
SUGGEST∗
Top-N Recommendation Engine

Version 1.0

George Karypis

University of Minnesota, Department of Computer Science / Army HPC Research Center
Minneapolis, MN 55455

karypis@cs.umn.edu

Last updated on November 7, 2000 at 3:05pm

∗SUGGEST is copyrighted by the regents of the University of Minnesota.

 Related papers are available via WWW at URL: http://www.cs.umn.edu/˜karypis

1

Contents

1 Overview 3

2 Using SUGGEST 3

3 Calling Sequence of the Routines in SUGGEST 4
SUGGEST Init . 5
SUGGEST TopN . 6

SUGGEST Clean . 7
SUGGEST EstimateAlpha . 8

4 Experimental Comparison of SUGGEST’s Recommendation Algorithms 9

5 Hardware Requirements, and Contact Information 11

2

1 Overview

SUGGEST is a Top-N recommendation engine that implements a variety of recommendation algorithms. Top-N
recommender systems is a personalized information filtering technology, used to identify a set of N items that will be
of interest to a certain user. In recent years, recommender systems have been used in a number of different applications
such as to recommend products a customer will most likely buy; recommend movies, TV programs, or music a
user will find enjoyable; identify web-pages that will be of interest; or even suggest alternate ways of searching for
information.

The algorithms in SUGGEST are based on collaborative filtering (CF) that is probably the most successful and
widely used framework for building recommender systems. Collaborative filtering-based Top-N recommendation
algorithms derive their recommendations by analyzing information on what people have done in the past to identify
pieces of information (e.g., web-pages, movies, products, etc.) that will be of value to a particular user. One of the
advantages of collaborative filtering recommender systems is that they are content independent and can be used in
many diverse areas.

SUGGEST implements two classes of CF-based Top-N recommendation algorithms, called user-based and item-
based. User-based algorithms rely on the fact that each person belongs to a larger group of similarly-behaving in-
dividuals. Consequently, items (i.e., products) frequently liked by the various members of the group can be used to
form the basis of the recommended items. On the other hand, item-based algorithms rely on the fact that a person
will more likely like items that are similar or related to the items that he/she has liked in the past. In both classes
of algorithms, information about what the different individuals have done in the past are used to discover either the
groups of like-minded individuals (as in the case of user-based algorithms), or the similar items (as in the case of the
item-based algorithms). The details of the different algorithms are described in [2, 1].

Our primary goals in designing SUGGEST was to develop a Top-N recommendation engine that satisfied the
following requirements:

• Produce high-quality recommendations.

• Achieve low recommendation latency.

• Scale to large datasets.

The item-based Top-N recommendation algorithms provided by SUGGEST meet all three of these design objectives.
The experiments reported in [1], have shown that SUGGEST’s item-based Top-N recommendation algorithms produce
recommendations that are often substantially better than those produced by the user-based algorithms, can compute
each set of Top-N recommendations in less than 50us on a 366MHz Pentium II, and can scale to large datasets.

The rest of this manual is organized as follows. Section 2 provides a brief introduction on how to use the different
routines in SUGGEST. Section 3 describes the calling sequence of SUGGEST’s routines. Section 4 provides some
experiments comparing the performance of SUGGEST’s recommendation algorithm. Finally, Section 5 describes
SUGGEST’s hardware requirements and provides contact information.

2 Using SUGGEST

The different recommendation algorithms implemented in SUGGEST are provided in the form of a library that can
be directly linked into your application. SUGGEST’s library provides the following three routines for accessing the
recommendation engine.

• SUGGEST Init()

• SUGGEST TopN()

• SUGGEST Clean()

3

SUGGEST Init() is used to initialize the recommendation engine and set up the internal data structures to be used
during the recommendation. The input to SUGGEST Init() is the set of historical user-item transactions that depend-
ing on the application can represent different things. For instance, in e-commerce type of applications, the historical
transactions will correspond to the set of products the different customers have purchased in the past. Similarly, in
the case of web-page recommendations, the transactions will correspond to the set of pages the various users have
accessed the past. The SUGGEST Init() routine must be called before any recommendations can be computed, and
returns a pointer to the internal data structures (referred to as the RcmdHandle) that must be passed as a parameter to
SUGGEST TopN() and SUGGEST Clean().

The actual recommendations are computed using the SUGGEST TopN() routine. This routine takes as input
the RcmdHandle returned by SUGGEST Init() and the user’s current basket of items, and returns the Top-N rec-
ommended items. Again, depending on the application the basket can represent different things. In e-commerce
applications the basket can represent either the products that have been purchased by the user or the products that
have been inserted in his/her shopping basket. On the other hand, in web-page recommendation applications, the
basket can correspond to the set of pages that have already been accessed by the user. The SUGGEST TopN() rou-
tine can be called as many times as needed, once for each of the users for which we need to compute their Top-N
recommendations.

