to the cluster that corresponds to the closest centroid. Once all the documents have been assigned to the different
clusters, the centroids of the clusters are recomputed. The refinement phase ends as soon as we perform aniteration in
which no documents moved between clusters.

The refinement strategy that we used for the G criterion function is based on alternating the cluster refinement
between document-verticesand term-vertices, that was used in the past for partitioning bipartite graphs[29]. Similarly



to the other two refinement strategies, it consists of a number of iterations but each iteration consists of two steps. In

thefirst step, the documents are visited in arandom order. For each document, d;, we compute the changein Go that is
obtained by moving d; to one of the other k — 1 clusters. If there exist some movesthat decrease G », then d; is moved
to the cluster that leads to the highest reduction. If no such cluster exists, d; remains in the cluster that it aready
belongs to. In the second step, the terms are visited in a random order. For each term, t j, we compute the change in
G- that is obtained by moving t; to one of the other k — 1 clusters. If there exist some moves that decrease G », then
t; is moved to the cluster that leads to the highest reduction. If no such cluster exists, tj remainsin the cluster that it
already belongsto. The refinement phase ends, as soon as we perform an iteration in which no documents and terms
are moved between clusters. As it was with the first refinement strategy, this approach will also converge to alocal

minima.

The algorithms used during the refinement phase are greedy in nature, they are not guaranteed to converge to a
globa minima, and the local minima solution they obtain depends on the particular set of seed documents that were
selected to obtain the initial clustering. To eliminate some of this sensitivity, the overall processis repeated a number
of times. That is, we compute N different clustering solutions (i.e., initia clustering followed by cluster refinement),
and the one that achievesthe best value for the particular criterion function is kept. In all of our experiments, we used
N = 10. For the rest of this discussion when we refer to the clustering solution we will mean the solution that was
obtained by selecting the best out of these N potentially different solutions.

4 Experimental Results

We experimentally evaluated the performance of the different clustering criterion functions on a number of different
datasets. In therest of this section we first describe the various datasets and our experimental methodol ogy, followed
by a description of the experimental results.

4.1 Document Collections

In our experiments, we used a total of fifteen different datasets, whose genera characteristics are summarized in
Table 1. The smallest of these datasets contained 878 documents and the largest contained 11,162 documents. To
ensure diversity in the datasets, we obtained them from different sources. For al data sets, we used a stop-list to
remove common words, and the words were stemmed using Porter’s suffix-stripping algorithm [36]. Moreover, any
term that occurs in fewer than two documents was eliminated.

Data Source # of documents | #of terms | # of classes
classic CACM/CISI/CRANFIELD/MEDLINE 7089 12009 4
fbis FBIS (TREC) 2463 12674 17
hitech San Jose Mercury (TREC) 2301 13170 6
reviews | San Jose Mercury (TREC) 4069 23220 5
sports San Jose Mercury (TREC) 8580 18324 7
lal2 LA Times(TREC) 6279 21604 6
new3 TREC 9558 36306 14
tr3l TREC 927 10128 7
tr4l TREC 878 7454 10
ohscal OHSUMED-233445 11162 11465 10
re0 Reuters-21578 1504 2886 13
rel Reuters-21578 1657 3758 25
kla WebACE 2340 13879 20
kb WebACE 2340 13879 6
wap WebACE 1560 8460 20

Table 1: Summary of data sets used to evaluate the various clustering criterion functions.

The classic dataset was obtained by combining the CACM, CISI, CRANFIELD, and MEDLINE abstracts that



