A new Algorithm for Multi-Objective Graph Partitioning

Kirk Schloegel, George Karypis, and Vipin Kumar
Euro-Par, pp. 322-331, 1999
Download Paper
Recently, a number of graph partitioning applications have emerged with additional requirements that the traditional graph partitioning model alone cannot effectively handle. One such class of problems is those in which multiple objectives, each of which can be modeled as a sum of weights of the edges of a graph, must be simultaneously optimized. This class of problems can be solved utilizing a multi-objective graph partitioning algorithm. We present a new formulation of the multi-objective graph partitioning problem and describe an algorithm that computes partitionings with respect to this formulation. We explain how this algorithm provides the user with a fine-tuned control of the tradeoffs among the objectives, results in predictable partitionings, and is able to handle both similar and dissimilar objectives. We show that this algorithm is better able to find a good tradeoff among the objectives than partitioning with respect to a single objective only. Finally, we show that by modifying the input preference vector, the multi-objective graph partitioning algorithm is able to gracefully tradeoff decreases in one objective for increases in the others.
Research topics: Graph partitioning