Once all the required recommendations have been computed, the SUGGEST Clean() routine must be called to
free the internal data-structures created by SUGGEST Init(). The input to this routine is the RcmdHandle, and once
it has been called, the handle becomes invalid. In order to compute any additional recommendations, the engine needs
to be initialized again.

Finally, SUGGEST provides the SUGGEST EstimateAlpha() routine that is used to estimate the optimal value
for one of the parameters for the item-based Top-N recommendation algorithm.

3 Calling Sequence of the Routines in SUGGEST

The calling sequences of the routines provided by SUGGEST are described in the rest of this section.

4

int *SUGGEST Init (int nusers, int nitems, int ntrans, int *userid, int *itemid, int RType, int NNbr, float Alpha)

Description
It is used to initialize the Top-N recommendation engine.

Parameters
nusers The total number of distinct users in the database of historical transactions.

nitems The total number of distinct items available in the database. This is essentially the universe of items
that the recommendation engine can recommend.

ntrans The total number of historical user-item transactions that will be used to base the recommendations
upon.

userid, itemid
The actual user-item transactions. These are two integer arrays of size ntrans such that each (userid[i],
itemid[i]) pair represents the transaction that the user stored in userid[i] has purchased/accessed the
item stored in itemid[i]. Note that the users and items must be numbered consecutively from 0 to
(nusers-1) and from 0 to (nitems -1), respectively. That is, the entries in the userid[] array can only
take values from 0 to (nusers-1), and the entries in the itemid[] array can only take values from 0 to
(nitems-1).

RType Used to select the type of the Top-N recommendation algorithm that should be used. RType can take
the following values:

1 Item-based Top-N recommendation algorithm with cosine-based similarity function (ItemCos).

2 Item-based Top-N recommendation algorithm with probability-based similarity function (Item-
Prob). This algorithms tends to outperform the rest.

3 User-based Top-N recommendation algorithm with cosine-based similarity function (UserCos).

NNbr Used to indicate the size of the neighborhood to be used during recommendation. In the case of
item-based recommendation algorithms this corresponds to item-neighborhoods, whereas in the case
of user-based algorithms it corresponds to user neighborhoods. Our experiments have shown that
a value in the range of 15-30 is sufficient for item-based algorithms, and a value in the range of
40-80 is sufficient for user-based algorithms. Note that selecting very small values for NNbr can
potentially lead to poor recommendations, and selecting large values for NNbr can reduce the rec-
ommendation speed and, in the case of user-based algorithms, it can also reduce the quality of the
recommendations.

Alpha It is used only when RType = 2, and specifies how the frequently occurring items will be de-
emphasized during the computation of the Top-N recommendations. Alpha ranges from (0.0, 1.0],
and our experimental evaluation in [1] has shown that a value in the range of [0.3, 0.5] provides
reasonably good performance. In general, a smaller value of Alpha should be preferred when the
historical information is quite sparse, and a larger value should be used in denser datasets. However,
the optimal value is dataset dependent, and some experimentation may be required. Note that the
right value for Alpha can dramatically improve the performance of the algorithm.

SUGGEST provides the SUGGEST EstimateAlpha() routine that can be used to automatically
estimate the optimal value for Alpha, using a cross-validation approach.

Returned Value
The routine returns a pointer to the internal data structures that were setup by the recommendation engine.
We will refer to this pointer as the RcmdHandle and it must be passed to both the SUGGEST TopN() and
SUGGEST Clean() routines.

5

int SUGGEST TopN (int *RcmdHandle, int bsize, int *itemids, int NRcmd, int *rcmds)

Description
It is used to compute the Top-N recommendations based on the current set of items in the user’s basket.

Parameters
RcmdHandle

This is the pointer returned by the SUGGEST Init() routine.

bsize This is the number of items in the user’s current basket.

itemids This is an array of size bsize that stores the items-ids in the user’s basket. Note that each of these
item-ids should be in the range of [0, nitems − 1], where nitems is the total number of distinct items
specified in the SUGGEST Init() routine, and that the item numbering should be consistent with the
item numbering used in SUGGEST Init().

NRcmd This is the number of recommended items that are required; i.e., it is the value of N in the Top-N
recommendation algorithm.

rcmds This is an array of size NRcmd that will store the item-ids of the recommended items.