were used in the past to evaluate various information retrieval systems?. In this data set, each individual set of ab-
stracts formed one of the four classes. The fhis dataset is from the Foreign Broadcast Information Service data of
TREC-5 [42], and the classes correspond to the categorization used in that collection. The hitech, reviews, and sports
datasets were derived from the San Jose Mercury newspaper articlesthat are distributed as part of the TREC collection
(TIPSTER Vol. 3). Each one of these datasets were constructed by selecting documents that are part of certain topics
in which the various articles were categorized (based on the DESCRIPT tag). The hitech dataset contained documents
about computers, electronics, health, medical, research, and technology; the reviews dataset contained documents
about food, movies, music, radio, and restaurants; and the sports dataset contained documents about baseball, basket-
ball, bicycling, boxing, football, golfing, and hockey. In selecting these documents we ensured that no two documents
share the same DESCRIPT tag (which can contain multiple categories). The lal2 dataset was obtained from articles
of the Los Angeles Times that was used in TREC-5 [42]. The categories correspond to the desk of the paper that each
article appeared and include documents from the entertainment, financial, foreign, metro, national, and sports desks.
Datasets new3, tr31, and tr41 are derived from TREC-5 [42], TREC-6 [42], and TREC-7 [42] collections. The classes
of these datasets correspond to the documents that were judged relevant to particular queries. The ohscal dataset was
obtained from the OHSUMED collection [19], which contains 233,445 documents indexed using 14,321 unigue cat-
egories. Our dataset contained documents from the antibodies, carcinoma, DNA, in-vitro, molecular sequence data,
pregnancy, prognosis, receptors, risk factors, and tomography categories. The datasets re0 and rel are from Reuters-
21578 text categorization test collection Distribution 1.0 [32]. We divided the labels into two sets and constructed
data sets accordingly. For each data set, we selected documents that have a single label. Finally, the datasets kla,
klb, and wap are from the WebACE project [34, 16, 3, 4]. Each document corresponds to a web page listed in the
subject hierarchy of Yahoo! [44]. The datasets kla and kl1b contain exactly the same set of documents but they differ
in how the documents were assigned to different classes. In particular, kla contains a finer-grain categorization than
that contained in k1b.

4.2 Experimental Methodology and Metrics

For each one of the different datasets we obtained a 5-, 10-, 15-, and 20-way clustering solution that optimized
the various clustering criterion functions. The quality of a clustering solution was measured by using two different
metrics that look at the class labels of the documents assigned to each cluster. The first metric is the widely used
entropy measure that 1ooks are how the various classes of documents are distributed within each cluster, and the
second measure is the purity that measures the extend to which each cluster contained documents from primarily one
class.

Given aparticular cluster S of size n, the entropy of this cluster is defined to be

1 Kl n!
E(S) = _@Z_r |09n—:,

iz M

where q is the number of classes in the dataset, and nir is the number of documents of thei th class that were assigned
to the rth cluster. The entropy of the entire clustering solution is then defined to be the sum of the individual cluster
entropies weighted according to the cluster size. That is,

=~

n
Entropy = » | Fr E(S).
r=1

A perfect clustering solution will be the one that leads to clusters that contain documents from only asingle class, in
which case the entropy will be zero. In general, the smaller the entropy values, the better the clustering solutionis. In

2They are are available from ftp://ftp.cs.cornell.edu/pub/smart.
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asimilar fashion, the purity of this cluster is defined to be
1 i
P(S) = — max(n),
Ny |

which is nothing more than the fraction of the overall cluster size that the largest class of documents assigned to that
cluster represents. The overall purity of the clustering solution is obtained as a weighted sum of the individual cluster
purities and is given by

K
Purity = Z % P(S).
r=1

In general, the larger the values of purity, the better the clustering solutioniis.

To eliminate any instances that a particular clustering solution for a particular criterion function got trapped into a
bad local minima, in al of our experiments we actually found ten different clustering solutions. The various entropy
and purity valuesthat are reported in the rest of this section correspond to the average entropy and purity over these ten
different solutions. Asdiscussed in Section 3.2 each of the ten clustering sol utions correspondsto the best solution out
of ten different initial partitioning and refinement phases. As aresult, for each particular value of k and criterion func-
tion we computed 100 clustering solutions. The overall number of experimentsthat we performed was 3* 100* 4* 8* 15
= 144,000, that were completed in about 8 days on a Pentium 111 @600M Hz workstation.

4.3 Evaluation of Direct k-way Clustering

Our first set of experiments was focused on evaluating the quality of the clustering solutions produced by the various
criterion functions when they were used directly to compute a k-way clustering solution. The results for the various
datasets and criterion functions for 5-, 10-, 15-, and 20-way clustering solutions are shown in Table 2, which shows
both the entropy and the purity results for the entire set of experiments. The resultsin this table are provided primarily
for completeness and in order to evaluate the various criterion functions we actually summarized these results by
looking at the average performance of each criterion function over the entire set of datasets.

One way of summarizing the results is to average the entropies (or purities) for each criterion function over the
fifteen different datasets. However, since the clustering quality for different datasets is quite different and since the
quality tends to improve as we increase the number of clusters, we felt