Returned Value
The routine returns the actual number of items that were recommended. Note that this number can be smaller
than the requested number of recommended items NRcmd. If this is the case, the entries in the rcmds array
corresponding to the missing items will be undefined.

Also, if any of the values in the itemids array is invalid (i.e., not in the [0, nitems−1] range), SUGGEST TopN()
returns -1.

6

void SUGGEST Clean (int *RcmdHandle)

Description
It is used to free the memory allocated for the internal data-structures of the Top-N recommendation engine.

Parameters
RcmdHandle

This is the pointer returned by the SUGGEST Init() routine.

7

float SUGGEST EstimateAlpha (int nusers, int nitems, int ntrans, int *userid, int *itemid, int NNbr, int NRcmd)

Description
It is used to estimate the optimal value of Alpha for the probability-based Top-N recommendation algorithm
(i.e., RType=2).

Parameters
nusers, nitems, ntrans, userid, itemid, NNbr

These parameters are identical to the corresponding parameters of the SUGGEST Init() routine.

NRcmd This parameter is identical to the corresponding parameter of the SUGGEST TopN() routine.

Returned Value
The routine returns the estimated optimal value for Alpha.

Notes
The algorithm used by SUGGEST EstimateAlpha() to estimate the optimal value of Alpha is based on the
cross-validation paradigm. As a result, for accurate estimations, its various parameters should be identical to the
corresponding parameters passed in SUGGEST Init() and SUGGEST TopN(). The optimal value of Alpha
does not change dramatically as the set of historical transactions are updated. For this reason, the value of Alpha
needs to be only estimated from scratch, when the historical transactions change substantially.

8

4 Experimental Comparison of SUGGEST’s Recommendation Algorithms

In this section we present some experimental results comparing the performance of the different Top-N recommen-
dation algorithms implemented in SUGGEST. A more detailed experimental evaluation can be found in [1]. All
experiments were performed on a Pentium II based workstation running at 366MHz, 256MBytes of memory, and
Linux-based operating system.

Data Sets SUGGEST’s performance was evaluated using five different datasets whose characteristics are shown
in Table 1. For each dataset, the columns labeled “nusers”, “nitems”, and “ntrans” correspond to the number of users,
number of items, and total number of transactions, respectively.

Name nusers nitems ntrans
ecommerce 6667 17491 91222
catalog 50918 39080 435524
ccard 42629 68793 398619
skills 4374 2125 82612
movielens 943 1682 100000

Table 1: The characteristics of the various datasets used in evaluating the Top-N recommendation algorithms.

The ecommerce dataset corresponds to web-based purchasing transactions of an e-commerce site. The catalog
dataset corresponds to the catalog purchasing transactions of a major mail-order catalog retailer. The ccard dataset
corresponds to the store-branded credit card purchasing transactions of a major department store. The skills dataset
corresponds to the IT-related skills that are present in the resumes of various individuals and were obtained from
a major online job portal. Finally, the movielens dataset corresponds to movie ratings and were obtained from the
MovieLens research project. Note that in our experiments, we ignored the actual ratings in the movielens dataset.

Experimental Design and Metrics In order to evaluate the quality of the Top-N recommendations we split each
of the datasets into a training and test set, by randomly selecting one of the transactions for each user to be part of the
test set, and used the remaining transactions for training. The transactions in the training set were used to initialize
SUGGEST’s recommendation engine (i.e., were the input to SUGGEST Init()).

The quality was measured by looking at the number of hits; i.e., the number of items in the test set that where also
present in the Top-N recommended items returned for each user. In particular, if n is the total number of users, we
computed the recall of the recommended system as:

recall = Number of hits

n
.

A recall value of 1.0 indicates that the recommendation algorithm was able to always recommend the hidden item,
whereas a recall value of 0.0 indicates that the recommendation algorithm was not able to recommend any of the
hidden items.

In order to ensure that our results were statistically accurate, for each of the experiments we performed ten different
runs, each time using a different random partitioning into training and test. The results reported in the rest of this
section are the averages over these ten trials. Finally, in all of experiments we used N = 10, as the number of items
top be recommended by the Top-N recommendation algorithms.

Comparison of the Recommendation Algorithm The performance of the different Top-N recommendation
algorithms is shown in Figure 1. This figure includes four different set of results. The results labeled “User” correspond
to the user-based results obtained by using RType=3. The results labeled “ItemCos” correspond to the cosine-based
results obtained by using RType=1. The results labeled “ItemProb-a=0.5” correspond to the probability-based al-

9

gorithm in which Alpha was set to 0.5. The results labeled “ItemProb-a=Opt” correspond to the probability-based
algorithm that uses for each dataset the value of Alpha that achieved the highest performance 1. These results were
obtained by using RType = 2. Finally, Figure 1 also includes the Top-N recommendation quality achieve by the naive
algorithm, labeled “Frequent”, that recommends the N most frequent items not already present in the active user’s set
of items. The item-based recommendations were obtained using item-neighborhoods of size 20 (i.e., NNbr = 20), and
the user-based recommendations were obtained using user-neighborhoods of size 50 (i.e., NNbr=50).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ecommerce catalog ccard skills movielens

R
ec

al
l

Frequent User ItemCos ItemProb-a=0.5 ItemProb-a=Opt

Figure 1: The quality of the recommendations obtained by the naive, the item-based and the user-based recommendation algo-
rithms.

From the results in Figure 1 we can see that both the “ItemCos” and the “ItemProb-a=0.5” algorithms outperform
the user-based algorithm in three out of the five datasets, whereas “ItemProb-a=Opt” outperforms the user-based
scheme in all five datasets. It is interesting to note that the first two item-based algorithms perform substantially better
for the first three datasets and only marginally worse for the remaining two. In fact, the average improvement achieved
over all five datasets is a significant 15.7% and 18.8% for “ItemCos” and “ItemProb-a=0.5”, respectively. The item-
based algorithm that uses the optimal values of Alpha performs even better, achieving an average improvement of 27%.
Also note that both the user- and item-based algorithms produce recommendations whose quality is substantially better
than the recommendations produced by the naive “Frequent” algorithm.

One of the advantages of the item-based algorithm is that it has much smaller computational requirements than
the user-based Top-N recommendation algorithm. Table 2 shows the amount of time required by the two algorithms
to compute the Top-N recommendations for each one of the five datasets. The columns labeled “RcmdTime” shows
the amount of time required to compute all the recommendations for each one of the dataset, and the columns la-
beled “RcmdRate” shows the rate at which the Top-N recommendations were computed in terms of recommenda-
tions/second. All the times in Table 2 are in seconds.

As we can see from these results, the recommendation rates achieved by the item-based algorithm are 12 to 28 times
higher than those achieved by the user-based algorithm. If we add the various “RcmdTime” for all five data sets we can
see that the overall recommendation rate for the item-based algorithm is 19579 recommendations/second compared
to only 1157 recommendations/second achieved by the user-based algorithm. This translates to one recommendation
every 50us for the item-based algorithm, versus 864us for the user-based algorithm.

In summary, the item-based Top-N recommendation algorithms improve the recommendations produced by the
user-based algorithms by up to 27% in terms of recommendation accuracy, and it is up to 28 times faster.

1These values of Alpha where determined by performing a set of experiments in which we varied Alpha in 0.1 increments.

10

User-based Item-based
Name RcmdTime RcmdRate RcmdTime RcmdRate
ecommerce 4.05 1646 0.33 20203
catalog 27.20 1848 2.20 22817
ccard 50.04 851 2.43 17542
skills 6.50 672 0.23 19017
movielens 3.38 278 0.20 4715

Table 2: The computational requirements for computing the Top-N recommendations for both the user- and item-based algorithms.

5 Hardware Requirements, and Contact Information

Currently, SUGGEST is an in-memory recommendation engine. The memory requirements of SUGGEST’s internal
data-structures (i.e., where RcmdHandle points) depend on whether or not the item- or user-based algorithms are used.
In the case of the item-based algorithms, the internal data-structures require approximately

2 ∗ (nitems ∗ NNbr) + 4 ∗ nitems words,

and in the case of the user-based algorithms, they require approximately

4(nrows + ncols + ntrans) words.

Since in most typical applications, nitems will be much smaller than ntrans, the item-based Top-N recommendation
algorithms require the least amount of memory.

SUGGEST is written in ANSI C and has been extensively tested under Linux and Solaris. At this point SUGGEST’s
distribution is only in a binary format. However, the source can be made available to government and educational
institutions for research and educational purposes. A simple driver program along with a small dataset is included for
testing. Please look at the driver program for an example of how to use SUGGEST.

If you find any problems or have any questions on how to use SUGGEST, please contact George Karypis via email
at karypis@cs.umn.edu.

References
[1] George Karypis. Experimental evaluation of item-based top-n recommendation algorithms. Technical Report TR-00-

046, Department of Computer Science, University of Minnesota, Minneapolis, 2000. Available on the WWW at URL
http://www.cs.umn.edu/˜karypis.

[2] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Analysis of recommendation algorithms for e-commerce. In Proceedings of
ACM E-Commerce, 2000.

11

